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Abstract Graphical functions are positive functions on the punctured complex plane
C\{0, 1} which arise in quantum field theory. We generalize a parametric integral rep-
resentation for graphical functions due to Lam, Lebrun and Nakanishi, which implies
the real analyticity of graphical functions. Moreover, we prove a formula that relates
graphical functions of planar dual graphs.
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1 Introduction

One main problem in perturbative quantum field theory is the calculation of Feyn-
man integrals (see e.g., [12]). As a new tool for this task, graphical functions were
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1178 M. Golz et al.

introduced by the third author in [24]. Basically, these are special classes of mass-
less Feynman integrals (three-point functions) that can be understood as single-valued
functions on the punctured complex plane C\{0, 1}. They are powerful tools in multi-
loop calculations, see, e.g., [5,22].

A traditionalmethod to study Feynman integrals is to represent them in a parametric
version, where one integrates over variables associated to the edges of a Feynman
graph [12]. In many cases of interest, these integrals can be computed in terms of
multiple polylogarithms, using a method developed by Brown [3,4] and the second
author [19,21]. The combination of graphical functions and this parametric integration
(using the formulas derived in this article) has recently provided a breakthrough in
the calculation of primitive log-divergent amplitudes of graphs with up to eleven
independent cycles (‘loops’) [22].

In a complete quantum field theoretical calculation one encounters naive singular-
ities which are most frequently treated by the ‘dimensional regularization scheme’
which demands the generalization to arbitrary space-time dimensions (away from the
classical four dimensions). The parametric representation is the cleanest way to define
Feynman integrals in non-integer ‘dimensions’. In this article, we derive fundamental
formulas and results for graphical functions in parametric representations for arbitrary
dimensions.

Apart from [22], first applications of the results of this article include the calculation
of the beta function and field anomalous dimension of minimally subtracted (4 − ε)-
dimensional φ4 theory to six and seven loops by the third author [25].

1.1 Feynman integrals in position space

A Feynman graph is a graph G with a distinguished subset Vext
G ⊆ VG of external

vertices (the remaining verticesV int
G = VG\Vext

G are called internal).Weoften suppress
the subscript G and we use roman capital letters for cardinalities, so, e.g., Vext = Vext

G
and V ext = |Vext|. We fix the dimension1

d = 2λ + 2 > 2

and associate to every vertex v of G a d-dimensional vector xv ∈ R
d . An edge e

between vertices u and v corresponds to the quadratic form Qe which is the square of
the Euclidean distance between xu and xv ,

Qe = ‖xu − xv‖2 =
d∑

i=1

(xiu − xiv)
2. (1.1)

Moreover, every edge e has an edge weight νe ∈ R. Then the Feynman integral
associated to G in position space is defined as

1 In two dimensions (λ = 0), non-trivial graphical functions (1.2) always diverge. However, one can
redefine λνe =: ν′

e ∈ R as the edge weights and all of the following results extend to this case.
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Graphical functions in parametric space 1179

f (λ)
G (x) =

⎛

⎝
∏

v∈V int

∫

Rd

dd xv

πd/2

⎞

⎠ 1
∏

e Q
λνe
e

, (1.2)

where the first product is over all internal vertices of G and the second product is over
all edges of G. Note that f (λ)

G (x) is a function of the external vectors x = (xv)v∈Vext

which we always assume to be pairwise distinct (xv �= xw for v �= w).
The convergence of (1.2) is equivalent to two conditions named ‘infrared’ and

‘ultraviolet’ (this weighted analog of [24, Lemma 3.4] rests on power counting [14]):

• The graph G is called ultraviolet convergent if

λνg < d
2 (Vg − 1) (1.3)

holds for all induced2 subgraphs g with |Vg ∩ Vext| ≤ 1. Here we write

νg =
∑

e∈Eg
νe

and denote the sets of vertices and edges of g with Vg and Eg .
• A vertex v ∈ Vg of a subgraph g of G is called g-internal if it is internal (v ∈ V int)
and all edges of G which are incident to v also belong to g. We write V int

g for the
number of such vertices. The graph G is called infrared convergent if

λνg > d
2V

int
g (1.4)

holds for all subgraphs g of G which satisfy V int
g > 0 and contain only edges

which are incident to at least one g-internal vertex.

Example 1.1 In case of the graphG4 from Fig. 1, there are three ultraviolet conditions
of the form λνe < d

2 (one for each edge e) and one infrared condition λνG4 > d
2 (from

the full subgraph g = G4).

1.2 Graphical functions

In the special case of three external vertices, we label them with 0, 1 and z. Note
that f (λ)

G is invariant under the Euclidean group, so we may translate x0 to the origin
and rotate x1 and xz into the plane R

2 × {0}d−2 which we identify with the complex
numbers C. The graphical function

f (λ)
G (z) : C\{0, 1} −→ R+

2 A subgraph g is induced when every edge of G which has both endpoints in Vg belongs to g.
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1

0 z
G4 G7

z0

1

Fig. 1 Examples of connected graphs with four and seven vertices in total and three external vertices
labeled 0, 1 and z

is a parametrization of f (λ)
G (x) defined in terms of a complex variable z �= 0, 1 via

x0 = (0, . . . , 0)t , x1 = (1, 0, . . . , 0)t and xz = (Re z, Im z, 0, . . . , 0)t . (1.5)

Graphical functions were introduced in [24] basically as a tool for calculating
Feynman periods in φ4 quantum field theory (see also [10,22,26]). However, they can
also appear in amplitudes and correlation functions, see for example [9].

In [24] ‘completions’ of graphical functions were defined. In this article, however,
we use uncompleted graphs.

Example 1.2 In d = 4 dimensions and with edge weights νe = 1, the graph G4 of
Fig. 1 has a convergent graphical function (see Example 1.1). It is (see [24,26])

f (1)
G4

(z) =
∫

R4

d4x

π2

1

‖x‖2‖x − x1‖2‖x − xz‖2 = 4iD(z)

z − z

in terms of the Bloch–Wigner dilogarithm D(z) = Im(Li2(z) + log(1 − z) log |z|).
The Bloch–Wigner dilogarithm D(z) is a single-valued version of the dilogarithm

Li2(z) = ∑∞
k=1 z

k/k2. It is real analytic onC\{0, 1} and antisymmetric under complex
conjugation D(z) = −D(z). These properties of the Bloch–Wigner dilogarithm lift
to general properties of graphical functions:

Theorem 1.3 Let G be a graph which fulfills the ultraviolet and infrared conditions
(1.3) and (1.4). Then the graphical function f (λ)

G : C\{0, 1} −→ R+ has the following
general properties:

(G1) f (λ)
G (z) = f (λ)

G (z),

(G2) f (λ)
G is single-valued and

(G3) f (λ)
G is real analytic on C\{0, 1}.

It was not possible to prove real analyticity (G3) in full generality with the methods
in [24]. In this article, we obtain (G3) as a consequence of an alternative integral
representation of graphical functions. In this representation, the integration variables
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Graphical functions in parametric space 1181

αe (known as Schwinger or Feynman parameters) are associated to edges of the graph
[1,12].

Although we are mainly interested in the case of three external vertices 0, 1, z, our
results effortlessly generalize to an arbitrary number V ext of external vertices.

1.3 Graph polynomials

Wewill use certain polynomials in the edge variables αe that were defined and studied
by Brown and Yeats [6].

Definition 1.4 Let p = {p1, . . . , pn} denote a partition of a subset of the vertices of
a graph G (so pi ⊆ V and pi ∩ p j = ∅ when i �= j). We write F p

G for the set of all
spanning forests T1 ∪ · · · ∪ Tn consisting of exactly n (pairwise disjoint) trees Ti such
that pi ⊆ Ti . The dual spanning forest polynomial associated to p is

�̃
p
G(α) :=

∑

F∈F p
G

∏

e∈F
αe. (1.6)

We suppress curly brackets in the notation, so for example �̃01z
G = �̃

{{0,1,z}}
G denotes

the sumof spanning forests (n = 1), while the partition in �̃
01,z
G is {{0, 1}, {z}} (n = 2).

Say we call the external vertices 1, . . . , V ext, then we write �̃ := �̃1,...,V ext
for the

partition into singletons (n = V ext). The partitions with n = V ext − 1 have exactly
one part containing two external vertices. We collect them in the polynomial

	̃G(α, x) :=
∑

1≤i< j≤V ext

‖xi − x j‖2�̃ i j,(k)k �=i, j
G (α). (1.7)

Example 1.5 If we label the three edges adjacent to 0, 1 and z in G4 (see Fig. 1) by 1,
2 and 3, then we find the polynomials

�̃
1z,0
G4

= α2α3, �̃01z
G4

= α1α2α3,

�̃
0z,1
G4

= α1α3, �̃
0,1,z
G4

= α1 + α2 + α3,

�̃
01,z
G4

= α1α2, 	̃G4 = (z − 1)(z − 1)α2α3 + zzα1α3 + α1α2.

Here z denotes the complex conjugate of z ∈ C\{0, 1} and we used (1.5).

A parametric (i.e., depending on the edge parameters αe) formula for (massive)
position space Feynman integrals in four-dimensional Minkowski space was discov-
ered long ago [13,17] and is also discussed in the book [18, Equation (8–33)]. In the
massless Euclidean case, it becomes a parametric formula for graphical functions.
We give an extension to arbitrary dimensions which also allows for negative edge
weights.3

3 The validity for arbitrary dimensions is straightforward and was noticed already in [18, Remark 7–10].
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1182 M. Golz et al.

Theorem 1.6 Let G be a non-empty graph with V int
G internal vertices and edges

labeled 1, 2, . . . , EG. We assume that its graphical function (1.2) converges, meaning
that G is subject to (1.3) and (1.4), and define the superficial degree of divergence

MG := λνG − d
2V

int
G . (1.8)

Then for any set of non-negative integers ne, such that ne + λνe > 0, we have the
following dual parametric representation of f (λ)

G as a convergent projective integral:

f (λ)
G (x) = (−1)

∑
ene 
(MG)∏

e 
(ne + λνe)

∫

�

�

[
∏

e

αne+λνe−1
e ∂neαe

]
1

	̃
MG
G �̃

d/2−MG
G

, (1.9)

where the integration domain is given by the positive coordinate simplex

� = {(α1 : α2 : . . . : αEG ) : αe > 0 for all e ∈ {1, 2, . . . , EG}} ⊂ P
EG−1

R

and we set

� =
EG∑

e=1

(−1)e−1αedα1 ∧ · · · ∧ d̂αe ∧ · · · ∧ dαEG .

Remark 1.7 For integer λνe ≤ 0 one may set ne = 1 − λνe such that the integration
over αe trivializes to the evaluation at αe = 0 of a (−λνe)’s derivative.

Readers who are not familiar with projective integrals can specialize to an affine
integral by setting α1 = 1 and integrating the remaining αe (e > 1) from 0 to ∞.

Note that MG is restricted by convergence: from (1.4) with g = G and from (1.3)
with g = G\(Vext\{v}) (for some v ∈ Vext), we obtain for a graph G with no edges
between external vertices that

0 < MG < λ min
v∈V ext

∑

w∈Vext\{v}
νw,

where νw is the sum of weights νe of all edges e adjacent to the external vertex w.
One immediate advantage of the parametric representation is that for many graphs

with not more than nine vertices, the integral (1.10) can be calculated (in terms of
polylogarithms) with methods developed by Brown [4] and the second author [19,21].

Note that we obtain another integral representation via the Cremona transformation
αe → 1/αe:

Corollary 1.8 Let G be a non-empty graph with EG edges. We assume the conver-
gence of f (λ)

G and also that every edge e has a positive weight νe > 0. Then

f (λ)
G (x) = 
(MG)∏

e 
(λνe)

∫

�

∏
e α

d/2−λνe−1
e

	
MG
G �

d/2−MG
G

�, (1.10)
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H7

z0

1

H7

z

1

0

Fig. 2 The graphs H7 and H�
7 are planar duals

where �G = �
1,...,V ext

G and 	G(α, x) = ∑
i< j ‖xi − x j‖2� i j,(k)k �=i, j

G (α) are defined
in terms of the spanning forest polynomials, which are dual to (1.6):

�
p
G(α) =

∑

F∈F p
G

∏

e/∈F
αe =

(
∏

e

αe

)
�̃

p
G(α−1). (1.11)

Proof We set ne = 0 in (1.9) for all edges e of G. We use the affine chart α1 = 1 in
(1.9) and invert all αe, e > 1. By (1.11) this gives the integrand in (1.10) for α1 = 1.
The projective version of this integral is (1.10). ��

1.4 Planar duals

A planar dual G� of a Feynman graph G with external vertices 0, 1, z is a usual planar
dual graph to which we add external vertices at ‘opposite’ sides, see Fig. 2 (a precise
description will be given in Definition 4.1). In the case when MG = d/2, graphical
functions of dual graphs are related:

Theorem 1.9 Let G be a connected graph with external vertices 0, 1, z and edge
weights νe > 0 such that the graphical function f (λ)

G converges and MG = d/2. Let
G� be a dual of G and denote by e� the edge of G� which corresponds to the edge e
of G. Let the edge weights νe� of G� be related to the edge weights νe of G through

λνe� = d/2 − λνe. (1.12)

Then the graphical functions associated to G and G� are multiples of each other:

f (λ)
G� (z) = f (λ)

G (z)
∏

e


(λνe)


(λνe� )
. (1.13)

Note that ultraviolet convergence (1.3) for a single edge e implies λνe < d/2, thus
ν�
e > 0. Similarly, positive edge weights in G ensure that the dual graphical function

f (λ)
G� is ultraviolet convergent for each single edge e� of G�. The convergence of f (λ)

G�

is ensured by the proof of Theorem 1.9.
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1184 M. Golz et al.

If in four dimensions a graph G has edge weights 1 then a dual graph G� has also
edge weights 1 and the graphical functions are equal if MG = 2.

One can also use duality for a planar graph G with MG �= d/2 if one adds an edge
from 0 to 1 of weight (d/2 − MG)/λ, see the subsequent Example 1.11.

Remark 1.10 It is well known (see [16] for example) that the graphical function of
every planar graphG (without restrictions on νe and d) is related (by a constant factor)
to themomentum space Feynman integral associated to G�. What makes Theorem 1.9
interesting is that in the particular case when V ext = 3 and MG = d/2, the momentum
and position space Feynman integrals coincide.

Example 1.11 We want to calculate the four-dimensional graphical function of the
graph G7 in Fig. 1 with unit edge weights, so MG7 = 1. To apply Theorem 1.9 we
add an edge between 0 and 1 (see Fig. 2). This does not change the graphical function
f (1)
G7

= f (1)
H7

, which is clear from (1.2). Theorem 1.9 gives f (1)
H7

= f (1)
H�
7
. The graphical

function of H �
7 can be calculated by the techniques completion and appending of an

edge [24, Sections 3.4 and 3.5]. We obtain

f (1)
G7

(z) = 20ζ(5)
4iD(z)

z − z
,

where ζ(s) = ∑∞
k=1 k

−s is the Riemann zeta function.

Example 1.12 One obtains a self dual graph H4 = H �
4 with MH4 = 2 if one adds an

edge from 0 to 1 to G4. In this case, planar duality leads to a trivial statement.

2 Proof of Theorem 1.6

Our proof follows the Schwinger trick (see e.g., [12]). From the definition of the
gamma function, we obtain for n + λν > 0 the convergent integral (note Qe > 0)

1

Qλνe
e

= 1


(ne + λνe)

∫ ∞

0
αne+λνe−1
e (−∂αe )

n exp(−αeQe) dαe. (2.1)

We use this formula to replace the product of propagators in (1.2) by an integral
over the edge parameters αe. Since the integrand

∏
e[αne+λνe−1

e Qne
e exp(−αeQe)] is

positive, the integral is absolutely convergent and we may interchange the order of
integration by Fubini’s theorem. In fact, we can also interchange4 the integration over
the vertex variables with the partial derivatives ∂αe to obtain

f (λ)
G (x) = 1∏

e 
(ne + λνe)

∫ ∞

0
· · ·

∫ ∞

0

[
∏

e

αne+λνe−1(−∂αe )
ne

]
I(α)

∏

e

dαe,

(2.2)

4 We can invoke Theorem 3.4 because I(α′) is finite for α′
e > 0 (as we will show) and majorizes I(α)

(on the integrand level) for all α such that αe > α′
e for all edges e. Note that under the assumptions of

Theorem 3.4, ∂αeI(α) coincides with differentiation under the integral sign (see [11, Satz 5.8] and [15]).
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Graphical functions in parametric space 1185

where I(α) is the Gaußian integral

I(α) =
(

∏

v internal

∫

Rd

dd xv

πd/2

)
exp

(
−

∑

e

αeQe

)
.

It factorizes into d parts Ik , one for each coordinate k, since the quadratic form
(1.1) is diagonal. We arrange the i th coordinates of the VG vertex variables to the
vector (xint, xext)t where xint = (xkv )v∈V int and xext = (xkv )v∈Vext . Then, the quadratic
form in the exponential of Ik takes the form

∑

e

αeQ
k
e = xtintL

ii(α)xint + xtintL
ie(α)xext + xtextL

ei(α)xint + xtextL
ee(α)xext

in terms of the (symmetric) Laplace matrix [2]

L =
(
L ii L ie

Lei Lee

)
with entries L(α)uv =

⎧
⎪⎨

⎪⎩

∑
e incident to v

αe if u = v and

− ∑
e={u,v}

αe otherwise.
(2.3)

By convergence, L ii is positive definite. We complete the quadratic form to a perfect
square, shift the integration variable to xint + L ii−1L iexext and obtain by a standard
calculation

Ik = det(L ii)−1/2 exp
(
xtext[LeiL ii−1L ie − Lee]xext

)
.

The summation over k in the exponent therefore leads us to

I(α) =
d∏

k=1

Ik(α) = det(L ii)−d/2 exp

⎛

⎝
V ext∑

k,�=1

(xtk x�)[LeiL ii−1L ie − Lee]k,�
⎞

⎠ . (2.4)

An application of the matrix tree theorems [2,7] shows that5

det(L ii) = �̃ and (L ii−1)v,w = 1

�̃
�̃

vw,1,...,V ext

G

for all internal v and w. We can therefore interpret the matrix elements

�̃(LeiL ii−1L ie)k,� =
∑

e={k,v}
f={�,w}

αeα f �̃
vw,1,...,V ext

G (v,w internal) (2.5)

in the exponential of (2.4) in terms of subgraphs of G. We distinguish two cases:

5 In the notation of the (All minors) matrix tree theorem [7, equation (2)], the first equality is precisely the
case W = U = V ext , S = V . The second identity follows from Cramer’s rule by setting W = V ext ∪ {v}
and U = V ext ∪ {w} and noting that ε(W, S)ε(U, S) = (−1)v+w by the remarks after [7, equation (3)].

123



1186 M. Golz et al.

Fig. 3 For k �= �, the gray areas indicate the connected components of F . Adding e and f connects k with
�. In the case k = �, we depict the connected components of F ′ = F ∪ {e}; note that w lies in the same
component as k. When we extend the sum to all edges f incident to k, additional contributions arise when
w lies in a different component of F ′, and thus connects k to another external vertex �′ (indicated by the
dashed edge f ′)

k �= �: Adding the two edges e, f to a spanning forest F ∈ Fvw,1,...,V ext

G yields

a forest F ′ = F ∪ {e, f } ∈ Fk�,(m)m �=k,�
G (see Fig. 3). Conversely, each F ′ arises

exactly once this way, because it determines e and f as the initial and final edges
on the unique path in F ′ connecting k and �. The only exception are forests F ′
where this path is just a single edge e = {k, �} connecting them directly. But in

this case F ′\e ∈ F1,...,V ext

G , so we conclude

∑

e={k,v}
f ={�,w}

αeα f �̃
vw,1,...,V ext

G (α) = �̃
k�,(m)m �=k,�
G (α) − �̃

∑

e={k,�}
αe.

k = �: Adding e to F ∈ Fvw,1,...,V ext

G gives a forest F ′ = F∪{e} ∈ F1,...,kw,...,V ext

G .
Each such F ′ occurs exactly once, because e is necessarily the (unique) first edge
on the path in F ′ connecting k with w, hence

(�̃LeiL ii−1L ie)k,k =
∑

f={k,w}
α f �̃

1,...,kw,...,V ext

G .

For a fixed F ′ ∈ F1,...,kw,...,V ext

G , f runs over all edges that connect k to a vertex w

that lies in the same connected component of F ′. If we sum instead over all edges
incident to k, we get additional contributions when w lies in another component,
say the one containing �′ (see Fig. 3). Therefore,

(�̃LeiL ii−1L ie)k,k = �̃
∑

k∈ f

α f −
∑

�′ �=k

�̃
k�′,(m)m �=k,�′
G .

According to (2.3), the contributions proportional to �̃ cancel in both cases when
we subtract (�̃Lee)k,� from (2.5), such that (2.4) becomes

123



Graphical functions in parametric space 1187

I = �̃−d/2 exp

⎛

⎝−�̃−1
∑

1≤k<�≤V ext

(x2k − 2xtk x� + x2� )�̃
k�,(m)m �=k,�
G

⎞

⎠

= �̃−d/2 exp(−	̃G/�̃).

Let us now insert a factor 1 = ∫ ∞
0 δ(t − H1/r (α))dt into (2.2), where H(α) can

be any homogeneous polynomial of degree r > 0 which is positive inside �. After
we substitute all αe by tαe and collect the powers of t , the integrand of (2.2) becomes

δ(1 − H1/r (α))

(
∏

e

αne+λνe−1
e ∂neαe

)
�̃−d/2

[∫ ∞

0
t MG−1e−t	̃G/�̃dt

] ∏

e

dαe,

because �̃ and 	̃G are homogeneous in α of degree V int and V int+1, respectively.We
integrate over t using (2.1). The choice H(α) = αe for some edge e gives a particularly
simple representation as an affine integral over R

EG−1
+ which is equivalent to (1.9).

3 Proof of Theorem 1.3

In this section, we prove the real analyticity of graphical functions. Because the poly-
nomial 	̃G from (1.7) depends on the squared distances

si, j = ‖xi − x j‖2

between the external vertices, we may use the dual parametric representation (1.9)
to define f (λ)

G (s) as a function of the vector s = (si, j )1≤i< j≤V ext . In the (simply
connected) domain where all components of s have positive real parts, the integral
(1.9) remains absolutely convergent and hence f (λ)

G (s) an analytic function of s:

Theorem 3.1 Let G be a graph with a convergent graphical function (1.2). Then
f (λ)
G (x) extends to a single-valued, analytic function

f (λ)
G (s) : {

s ∈ C
V ext(V ext−1)/2 : Re si, j > 0 for all 1 ≤ i < j ≤ V ext} −→ C.

In the special case of three external vertices, this implies the real analyticity of
f (λ)
G (z) on C\{0, 1}:

Proof of Theorem 1.3 Let z ∈ C\{0, 1}. For the three external labels 0, 1, z we have
s0,1 = 1 > 0, s0,z = zz > 0 and s1,z = (z − 1)(z − 1) > 0 according to (1.5). With
Theorem 3.1 we see that f (λ)

G (z, z̄) is composition of analytic functions, which proves

(G3). The identity (G1) is immediate from (1.9) as it expresses f (λ)
G (z) as a function

of |z| and |1− z|. Finally, recall that f (λ)
G (z) is defined as the value of the (convergent)

integral (1.2), and thus manifestly single-valued. ��
For the proof of Theorem 3.1 we need the following notation:
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Definition 3.2 Let g be a subgraph ofG with edge set Eg ⊆ EG and let Q ∈ C[αe, e ∈
EG] be a polynomial in the edge variables of G. Then, the (low) degree (deg

g
(Q))

degg(Q) of Q is the (low) degree of Q in the edge variables αe, e ∈ Eg of the subgraph
g.

In other words, c = deg
g
(Q) is the largest integer such that each monomial in Q

has at least c factors αe with e ∈ Eg (with multiplicity). Similarly, C = degg(Q) is the
smallest integer such that each monomial in Q has at most C factors αe with e ∈ Eg .

Note that deg
g
(Q) and degg(Q) are defined for polynomials Q in EG variables. So

for Q = α1 − α3 + α2 we have deg{2}(Q) = 0, even though on the subspace α1 = α3

the low degree of Q in α2 is 1.

Proposition 3.3 Let g be a subgraph of a graph G with external vertices. Let �̃ p
G(α)

be a dual spanning forest polynomial (1.6) for some partition p of external vertices.
Then

deg
g
(�̃

p
G) ≥ V int

g , degg(�̃
p
G) ≤ Vg − 1, (3.1)

where Vg and V int
g are as in (1.3) and (1.4), respectively.

Proof Let F ∈ F p
G be a spanning forest of G. In every tree T of F we choose an

external vertex vT ∈ T and we orient all edges of T such that they point towards
vT . Because F is spanning, every g-internal vertex u has one outgoing edge in F .
Conversely, every edge in F has a unique vertex u as source, therefore

deg
g
(�̃

p
G) = min

F∈F p
G

Eg∩F ≥ V int
g .

Finally, we use that g ∩ F is a forest in g, and thus has at most Vg − 1 edges, hence

degg(�̃
p
G) = max

F∈F p
G

Eg∩F = Vg − 1.

��
Proof of Theorem 3.1 We first derive Theorem 3.1 from (1.9) in the case that all ne =
0. We consider the integrand as a function of the vector s = (si, j )i, j∈Vext,i< j which
we restrict to the complex domain (ε > 0 may be chosen arbitrarily small)

�ε = {
s : Re si, j > ε for all 1 ≤ i < j ≤ V ext} ⊂ C

V ext(V ext−1)/2.

Let ŝi, j = ‖x̂i − x̂ j‖2 denote the distances of an arbitrary set x̂ ∈ R
dV ext

of pairwise
distinct points. We can rescale x̂ to ensure maxi< j (ŝi, j ) = ε, such that

|	̃G(α, s)| ≥ Re 	̃G(α, s) > 	̃G(α, x̂)

for every s ∈ �ε and all α ∈ R
E+. As f (λ)

G (x̂) is convergent, its parametric integrand

provides an integrablemajorant F(α, ŝ) ≥ F(α, s) to the integrand F(α, s) of f (λ)
G (s),
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uniformly for all s ∈ �ε. This implies the analyticity of f (λ)
G (s) in�ε, for every ε > 0

(we cite this result below as Theorem 3.4).
Now let us remove the restriction that ne = 0. We compute the derivatives in (1.9)

and write the resulting integrand as

F(α, s) =
[
∏

e

αne+λνe−1
e

] ∑
m αmqm(s)

	̃G(α, s)MG+∑
e ne�̃(α)d/2−MG+∑

e ne
, (3.2)

where we expanded the numerator polynomial into its monomials αm = ∏
e α

me
e in

Schwinger parameters and their coefficients qm ∈ Q[si, j ]. Note that the operators
αe∂αe do not change the α-degree, so F stays homogeneous of degree −EG in the α

variables, no matter which values are chosen for the ne. This gives
∑

e

me = (
degG(	̃G) + degG(�̃G) − 1

) ∑

e

ne = 2V int
∑

e

ne,

because the polynomials 	̃G and �̃G have the α-degrees V int + 1 and V int. If we
write (3.2) as F(α, s) = ∑

m qm(s)Fm(α, s) we can thus identify each Fm with the

(dual parametric) integrand for f (λ′)
G (s) in d ′ = 2λ′ + 2 = d + 4

∑
e ne dimensions

with weights λ′ν′
e = λνe + ne + me > 0. With the first part of the proof it suffices

to show that each of these f (λ′)
G is a convergent graphical function. We therefore have

to consider the infrared (1.4) and ultraviolet (1.3) conditions. Because differentiation
∂αe for e ∈ Eg can lower the low degree by at most one, we obtain

∑

e∈g
me − (deg

g
(	̃G) + deg

g
(�̃G))

∑

e∈G
ne ≥ −

∑

e∈g
ne.

From the convergence of f (λ)
G and from Proposition 3.3, we obtain

∑

e∈g
λ′ν′

e =
∑

e∈g
(λνe + ne + me) > d

2V
int
g + 2V int

g

∑

e∈G
ne = d ′

2 V
int
g ,

proving infrared convergence. Likewise, differentiation ∂αe for e ∈ Eg lowers the
degree by at least one, yielding

∑

e∈g
me − (degg(	̃G) + degg(�̃G))

∑

e∈G
ne ≤ −

∑

e∈g
ne.

Together with Proposition 3.3 this proves ultraviolet convergence (and thus com-
pletes our proof of Theorem 3.1):

∑

e∈g
λ′ν′

e =
∑

e∈g
(λνe + ne + me) <

(
d
2 + 2

∑

e∈G
ne

)
(Vg − 1) = d ′

2 (Vg − 1).

��
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For convenience of the reader we cite here the result from calculus in the form [23,
Theorem 2.12], which is perfectly adapted to our application:

Theorem 3.4 Let � ⊂ R
m and � ⊂ C

n denote domains in the respective spaces of
dimensions m, n ∈ N. Furthermore, let

f (t, z) = f (t1, . . . , tm, z1, . . . , zn) : � × � −→ C

represent a continuous function with the following properties:

• For each fixed t ∈ �, the function z �→ f (t, z) is holomorphic in z ∈ �.
• We have a continuous function F(t) : � −→ [0,∞) which is integrable,

∫

�

F(t) dt < ∞,

and uniformly majorizes f : | f (t, z)| ≤ F(t) for all (t, z) ∈ � × �.

Then the function z �→ ∫
�

f (t, z) dt is holomorphic in �.

Remark 3.5 We may consider a graphical function f (λ)
G (z) as a function of two com-

plex variables z and z and analytically continue away from the locus where z is the
complex conjugate of z. In this case, Theorem 3.1 states that f (λ)

G is analytic in z and
z if Re zz > 0 and Re(1 − z)(1 − z) > 0. If one continues analytically beyond this
domain, additional singularities will in general appear. Already in Example 1.2 we
encounter z = z̄, which corresponds to the vanishing of the Källén function

(z − z)2 = s20,z + s21,z + s20,1 − 2s0,zs1,z − 2s0,zs0,1 − 2s1,zs0,1.

For bigger graphs the singularity structure outside Re zz > 0, Re(1 − z)(1 − z) > 0
becomes more and more complicated (see [20, table 1] for a few examples).

4 Proof of Theorem 1.9

Planar duality for graphical functions is specific to three external labels for which we
use 0, 1, z. Let us first recall the notion of planarity and planar duality for Feynman
graphs in this case.6

Definition 4.1 Let G be a graph with three external labels 0, 1, z. Let Gv be the graph
that we obtain from G by adding an extra vertex v which is connected to the external
vertices of G by edges {0, v}, {1, v}, {z, v}, respectively. We say that G is externally
planar if and only if Gv is planar.

Let Gv be planar and G�
v a planar dual of Gv . The edges e� of G�

v are in one to one
correspondence with the edges e of Gv . A planar dual of G is given by G�

v minus the

6 In the physics literature, this definition is standard [16]. We did not find an established name for this in
the literature on graph theory, except for the term “circular planar graph” used in [8].
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triangle {0, v}�, {1, v}�, {z, v}� with external labels 0, 1, z corresponding to the faces
1zv, 0zv, 01v, respectively. The edge weights of G� are related to the edge weights
of G by (1.12): λνe + λνe� = d/2.

We can draw an externally planar graph G with the external labels 0, 1, z in the
outer face. A dual G� then has also the labels in the outer face, ‘opposite’ to the labels
of G, see Fig. 2.

Another way to construct this dual is by adding three edges e01 = {0, 1}, e0z =
{0, z}, e1z = {1, z} to G to obtain a graph Ge. Its dual G�

e differs from G�
v upon

replacing the triangle {0, v}�, {1, v}�, {z, v}� by a star e�
01, e

�
0z , e

�
1z . From G�

e we obtain
G� by removing this star and labeling its tips with z, 1, 0, respectively. Clearly both
constructions (starting from the same planar embedding of G) lead to the same dual
G� and prove

Lemma 4.2 Let G be externally planar with dual G�. Then G� is externally planar
and G is a dual of G�.

Proof of Theorem 1.9 Because the edge weights are positive we can use ne = 0 in
(1.9). From MG = d/2 we obtain (see (1.8) and (1.12))

MG� =
∑

e

( d
2 − λνe

)− d
2V

int
G� = d

2 (EG−V int
G� −V int

G −1) = d
2 (EGv −VG�

v
−VGv +3)

where EG is the number of edges of G. As the vertices of G�
v are the faces of the

planar embedding of Gv , Euler’s formula for planar graphs shows MG� = d/2.
Comparing (1.9) for the graph G with (1.10) for the graph G� leads to (1.13) if

we identify αe = αe� for all edges e, provided that 	̃G = 	G� . This amounts to the
identity �̃

i j,k
G = �

i j,k
G� of spanning forest polynomials for all triples {i, j, k} = {0, 1, z}

and hence follows from the bijection of 2-forests given by

F i j,k
G � F ←→ F� := {e� : e /∈ F} ∈ F i j,k

G� .

Namely, for any given F ∈ F i j,k
G consider the spanning tree Ti = F ∪ {{i, v}, {k, v}}

of Gv . As Tutte points out [27, Theorem 2.64], its dual T �
i = {e� : e /∈ T } ⊆ EG�

v
is a

spanning tree ofG�
v , and therefore, F

� = T �
i \{ j, v}� is indeed a 2-forest. Furthermore,

the edge { j, v}� connects the external vertices i and k ofG�, and thus F� cannot connect
i with k (otherwise, T �

i = F�∪{ j, v}� would contain a cycle). Likewise (interchanging
i and j), F� does not connect j with k, hence F� ∈ F i,k

G� ∩ F j,k
G� = F i j,k

G� . Finally, the
symmetry F = (F�)� implies that the map F �→ F� is injective and onto. ��
Acknowledgements Parts of this article were written while Erik Panzer and Oliver Schnetz were visiting
scientists at Humboldt University, Berlin.
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