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Abstract Weconstruct aq-boson representation of theZamolodchikov-Faddeev alge-
brawhose structure function is given by the stochastic Rmatrix ofUq(A

(1)
n ) introduced

recently. The representation involves quantum dilogarithm type infinite products in the
n(n − 1)/2-fold tensor product of q-bosons. It leads to a matrix product formula of
the stationary probabilities in the Uq(A

(1)
n )-zero range process on a one-dimensional

periodic lattice.
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1 Introduction

Exploring integrable models in non-equilibrium statistical mechanics is a significant
branch of applications of quantum group theory. In such approaches to Markov pro-
cesses, one typically tries to construct a Markov matrix whose spectral problem can
be solved by Bethe ansatz and the Yang–Baxter equation [1]. Whether it is possible
or not relies on the fundamental question; can a quantum R matrix [7,11] be made
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stochastic? Thiswas answered affirmatively in [12] for theUq(A
(1)
n ) quantum Rmatrix

intertwining the symmetric tensor representations of arbitrary degree. The modified
one, called stochastic R matrix, possesses nonnegative elements only and fulfills a
local version of total probability conservation called the sum-to-unity condition. The
associated continuous and discrete time Markov processes are formulated as stochas-
tic dynamics of n species of particles on one-dimensional lattice obeying a zero range
type interaction (cf. [8]). We call them Uq(A

(1)
n )-zero range processes. They include

several models studied earlier for n = 1 [2,4,19–21] and for n general [13–15,22].
In this paper, we study the Zamolodchikov-Faddeev (ZF) algebra with the structure

function given by the Uq(A
(1)
n ) stochastic R matrix Š(λ, μ) in [12]. Symbolically, it

is a family of quadratic relations of the form

X (μ) ⊗ X (λ) = Š(λ, μ)
[
X (λ) ⊗ X (μ)

]
,

where X (μ) = (Xα(μ))α∈Zn≥0
denotes a collection of the operator Xα(μ) associated

with each local state α of the Uq(A
(1)
n )-zero range process. The parameters λ,μ are

reminiscent of the degrees of the symmetric tensors (magnitude of “spins”) which
can be utilized to describe the inhomogeneity of the system. See (12) for a concrete
description.

The ZF algebra originates in integrable quantum field theory in (1+1) dimension
and encodes the factorized scattering of particles [9,23]. The structure function therein
is the scattering matrix of the theory which should be properly normalized so as to
satisfy the unitarity.

In the realm of integrableMarkov processes, the situation is parallel. The ZF algebra
serves as a local version of the stationary condition in the matrix product construc-
tion of the stationary states. Its infinitesimal version, often called “hat relation” or
“cancellation mechanism”, has been utilized in many works, e.g., [5,6,14,15,18]. As
in the factorized scattering theory, it is crucial to adopt the correct normalization of
Š(λ, μ) since the ZF algebra is inhomogeneous in the structure function unlike the
more commonly argued RLL = LLR type relation. In our setting, the normalization
is canonically fixed by the sum-to-unity condition mentioned above. See (7).

The main result of this paper is a q-boson representation of the so defined ZF
algebra. More precisely, we construct an algebra homomorphism from it to the tensor
productB⊗n(n−1)/2 whereB is theq-boson algebra defined in (16).Wewill give either a
recursive characterizationwith respect to the rank n (Theorem 1) or an explicit formula
(Theorem 2). The latter contains quantum dilogarithm type infinite products, which
is a distinctive feature reflecting the fact that the stochastic R matrix in [12] formally
originates in the symmetric tensor representation of Uq(A

(1)
n ) of infinite degree. It

provides the first systematic result beyond the simplest choice of the structure function
[3,10] where representations of the ZF algebra associated with the stochastic R matrix
of the vector representation of Uq(A

(1)
n ) were studied.

The q-boson algebra B has a natural representation on the Fock space F as in (37).
As an application, we present a matrix product formula for the stationary probabilities
of the Uq(A

(1)
n )-zero range process, which is expressed as a trace over F⊗n(n−1)/2

(Theorem 5). It is a corollary of the auxiliary condition [16, Eq. (30)] satisfied by the
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A q-boson representation of Zamolodchikov-Faddeev algebra 1113

q-boson representation as well as the ZF algebra relation. These results extend the
earlier ones for n = 2 [16] to general n.

The layout of the paper is as follows. In Sect. 2, we quote the stochastic R matrix
for Uq(A

(1)
n ) from [12]. In Sect. 3, we introduce the ZF algebra and give a q-boson

representation. In Sect. 4, theUq(A
(1)
n )-zero range process associatedwith the stochas-

tic R matrix [12] is recalled briefly, and a matrix product formula of the stationary
probabilities is presented. Section 5 is a summary. Appendix A contains a proof of
Theorem 1.

Throughout the paper we assume that q is generic unless otherwise stated and
use the notation θ(true) = 1, θ(false) = 0, the q-Pochhammer symbol (z)m =
(z; q)m = ∏m

j=1(1 − zq j−1) and the q-binomial
(m
k

)
q = θ(k ∈ [0,m]) (q)m

(q)k (q)m−k
.

The symbols (z)m appearing in this paper always mean (z; q)m . For integer arrays
α = (α1, . . . , αm), β = (β1, . . . , βm) of any length m, we write |α| = α1 +· · ·+αm .
The relation α ≤ β or equivalently β ≥ α is defined by β −α ∈ Z

m≥0. We often denote
0m := (0, . . . , 0) ∈ Z

m≥0 simply by 0 when it is clear from the context.

2 Stochastic R matrix for Uq(A
(1)
n )

Set W = ⊕
α=(α1,...,αn)∈Zn≥0

C|α〉. Define the operator S(λ, μ) ∈ End(W ⊗ W )

depending on the parameters λ and μ by

S(λ, μ)(|α〉 ⊗ |β〉) =
∑

γ,δ∈Zn≥0

S(λ, μ)
γ,δ
α,β |γ 〉 ⊗ |δ〉, (1)

S(λ, μ)
γ,δ
α,β = θ(α + β = γ + δ)�q(γ |β; λ,μ), (2)

where �q(γ |β; λ,μ) with β = (β1, . . . , βn) ∈ Z
n≥0, γ = (γ1, . . . , γn) ∈ Z

n≥0 is
given by

�q(γ |β; λ,μ) = qϕ(β−γ,γ )
(μ

λ

)|γ | (λ)|γ |(μ
λ
)|β|−|γ |

(μ)|β|

n∏

i=1

(
βi

γi

)

q
,

ϕ(β, γ ) =
∑

1≤i< j≤n

βiγ j . (3)

The sum (1) is finite due to the θ factor in (2). The difference property S(λ, μ) =
S(cλ, cμ) is absent. We call S(λ, μ) the stochastic R matrix [12]. It originates in the
quantum R matrix [7,11] of the symmetric tensor representation of the quantum affine
algebraUq(A

(1)
n ). It satisfies the Yang–Baxter equation, the inversion relation and the

sum-to-unity condition [12,16]:

S1,2(ν1, ν2)S1,3(ν1, ν3)S2,3(ν2, ν3) = S2,3(ν2, ν3)S1,3(ν1, ν3)S1,2(ν1, ν2), (4)

ST1,2(ν1, ν2)S
T
1,3(ν1, ν3)S

T
2,3(ν2, ν3) = ST2,3(ν2, ν3)S

T
1,3(ν1, ν3)S

T
1,2(ν1, ν2), (5)

Š(λ, μ)Š(μ, λ) = idW⊗2 , (6)
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∑

γ,δ∈Zn≥0

S(λ, μ)
γ,δ
α,β = 1 (∀α, β ∈ Z

n≥0), (7)

where the checked R matrix Š(λ, μ) and the transposed R matrix ST (λ, μ) are defined
by Š(λ, μ)(|α〉 ⊗ |β〉) = ∑

γ,δ S(λ, μ)
γ,δ
α,β |δ〉 ⊗ |γ 〉, and ST (λ, μ)(|α〉 ⊗ |β〉) =

∑
γ,δ∈Zn≥0

S(λ, μ)
α,β
γ,δ |γ 〉 ⊗ |δ〉. The matrix elements are depicted as

S(λ, μ)
γ,δ
α,β = ��α γ

β

δ

(8)

When preferable, we will exhibit the n-dependence of (3) as �
(n)
q (γ |β; λ,μ). The

function �
(1)
q (γ |β; λ,μ) appeared in Povolotsky’s chipping model [19], which stim-

ulated many subsequent studies. It was also built in the explicit formula of Uq(A
(1)
1 )

R matrix and Q-operators by Mangazeev [17].
For n general it is zero unless γ ≤ β, and satisfies the sum rule [12]:

∑

γ∈Zn≥0

�(n)
q (γ |β; λ,μ) = 1 (∀β ∈ Z

n≥0), (9)

which may be viewed as a corollary of (7).
For an array of nonnegative integers α = (α1, . . . , αm) with any length m, we use

the notation

α = (α2, . . . , αm), α = (α1, . . . , αm−1). (10)

Then it is straightforward to check

�(n)
q (γ |α; λ,μ) = �(1)

q (γ1|α1; λ,μ)�(n−1)
q (γ |α; qγ1λ, qα1μ)

= �(n−1)
q (γ |α; λ,μ)�(1)

q (γn|αn; q |γ |
λ, q |α|μ).

(11)

3 q-Boson representation of Zamolodchikov-Faddeev algebra

3.1 Zamolodchikov-Faddeev algebra

With an array α = (α1, . . . , αn) ∈ Z
n≥0 and a parameter μ, we associate an operator

Xα(μ). By the Zamolodchikov-Faddeev algebra for the stochastic R matrix S(λ, μ)

we mean the following family of quadratic relations:

Xα(μ)Xβ(λ) =
∑

γ,δ∈Zn≥0

S(λ, μ)
β,α
γ,δ Xγ (λ)Xδ(μ). (12)
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It is associative due to the Yang–Baxter equation (5). From (2) it reads more explicitly
as

Xα(μ)Xβ(λ) =
∑

γ≤α

�q(β|α + β − γ ; λ,μ)Xγ (λ)Xα+β−γ (μ), (13)

where the omitted condition γ ∈ Z
n≥0 should always be taken for granted. We find it

convenient to work also with another normalization Zα(μ) specified by

Xα(μ) = gα(μ)Zα(μ), gα(μ) = μ−|α|(μ)|α|∏n
i=1(q)αi

. (14)

The ZF algebra for the latter takes the form

Zα(μ)Zβ(λ) =
∑

γ≤α

qϕ(α−γ,β−γ )�q(γ |α; λ,μ)Zγ (λ)Zα+β−γ (μ) (15)

due to the identity

gγ (λ)gα+β−γ (μ)

gα(μ)gβ(λ)
�q(β|α + β − γ ; λ,μ) = qϕ(α−γ,β−γ )�q(γ |α; λ,μ).

3.2 q-Boson representation

Let B be the algebra generated by 1,b, c,k obeying the relations

kb = qbk, kc = q−1kc, bc = 1 − k, cb = 1 − qk. (16)

We call it the q-boson algebra. It has a basis {bic j | i, j ∈ Z≥0}. See (37) for a
representation on the Fock space.

The ZF algebra (15) admits a “trivial” representation Zα(ζ ) = Kα in terms of an
operator Kα satisfying K0 = 1 and KαKβ = qϕ(α,β)Kα+β as shown in [16, Prop.7].
See (3) for the definition of ϕ(α, β). Such a Kα is easily constructed, for instance as1

Kα1,...,αn = kα+
1 cα1 ⊗ · · · ⊗ kα+

n−1cαn−1 ∈ B⊗n−1, α+
i := αi+1 + · · · + αn .

(17)

However, this is not the representation we are after because it does not contain a
creation operator b and leads to vanishing trace in the forthcoming matrix product
formula (38). Our construction of Zα(ζ ) below may be viewed as a series expansion
starting from the trivial representation in terms of creation operators.

1 We write Kα with α = (α1, . . . , αn) as Kα1,...,αn rather than K(α1,...,αn ) for simplicity. A similar
convention will also be used for gα(ζ ), Xα(ζ ) and Zα(ζ ).
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1116 A. Kuniba, M. Okado

For αi ∈ Z≥0, we define the operator Zα1,...,αn (ζ ) ∈ B⊗n(n−1)/2 by the n = 1 case
and the recursion relation with respect to n by

Zα1(ζ ) = 1, (18)

Zα1,...,αn (ζ ) =
∑

l=(l1,...,ln−1)∈Zn−1
≥0

Xl(ζ ) ⊗ bl1kα+
1 cα1 ⊗ · · · ⊗ bln−1kα+

n−1cαn−1 , (19)

where Xl(ζ ) = gl(ζ )Zl(ζ ) as in (14) and α+
i is defined by (17). Now we present the

first half of the main result of the paper.

Theorem 1 The Zα(ζ ) defined by (18)–(19) satisfies the ZF algebra (15) for general
n.

We present a proof in Appendix.

3.3 Explicit formula

One can take the infinite sum in (19) andwrite down an explicit formula of Zα1,...,αn (ζ )

in terms of a product of (ζ−1Q)±1∞ with various monomials Q ∈ B⊗n(n−1)/2. Note
that (19) tells the simple dependence on α as

Zα1,...,αn (ζ ) = Z0n (ζ )
(
1⊗ 1

2 (n−1)(n−2) ⊗ Kα1,...,αn

)
. (20)

Here and in what follows, Kα1,...,αn is to be understood as the one in (17). Thus, our
task is reduced to the calculation of the special case of the sum (19):

Z0n (ζ ) =
∑

l1,...,ln−1∈Z≥0

gl1,...,ln−1(ζ )Zl1,...,ln−1(ζ ) ⊗ bl1 ⊗ · · · ⊗ bln−1 . (21)

Let us illustrate it for n = 2 and 3. For n = 2, one has

Z0,0(ζ ) =
∑

l1≥0

(ζ )l1ζ
−l1

(q)l1
bl1 = (b)∞

(ζ−1b)∞
,

Zα1,α2(ζ ) = Z0,0(ζ )Kα1,α2 = (b)∞
(ζ−1b)∞

kα2cα1 ∈ B

by means of the formula

(zw)∞
(z)∞

=
∑

j≥0

(w) j

(q) j
z j .
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This result agrees with [16, Eq. (39)]. For n = 3, the sum (21) is calculated using
(ζ )l1+l2 = (ζ )l2(q

l2ζ )l1 as

Z0,0,0(ζ ) =
∑

l1,l2

ζ−l1−l2 (ζ )l1+l2

(q)l1 (q)l2

(b)∞
(ζ−1b)∞

kl2cl1 ⊗ bl1 ⊗ bl2

= (b ⊗ 1 ⊗ 1)∞
(ζ−1b ⊗ 1 ⊗ 1)∞

∑

l2

ζ−l2 (ζ )l2 (k ⊗ 1 ⊗ b)l2

(q)l2

∑

l1

ζ−l1 (ql2ζ )l1 (c ⊗ b ⊗ 1)l1

(q)l1

= (b ⊗ 1 ⊗ 1)∞
(ζ−1b ⊗ 1 ⊗ 1)∞

∑

l2

ζ−l2 (ζ )l2 (k ⊗ 1 ⊗ b)l2

(q)l2

(ql2c ⊗ b ⊗ 1)∞
(ζ−1c ⊗ b ⊗ 1)∞

= (b ⊗ 1 ⊗ 1)∞
(ζ−1b ⊗ 1 ⊗ 1)∞

(c ⊗ b ⊗ 1)∞
∑

l2

ζ−l2 (ζ )l2 (k ⊗ 1 ⊗ b)l2

(q)l2

1

(ζ−1c ⊗ b ⊗ 1)∞

= (b ⊗ 1 ⊗ 1)∞
(ζ−1b ⊗ 1 ⊗ 1)∞

(c ⊗ b ⊗ 1)∞
(k ⊗ 1 ⊗ b)∞

(ζ−1k ⊗ 1 ⊗ b)∞
1

(ζ−1c ⊗ b ⊗ 1)∞
,

Zα1,α2,α3 (ζ ) = Z0,0,0(ζ )(1 ⊗ Kα1,α2,α3 ) = Z0,0,0(ζ )(1 ⊗ kα2+α3cα1 ⊗ kα3cα2 ). (22)

These results on Z0,...,0(ζ ) are neatly presented as

Z0,0(ζ ) = V1(1)V1(ζ )−1, V1(ζ ) = (ζ−1b)∞,

Z0,0,0(ζ ) = (
Z0,0(ζ ) ⊗ 1 ⊗ 1

)
V2(1)V2(ζ )−1,

V2(ζ ) = (ζ−1c ⊗ b ⊗ 1)∞(ζ−1k ⊗ 1 ⊗ b)∞. (23)

Let us proceed to general n (≥ 2) case. Substitution of (20)|n→n−1 into the RHS
of (21) gives

Z0n (ζ ) = (
Z0n−1(ζ ) ⊗ 1⊗n−1)Yn(ζ ),

Yn(ζ ) =
∑

l1,...,ln−1∈Z≥0

gl1,...,ln−1(ζ ) 1⊗ 1
2 (n−2)(n−3) ⊗ Kl1,...,ln−1 ⊗ bl1 ⊗ · · · ⊗ bln−1 .

(24)

To systematize the calculation, we introduce copies Bi, j = 〈1,bi, j , ci, j ,ki, j 〉 of the
q-boson algebras and the generators for 1 ≤ i ≤ j ≤ n − 1 obeying (16) within each
Bi, j and [Bi, j ,Bi ′, j ′ ] = 0 if (i, j) �= (i ′, j ′). We take them so that Zα1,...,αn (ζ ) ∈⊗

1≤i≤ j≤n−1 Bi, j and (24) reads

Yn(ζ ) =
∑

l1,...,ln−1∈Z≥0

gl1,...,ln−1(ζ )
(
k
l+1
1,n−2c

l1
1,n−2 · · ·kl

+
n−2
n−2,n−2c

ln−2
n−2,n−2

)(
bl11,n−1 · · ·bln−1

n−1,n−1

)
,

where l+j = l j+1 + · · · + ln−1. This corresponds to labeling the components in the

tensor product B⊗n(n−1)/2 as

(1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3), . . . . . . , (1, n − 1), (2, n − 1), . . . , (n − 1, n − 1).
(25)
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As exemplified in the above formula of Yn(ζ ), using the q-bosons Bi, j with indices
allow us to avoid the cumbersome factor 1⊗N as in (24).

One can rearrange the summand in Yn(ζ ) by reordering the commuting generators
only as

Yn(ζ ) =
∑

l=(l1,...,ln−1)∈Zn−1
≥0

ζ−|l|(ζ )|l|∏
1≤i≤n−1(q)li

Aln−1
n−1,n−1A

ln−2
n−2,n−1 · · · Al1

1,n−1,

A j,n−1 = k1,n−2k2,n−2 · · ·k j−1,n−2c j,n−2b j,n−1 (cn−1,n−2 = 1). (26)

In particular, A1,n−1 = c1,n−2b1,n−1 and An−1,n−1 = k1,n−2 · · · kn−2,n−2bn−1,n−1.
By utilizing the decomposition (ζ )|l| = (ζ )l1+···+ln−2(q

l1+···+ln−2ζ )ln−1 , the sum over
ln−1 is taken, leading to

Yn(ζ ) =
∑

l1,...,ln−2∈Z≥0

ζ−l1−···−ln−2 (ζ )l1+···+ln−2∏
1≤i≤n−2(q)li

(ql1+···+ln−2 An−1,n−1)∞
(ζ−1An−1,n−1)∞

Aln−2
n−2,n−1 · · · Al1

1,n−1

= 1

(ζ−1An−1,n−1)∞

∑

l1,...,ln−2∈Z≥0

ζ−l1−···−ln−2 (ζ )l1+···+ln−2∏
1≤i≤n−2(q)li

Aln−2
n−2,n−1 · · · Al1

1,n−1(An−1,n−1)∞,

where the second step is due to An−1,n−1A j,n−1 = q−1A j,n−1An−1,n−1 (1 ≤ j ≤
n−2). Now the sum over ln−2 can be taken in the samemanner. Repeating this process
we arrive at

Yn(ζ ) = Vn−1(ζ )−1Vn−1(1) = Vn−1(1)Vn−1(ζ )−1, (27)

Vn−1(ζ ) = (ζ−1A1,n−1)∞(ζ−1A2,n−1)∞ · · · (ζ−1An−1,n−1)∞, (28)

where the rightmost expression in (27) follows from a similar calculation tak-
ing the sum (26) in the order l1, l2, . . . , ln−1 applying the decomposition (ζ )|l| =
(ζ )l2+···+ln−1(q

l2+···+ln−1ζ )l1 first.
The explicit formulas derived in this way supplement the recursive characterization

in Theorem 1. They constitute the latter half of the main result of the paper. We
summarize them in

Theorem 2 TheZFalgebra (15)has the following representation in
⊗

1≤i≤ j≤n−1 Bi, j :

Zα1,...,αn (ζ ) = Z0n (ζ )k
α+
1

1,n−1c
α1
1,n−1 · · ·kα+

n−1
n−1,n−1c

αn−1
n−1,n−1 (α+

i = αi+1 + · · · + αn),

Z0n (ζ ) = Y2(ζ )Y3(ζ ) · · · Yn(ζ ),

Y j (ζ ) = Vj−1(1)Vj−1(ζ )−1 = Vj−1(ζ )−1Vj−1(1),

Vj (ζ ) = (ζ−1A1, j )∞(ζ−1A2, j )∞ · · · (ζ−1A j, j )∞,

Ai, j = k1, j−1k2, j−1 · · ·ki−1, j−1ci, j−1bi, j (c j, j−1 = 1).

The cases n = 2, 3 reproduce (23) under the identification x1,1 = x ⊗ 1 ⊗ 1, x1,2 =
1 ⊗ x ⊗ 1, x2,2 = 1 ⊗ 1 ⊗ x in accordance with (25).
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Remark 3 An interesting corollary of the ZF algebra (12) and S(λ, μ)
0,0
γ,δ = θ(γ =

δ = 0) is the commutativity:

[X0(μ), X0(λ)] = 0, [Z0(μ), Z0(λ)] = 0.

In addition to it, we have

[Vm(μ), Vm(λ)] = 0 (1 ≤ m ≤ n − 1).

To see this, note that the transformation (bi, j , ci, j ,ki, j ) → (ηi, jbi, j , η
−1
i, j ci, j ,ki, j )

is an automorphism of the q-boson algebra
⊗

1≤i≤ j≤m Bi, j for any m and ηi, j �=
0. Choosing ηi, j = ηθ( j=m) leads to Ai,m → ηAi,m hence Vm(ζ ) → Vm(ζ/η).
Therefore the above commutativity follows by applying this automorphism to the
equality Vm(1)Vm(ζ )−1 = Vm(ζ )−1Vm(1) in Theorem 2.

Before closing the section, let us explain the relation to the work [15] where an
inhomogeneous generalization of an n-species totally asymmetric zero range process
was introduced and a matrix product formula of the stationary states was obtained.
Let X (n)

α1,...,αn be the homogeneous case w1 = · · · = wn = 1 of the matrix product

operator defined from the initial condition X (1)
α1 = 1 recursively by [15, Eq. (3.4)], i.e.,

X (n)
α1,...,αn

=
∑

l1,...,ln−1∈Z≥0

X (n−1)
l1,...,ln−1

⊗ bl1kα+
1 cα1 ⊗ · · · ⊗ bln−1kα+

n−1cαn−1 (29)

for n ≥ 2, where α+
i is given by (17). The operators b, c,k here are regarded as

representations (37) of q-boson generators at q = 0, which are given by a+, a− and
k in [14, Eq. (2.3)], respectively. Let us consider an automorphism of the q-boson
algebra given by the replacement

bi, j → ζ j−i+1bi, j , ci, j → ζ i− j−1ci, j (1 ≤ i ≤ j ≤ n − 1). (30)

We claim that (29) is reproduced from the corresponding representation of Zα1,...,αn (ζ )

in this paper by

X (n)
α1,...,αn

= lim
ζ,q→0

ζ (n−1)α1+···+2αn−2+αn−1 Zα1,...,αn (ζ )|(30). (31)

To see (31), note that it holds as 1 = 1 for n = 1. Moreover, the recursion (19) is
equivalently presented as

ζ (n−1)α1+···+2αn−2+αn−1 Zα1,...,αn (ζ )|(30) =
∑

l1,...,ln−1∈Z≥0

(ζ )l1+···+ln−1∏
1≤i≤n−1(q)li

× ζ (n−2)l1+···+2ln−3+ln−2 Zl1,...,ln−1 (ζ )|(30)n→n−1

⊗ bl1kα+
1 cα1 ⊗ · · · ⊗ bln−1kα+

n−1cαn−1 .
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The point here is that ζ−l1−···−ln−1 that was contained in the coefficient in (19) via
(14) has been absorbed away into q-bosons. Now the limits q, ζ → 0 can be smoothly
taken reducing the above relation to (29).

4 Application to Uq(A
(1)
n )-zero range process

4.1 Uq(A
(1)
n )-zero range process

Let us briefly recall the discrete time inhomogeneous Uq(A
(1)
n )-zero range process.

Among a few versions of the models introduced in [12], it corresponds to the dis-
crete time inhomogeneous one described in Sect. 3.3 therein. As we will remark after
Theorem 5, it covers the continuous time version mentioned in (36).

Let L be a positive integer. Introduce the operator

T (λ|μ1, . . . , μL) = TrW
(
S0,L(λ, μL) · · · S0,1(λ, μ1)

) ∈ End(W⊗L). (32)

In the terminology of the quantum inverse scattering method, it is the row transfer
matrix of the Uq(A

(1)
n ) vertex model of length L with periodic boundary condition

whose quantum space is W⊗L with inhomogeneity parameters μ1, . . . , μL and the
auxiliary spaceW carrying a parameter λ. If these spaces are labeled asW1⊗· · ·⊗WL

and W0, the stochastic R matrix S0,i (λ, μi ) acts as S(λ, μi ) on W0 ⊗ Wi and as the
identity elsewhere. Owing to (4) and (6), the matrix (32) forms a commuting family
(cf. [1]):

[T (λ|μ1, . . . , μL), T (λ′|μ1, . . . , μL)] = 0. (33)

We write the vector |α1〉 ⊗ · · · ⊗ |αL〉 ∈ W⊗L representing a state of the system as
|α1, . . . , αL 〉 and the action of T = T (λ|μ1, . . . , μL) as

T |β1, . . . , βL 〉 =
∑

α1,...,αL∈Zn≥0

T α1,...,αL
β1,...,βL

|α1, . . . , αL〉 ∈ W⊗L .

Then the matrix element is depicted by the concatenation of (8) as

T α1,...,αL
β1,...,βL

=
∑

γ1,...,γL∈Zn≥0

��γL γ1

β1

α1

�� γ2

β2

α2

· · · ��γL−1 γL ,

βL

αL

(34)

where the summand means
∏L

i=1 S(λ, μi )
γi ,αi
γi−1,βi

with γ0 = γL . By the construction

it satisfies the weight conservation, i.e., T α1,...,αL
β1,...,βL

= 0 unless α1 + · · · + αL = β1 +
· · · + βL ∈ Z

n≥0.
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Let t be a time variable and consider the evolution equation

|P(t + 1)〉 = T (λ|μ1, . . . , μL)|P(t)〉 ∈ W⊗L . (35)

Although this is an equation in an infinite-dimensional vector space, it splits into
finite-dimensional subspaces which we call sectors due to the weight conservation
property mentioned in the above. For an array m = (m1, . . . ,mn) ∈ Z

n≥0 and the set
S(m) = {(σ1, . . . , σL) ∈ (Zn≥0)

L | σ1 + · · · + σL = m}, the corresponding sector
which will also be referred to as m, is given by

⊕
(σ1,...,σL )∈S(m) C|σ1, . . . , σL 〉. We

interpret a vector |σ1, . . . , σL 〉 ∈ W⊗L with σi = (σi,1, . . . , σi,n) ∈ Z
n≥0 as a state in

which the i th site from the left is populated with σi,a particles of the a th species.
Thus, m = (m1, . . . ,mn) means that there are ma particles of species a in total in the
corresponding sector.

To interpret (35) as themaster equation of a discrete timeMarkovprocess, thematrix
T = T (λ|μ1, . . . , μL) should fulfill the conditions (i) non-negativity; all the elements
(34) belong to R≥0 and (ii) sum-to-unity property;

∑
α1,...,αL∈Zn≥0

T α1,...,αL
β1,...,βL

= 1 for

any (β1, . . . , βL) ∈ (Zn≥0)
L .

The property (i) holds if �q(γ |β; λ,μi ) ≥ 0 for all i ∈ ZL . This is achieved by
taking 0 < με

i < λε < 1, 0 < qε < 1 in the either alternative ε = ±1. The property
(ii) means the total probability conservation and can be shown using (9) as in [12,
Sec.3.2].

We call T (λ|μ1, . . . , μL) Markov transfer matrix assuming 0 < μi < λ < 1, 0 <

q < 1. The equation (35) represents a stochastic dynamics of n-species of particles
hopping to the right periodically via an extra lane (horizontal arrows in (34)) which
particles get on or get off when they leave or arrive at a site. The rate of these local
processes is specified by (2), (3) and (8). For n = 1 and the homogeneous choice
μ1 = · · · = μL , it reduces to the model introduced in [19].

From the homogeneous case μ1 = · · · = μL = μ of the Markov transfer matrix
T (λ|μ1, . . . , μL) (32), one can deduce the continuous timeUq(A

(1)
n )-zero range pro-

cess by a derivative with respect to λ at appropriate points [12, Sec.3.4]. The resulting
Markov matrix H in the master equation d

dt |P(t)〉 = H |P(t)〉 consists of pairwise
interaction terms as H = ∑

i∈ZL
hi,i+1 where hi,i+1 acts on the (i, i + 1) th sites as

h and as the identity elsewhere. The local Markov matrix h is the ε = 1 case of [12,
Rem.9], which reads as

h(|α〉 ⊗ |β〉) = a
∑

0<γ≤α

qϕ(α−γ,γ )μ|γ |−1(q)|γ |−1

(μq |α|−|γ |; q)|γ |

n∏

i=1

(
αi

γi

)

q
|α − γ 〉 ⊗ |β + γ 〉

+ b
∑

0<γ≤β

qϕ(γ,β−γ )(q)|γ |−1

(μq |β|−|γ |; q)|γ |

n∏

i=1

(
βi

γi

)

q
|α + γ 〉 ⊗ |β − γ 〉

−
⎛

⎝
|α|−1∑

i=0

aqi

1 − μqi
+

|β|−1∑

i=0

b

1 − μqi

⎞

⎠ |α〉 ⊗ |β〉, (36)
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where the constraint γ > 0 for γ ∈ Z
n≥0 is equivalent to |γ | ≥ 1. The parameters a, b

are arbitrary as long as a, b ∈ R≥0 since the contributions proportional to them are
commuting. See [12, Eq. (60)].

4.2 Stationary states

By definition a stationary state of the discrete time Uq(A
(1)
n )-zero range process (35)

is a vector |P〉 ∈ W⊗L such that

|P〉 = T (λ|μ1, . . . , μL)|P〉.

The stationary state is unique in each sector m, which we denote by |P(m)〉. Apart
from m, it depends on q and the inhomogeneity parameters μ1, . . . , μL but not on
λ thanks to the commutativity (33). Sectors m = (m1, . . . ,mn) such that ∀ma ≥ 1
are called basic. Non-basic sectors are equivalent to a basic sector of some n′ < n
models with a suitable relabeling of the species. Henceforth, we concentrate on the
basic sectors. The coefficient appearing in the expansion

|P(m)〉 =
∑

(σ1,...,σL )∈S(m)

P(σ1, . . . , σL)|σ1, . . . , σL 〉

is the stationary probability if it is properly normalized as
∑

(σ1,...,σL )∈S(m) P(σ1, . . . ,

σL) = 1. In this paper, unnormalized ones will also be referred to as stationary
probabilities by abuse of terminology.

If the dependence on the inhomogeneity parameters are exhibited as P(σ1, . . . , σL ;
μ1, . . . , μL), we have the cyclic symmetry P(σ1, . . . , σL ;μ1, . . . , μL) = P(σL ,

σ1, . . . , σL−1;μL , μ1, . . . , μL−1) by the construction. Examples of stationary states
for Uq(A

(1)
2 )-zero range process have been given in [12,16].

Example 4 Consider Uq(A
(1)
3 )-zero range process in the minimum sector m =

(1, 1, 1) and system size L = 2, which is an eight-dimensional space. For the homo-
geneous case μ1 = μ2 = μ, the stationary state is given up to normalization by

|P(1, 1, 1)〉 = 2(1 − μq2)
(
3 + q − μ(1 + 3q)

)|∅, 123〉
+ 2(1 − μ)

(
1 + q + 2q2 − μ(2q + q2 + q3)

)|3, 12〉
+ (1 − μ)(1 + 5q + q2 + q3 − μ(1 + q + 5q2 + q3)

)|2, 13〉
+ (1 + q2)(1 − μ)

(
3 + q − μ(1 + 3q)

)|23, 1〉 + cyclic,

where “cyclic” means further four terms obtained by the change |σ1, σ2〉 → |σ2, σ1〉.
We have employed the multiset notation |3, 12〉 to mean |(0, 0, 1), (1, 1, 0)〉 etc. In
the inhomogeneous case, we have
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P(23, 1)/P(∅, 123) = μ2
2(1 − μ1)(1 − μ1q)(μ2 − μ1μ2 + μ1q2 − μ1μ2q2)

μ2
1(1 − μ2q)(1 − μ2q2)(μ1 + μ2 − 2μ1μ2)

,

P(1, 23)/P(∅, 123) = μ2(1 − μ1)(μ1 − μ1μ2 + μ2q2 − μ1μ2q2)

μ1(1 − μ2q2)(μ1 + μ2 − 2μ1μ2)

for example. The other ratios contain bulky factors. We expect that there is a normal-
ization such that all the stationary probabilities belong to Z≥0[q,−μ1, . . . ,−μn].

4.3 Matrix product construction

Let F = ⊕
m≥0 C(q)|m〉 be the Fock space and F∗ = ⊕

m≥0 C(q)〈m| be its dual on
which the q-boson operators b, c,k act as

b|m〉 = |m + 1〉, c|m〉 = (1 − qm)|m − 1〉, k|m〉 = qm |m〉,
〈m|c = 〈m + 1|, 〈m|b = 〈m − 1|(1 − qm), 〈m|k = 〈m|qm,

(37)

where |−1〉 = 〈−1| = 0. They satisfy the defining relations (16). We specify the
bilinear pairing of F∗ and F as 〈m|m′〉 = θ(m = m′)(q)m . Then 〈m|(X |m′〉) =
(〈m|X)|m′〉 holds and the trace is given by Tr(X) = ∑

m≥0
〈m|X |m〉

(q)m
. As a vector space,

the q-boson algebra B has the direct sum decomposition B = C(q)1 ⊕ Bfin, where
Bfin = ⊕

r≥1(Br+ ⊕ Br− ⊕ Br
0) with Br+ = ⊕

s≥0 C(q)ksbr ,Br− = ⊕
s≥0 C(q)kscr

and Br
0 = C(q)kr . The trace Tr(X) is convergent if X ∈ Bfin. It vanishes unless

X ∈ ⊕
r≥1 Br

0 when it is evaluated by Tr(kr ) = (1 − qr )−1.
In what follows, we regard Xα1,...,αn (ζ ) ∈ ⊗

1≤i≤ j≤n−1 Bi, j constructed in Sect. 3

as a linear operator on F⊗n(n−1)/2 = ⊗
1≤i≤ j≤n−1 Fi, j , where Fi, j is a copy of F on

which q-boson operators from Bi, j acts as (37). Now we state the main corollary of
Theorem 1.

Theorem 5 Stationary probabilities of the discrete time Uq(A
(1)
n )-zero range process

in Sect. 4.1 in basic sectors are expressed in the matrix product form

P(σ1, . . . , σL) = Tr(Xσ1(μ1) · · · XσL (μL)), (38)

where the trace Tr is taken over F⊗n(n−1)/2.

Proof From the expression (20), it immediately follows that

Zβ(μ)Z0n (λ)−1Zγ (λ) = qϕ(β,γ )Zβ+γ (μ) (β, γ ∈ Z
n≥0),

which agrees with [16, Eq. (34)] called the auxiliary condition. In [16, Prop.6] it
was proved that the ZF algebra (15) and the above relation imply the matrix product
formula provided that the trace is convergent and not identically zero. The trace is
convergent since (19) implies via an inductive argument with respect to n that nonzero
contributions to it contains at least one k in every component in

⊗
1≤i≤ j≤n−1 Bi, j . The

trace is neither zero. In fact (31) shows that Tr(Zσ1(μ1) · · · ZσL (μL)) is still nonzero
even at q = 0,∀μi = 0 coinciding with the homogeneous case of [15]. ��
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The stationary probabilities of the continuous time model (36) is obtained just by
specializing (38) to μ1 = · · · = μL = μ. Under this homogeneous choice, one can
slightly simplify the matrix product formula (38) by the replacements (cf. [16, Eq.
(42)] for n = 2):

Xα1,...,αn (μ) → (μ)|α|∏n
i=1(q)αi

(
Z0n (μ)|Ai, j→μAi, j

)
k

α+
1

1,n−1c
α1
1,n−1 · · · kα+

n−1
n−1,n−1c

αn−1
n−1,n−1

withα+
i given by (17). This is a consequence of the automorphismofq-bosons (30) and

removal of a common overall factor in the matrix product (38) within a sector for the
homogeneous choice. After these changes the formula (38) with μ1 = · · · = μL = μ

becomes regular at μ = 0.

Example 6 Set σi = (σi,1, σi,2, σi,3) ∈ Z
3≥0. Up to an overall normalization, Example

4 is reproduced by the L = 2 case of

P(σ1, . . . , σL) =
(

L∏

i=1

μ
−|σi |
i (μi )|σi |

(q)σi,1(q)σi,2(q)σi,3

)

TrF⊗3
(
Zσ1(μ1) · · · ZσL (μL)

)
,

Zα1,α2,α3(μ) = (b1)∞
(μ−1b1)∞

(c1b2)∞
(k1b3)∞

(μ−1k1b3)∞
1

(μ−1c1b2)∞
kα2+α3
2 cα1

2 kα3
3 cα2

3 .

See (22). We have x1 = x1,1, x2 = x1,2, x3 = x2,2 for x = b, c and k in the notation
in Theorem 2.

For the homogeneous case μ1 = · · · = μL = μ, this may be replaced, up to
normalization, by a slightly simplified version

P(σ1, . . . , σL) =
(

L∏

i=1

(μ)|σi |
(q)σi,1(q)σi,2(q)σi,3

)

TrF⊗3
(
Zσ1(μ) · · · ZσL (μ)

)
,

Zα1,α2,α3(μ) = (μb1)∞
(b1)∞

(μc1b2)∞
(μk1b3)∞
(k1b3)∞

1

(c1b2)∞
kα2+α3
2 cα1

2 kα3
3 cα2

3 ,

which is suitable for studying the μ = 0 case.

5 Summary

We have studied the Zamolodchikov-Faddeev algebra (12), (15) whose structure
function is the Uq(A

(1)
n ) stochastic R matrix (1)–(3) introduced in [12]. A q-boson

representation has been constructed either by a recursion relation with respect to the
rank n (Theorem 1) or by giving the explicit formula (Theorem 2). It yields a matrix
product formula for the stationary probabilities in the Uq(A

(1)
n )-zero range process

(Theorem 5). They extend the earlier results for n = 2 [16] to general n, although
the method of the proof of the ZF algebra relation is different. At q = 0, the q-boson
representation of the matrix product operators in this paper coincides with the homo-
geneous case w1 = · · · · · · = wn of [15] as shown in (31). At q = 0, there is another
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set of matrix product operators originating in the combinatorial R in crystal theory
[13] and the tetrahedron equation [14]. They agree with the q = 0 case of the present
paper for n = 2 upon adjustment of conventions. Their relation for n ≥ 3 still requires
a further investigation.

Acknowledgements This work is supported by Grants-in-Aid for Scientific Research No. 15K04892,
No. 15K13429 and No. 16H03922 from JSPS.

Appendix A: Proof of Theorem 1

We will use the same symbol ϕ(β, γ ) (3) to mean (3)|n→n+1. Moreover,∑
1≤i< j≤n+1 βiγ j with β ∈ Z

n≥0, γ ∈ Z
n+1
≥0 will also be denoted by ϕ(β, γ ).

We are going to prove Theorem 1 by induction on n. The relation (15)|n=1 is valid
since it is equivalent to (9)|n=1. (The case n = 2 has been shown in [16] by a method
different from here.) Thus, our task in the sequel is to show (15)|n→n+1 assuming
(15)|n=n .

Lemma 7 Under the assumption (15) |n=n, the relation (15) |n→n+1 follows from the
equality

∑

m≤s

qϕ(m,α)�
(n)
q (m|s; λ, μ)

n⊗

i=1

bsi−mi cαi bmi

=
∑

γ≤α

qϕ(γ,α)+ϕ(s,γ )−ϕ(α,γ )�
(n+1)
q (γ |α, λ, μ)

n⊗

i=1

cγi bsi cαi−γi (∀s∈Z
n≥0, ∀α ∈ Z

n+1
≥0 ).

(39)

Proof Substitute (19)|n→n+1 into (15)|n→n+1. Applying (13) on the LHS, we get

LHS =
∑

m,l∈Zn≥0

∑

t≤m

�(n)
q (l|m + l − t; λ,μ)Xt (λ)Xm+l−t (μ)

⊗
n⊗

i=1

(mi , α
+
i , αi )(li , β

+
i , βi ),

RHS =
∑

γ≤α

qϕ(α−γ,β−γ )�(n+1)
q (γ |α, λ, μ)

∑

t,s∈Zn≥0

Xt (λ)Xs(μ) ⊗
n⊗

i=1

(ti , γ
+
i , γi )

× (si , α
+
i + β+

i − γ +
i , αi + βi − γi ),

where the temporal notation (i, j, k) := bik jck is used. The symbol α+
i is defined

by (17)|n→n+1 and β+
i , γ +

i are similar. Thus, to prove LHS = RHS, it is sufficient,
though not a priori necessary, to show that the coefficients of Xt (λ)Xs(μ) are equal
for each choice of t, s ∈ Z

n≥0 and α, β ∈ Z
n+1
≥0 . Explicitly, it reads
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∑

t≤m≤t+s
�

(n)
q (t + s − m|s; λ,μ)

n⊗

i=1
(mi , α

+
i , αi )(ti + si − mi , β

+
i , βi )

= ∑

γ≤α

qϕ(α−γ,β−γ )�
(n+1)
q (γ |α, λ, μ)

n⊗

i=1
(ti , γ

+
i , γi )

×(si , α
+
i + β+

i − γ +
i , αi + βi − γi ).

One can pull out the common factor
⊗n

i=1 k
α+
i +β+

i from this equality to the left. The
result reads

∑

t≤m≤t+s
qϕ(t+s−m,α)�

(n)
q (t + s − m|s; λ,μ)

n⊗

i=1
(mi , 0, αi )(ti + si − mi , 0, βi )

= ∑

γ≤α

qϕ(γ,α)+ϕ(s,γ )−ϕ(α,γ )�
(n+1)
q (γ |α, λ, μ)

n⊗

i=1
(ti , 0, γi )(si , 0, αi + βi − γi ).

Note that this further contains a common rightmost factor
⊗n

i=1 c
βi and a common

leftmost factor
⊗n

i=1 b
ti . Removing them leads to (39). ��

Lemma 8 The following identities hold:

cmbs =
s∑

j=0

q j (m−s+ j)(qm; q−1)s− j

(
s

j

)

q
b jcm−s+ j (m, s ∈ Z≥0), (40)

zs =
s∑

r=0

(−1)r qr(r−1)/2
(
s

r

)

q
(z; q−1)r (s ∈ Z≥0). (41)

Proof These relations can easily be checked by means of the q-binomial theorem. ��
Lemma 9 The equality (39) is equivalent to

∑

m≤s

qϕ(m,α)+∑n
i=1 αi mi �(n)

q (m|s; λ,μ)

=
∑

γ≤α

qϕ(γ,α)+ϕ(s,γ )−ϕ(α,γ )+∑n
i=1 siγi �(n+1)

q (γ |α; λ,μ) (42)

for any s ∈ Z
n≥0 and α ∈ Z

n+1
≥0 .

Proof Comparing the coefficient of the basis vector
⊗n

i=1 b
si−pi cαi−pi of B⊗n on the

both sides of (39) by means of (40), it is translated into the equality of the coefficients

∑

m≤s

qϕ(m,α)�(n)
q (m|s; λ,μ)

n∏

i=1

q(mi−pi )(αi−pi )
(

αi

pi

)

q

(
mi

pi

)

q

=
∑

γ≤α

qϕ(γ,α)+ϕ(s∨−α,γ )�(n+1)
q (γ |α; λ,μ)

n∏

i=1

q(γi−pi )(si−pi )
(
si
pi

)

q

(
γi

pi

)

q

(43)
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for any arrays of nonnegative integers α = (α1, . . . , αn, αn+1), s = (s1, . . . , sn), p =
(p1, . . . , pn) such that pi ≤ min(si , αi ) for all 1 ≤ i ≤ n. On the RHS of (43), we
have introduced the notation

s∨ = (s1, . . . , sn, 0) (44)

for later convenience. Of course ϕ(s∨, γ ) = ϕ(s, γ ) by the definition. By substituting
(3) into (43) and removing a common overall factor from the both sides, it becomes

∑

p≤m≤s
qϕ(m,α−m∨)+ϕ(s,m)ν|m| (λ)|m|(ν)|s|−|m|

(μ)|s|

n∏

i=1
q(mi−pi )(αi−pi )

( si−pi
mi−pi

)
q

= ∑

p∨≤γ≤α

qϕ(γ,α−γ )+ϕ(s,γ )ν|γ | (λ)|γ |(ν)|α|−|γ |
(μ)|α|

(
αn+1
γn+1

)
q

n∏

i=1
q(si−pi )(γi−pi )

(
αi−pi
γi−pi

)
q
,

where ν = μ/λ and m∨, p∨ are defined similar to (44). By the replacement

s → s + p, m → m + p, α → α + p∨, γ → γ + p∨,

λ → q−|p|λ, μ → q−|p|μ,

the above relation is cast into

∑

m≤s

qϕ(m,α)+ϕ(s−m,m)+∑n
i=1 αi mi ν|m| (λ)|m|(ν)|s|−|m|

(μ)|s|

n∏

i=1

(
si
mi

)

q

=
∑

γ≤α

qϕ(γ,α)+ϕ(s∨−γ,γ )+∑n
i=1 siγi ν|γ | (λ)|γ |(ν)|α|−|γ |

(μ)|α|

n+1∏

i=1

(
αi

γi

)

q
, (45)

which turns out to be free from p = (p1, . . . , pn). This coincides with (42). ��

So far we have shown that Theorem 1 is a corollary of (42). Let us proceed to a
proof of the latter.

Lemma 10 The equality (42) holds for n ∈ Z≥0.

Proof Again we invoke the induction on n. At n = 0, (42) reads 1 = ∑
γ1≤α1

�
(1)
q (γ1|

α1; λ,μ), which is indeed valid thanks to (9). Assume (42)|n→n−1. Applying (11) to
the LHS of (42)|n=n , we get

LHS =
∑

m1≤s1

qm1|α|�(1)
q (m1|s1; λ, μ)

∑

m≤s

qϕ(m,α)+∑n
i=2 miαi �(n−1)

q (m|s; qm1λ, qs1μ),
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where m, s ∈ Z
n−1
≥0 and α ∈ Z

n≥0 are defined by (10). Rewriting the sum over m by
the induction assumption (42)|n→n−1 yields (ν = μ/λ as before)

LHS =
∑

m1≤s1

qm1|α|�(1)
q (m1|s1; λ,μ)

×
∑

γ≤α

qϕ(γ ,α)+ϕ(s,γ )−ϕ(α,γ )+∑n
i=2 siγi �(n)

q (γ |α; qm1λ, qs1μ)

=
∑

m1≤s1

qm1(|α|−|γ |)νm1

(
s1
m1

)

q

×
∑

γ≤α

qξ(s,α,γ )ν|γ | (λ)m1+|γ |(ν)m1−s1+|α|−|γ |
(μ)s1+|α|

n+1∏

i=2

(
αi

γi

)

q
, (46)

where ξ(s, α, γ ) = ϕ(γ , α) + ϕ(s, γ ) + ∑n
i=2 siγi − ϕ(γ , γ ) + s1|γ |. On the other

hand, the RHS of (42) has been written out in the RHS of (45), which is expressed
using the above ξ(s, α, γ ) as

RHS =
∑

γ1≤α1,γ≤α

qγ1(|α|−|γ |+s1)+ξ(s,α,γ )ν|γ | (λ)|γ |(ν)|α|−|γ |
(μ)|α|

n+1∏

i=1

(
αi

γi

)

q
. (47)

Denote the summand in (46) by LHS(m1, γ2, . . . , γn+1) and the one in (47) by
RHS(γ1, γ2, . . . , γn+1). We claim

∑
m1≤s1 LHS(m1, γ2, . . . , γn+1) = ∑

γ1≤α1
RHS

(γ1, γ2, . . . , γn+1) holds for each fixed γ = (γ2, . . . , γn+1). In fact, the two sides

possess a common overall factor qξ(s,α,γ )ν|γ | (λ)|γ |(ν)|α|−|γ |
(μ)|α|

∏n+1
i=2

(
αi
γi

)
q
. By removing

it, the claim becomes

∑

m1≤s1

qm1(|α|−|γ |)νm1
(q |γ |λ)m1(q

|α|−|γ |ν)m1−s1

(q |α|μ)s1

(
s1
m1

)

q

=
∑

γ1≤α1

qγ1(|α|−|γ |+s1)νγ1
(q |γ |λ)γ1(q

|α|−|γ |ν)α1−γ1

(q |α|μ)α1

(
α1

γ1

)

q
.

This is simply stated as f (α1, s1; q |γ |λ, q |α|μ) = f (s1, α1; q |γ |λ, q |α|μ) in terms of
the function defined for s, t ∈ Z≥0 and ν = μ/λ by

f (s, t; λ,μ) =
t∑

i=0

qsiνi
(λ)i (ν)t−i

(μ)t

(
t

i

)

q
. (48)

This is verified in Lemma 11. ��
Lemma 11 The function (48) enjoys the symmetry f (s, t; λ,μ) = f (t, s; λ,μ) for
s, t ∈ Z≥0.
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Proof By applying (41) to the factor qsi in (48), f (s, t; λ,μ) is rewritten as follows:

f (s, t; λ,μ) =
t∑

i=0

νi
(λ)i (ν)t−i

(μ)t

(
t

i

)

q

s∑

r=0

(−1)r qr(r−1)/2
(
s

r

)

q
(qi ; q−1)r

=
min(s,t)∑

r=0

t∑

i=r

νi
(λ)r (qrλ)i−r (ν)t−i

(μ)r (qrμ)t−r
(qt ; q−1)r

(
t − r

i − r

)

q
(−1)r qr(r−1)/2

(
s

r

)

q
.

Replacing i by i + r , we have

f (s, t; λ,μ) =
min(s,t)∑

r=0

νr (−1)r qr(r−1)/2(q)r

(
s

r

)

q

(
t

r

)

q

(λ)r

(μ)r
h(r, t; λ,μ),

h(r, t; λ,μ) =
t−r∑

i=0

νi
(qrλ)i (ν)t−r−i

(qrμ)t−r

(
t − r

i

)

q
. (49)

From
∑t−r

i=0 �
(1)
q (i |t − r; qrλ, qrμ) = 1 (9), we find h(r, t; λ,μ) = 1. Then the

expression (49) tells that f (s, t; λ,μ) = f (t, s; λ,μ). ��
Proof of Theorem 1 As a summary of the arguments so far, the induction step from
(15)|n=n to (15)|n=n+1 has been established by the following scheme:

(15)|n=n+1

�

(15)|n=n

�Lem.7
(39) � �Lem.9

(42) �Lem.11
Lem.10.

Since (15)|n=1 is valid as explained in the beginning of the appendix, the ZF relation
(15) holds for any n. This completes the proof of Theorem 1. ��
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