
Lett Math Phys (2017) 107:861–885
DOI 10.1007/s11005-016-0925-8

Strong homotopy Lie algebras, homotopy Poisson
manifolds and Courant algebroids

Honglei Lang1 · Yunhe Sheng2,3 · Xiaomeng Xu4

Received: 24 February 2016 / Revised: 29 October 2016 / Accepted: 1 November 2016 /
Published online: 22 November 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We study Maurer–Cartan elements on homotopy Poisson manifolds of
degree n. They unify many twisted or homotopy structures in Poisson geometry and
mathematical physics, such as twisted Poisson manifolds, quasi-Poisson g-manifolds,
and twisted Courant algebroids. Using the fact that the dual of an n-term L∞-algebra
is a homotopy Poisson manifold of degree n − 1, we obtain a Courant algebroid from
a 2-term L∞-algebra g via the degree 2 symplectic NQ-manifold T ∗[2]g∗[1]. By inte-
grating the Lie quasi-bialgebroid associated to the Courant algebroid, we obtain a
Lie-quasi-Poisson groupoid from a 2-term L∞-algebra, which is proposed to be the
geometric structure on the dual of a Lie 2-algebra. These results lead to a construction
of a new 2-term L∞-algebra from a given one, which could produce many interesting
examples.
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1 Introduction

Theconcept of an L∞-algebra (sometimes called a stronglyhomotopy (sh)Lie algebra)
was originally introduced in [22,38] as a model for “Lie algebras that satisfy the
Jacobi identity up to all higher homotopies”. A Lie 2-algebra is a categorification of
a Lie algebra. It is well-known that the category of Lie 2-algebras is equivalent to
the category of 2-term L∞-algebras [4]. The structure of a Lie 2-algebra or a 2-term
L∞-algebra appears in many areas such as string theory, higher symplectic geometry
[5,6], and Courant algebroids [27].

A homotopy Poisson algebra is a graded commutative algebrawith an L∞-structure
whose brackets satisfy the Leibniz rule. It has appeared in Voronov’s work [17,40]
under the name “higher Poisson structures” and Cattaneo and Felder’s work [10]
under the name “P∞-structures”. See also [8,26] for more recent work involving this
structure. A homotopy Poisson algebra structure of degree n on a graded commutative
algebra a means that there is a homotopy Poisson algebra structure on the shifted
space a[n]. One interesting example of homotopy Poisson manifolds is given by the
dual g∗[n − 1] of an n-term L∞-algebra g = g0 ⊕ g−1 ⊕ · · · ⊕ g1−n , which turns
out to be a homotopy Poisson manifold of degree n − 1. This generalizes the fact that
there is a Lie-Poisson structure on the dual space of a Lie algebra to the case of n-term
L∞-algebras.

It is known that there is a one-to-one correspondence between Poisson manifolds
and symplectic NQ-manifolds of degree 1,

(M, π) � (T ∗[1]M, Q = {π, ·}),

where the bracket {·, ·} is the canonical Poisson bracket on the cotangent bundle of
the manifold M . One can further study the cotangent bundle of a homotopy Poisson
manifold M of degree n. The shifted cotangent bundle T ∗[n + 1]M is a symplectic
NQ-manifold of degree n + 1. Then we study Maurer–Cartan elements on a degree n
homotopy Poisson manifold M, which are solutions of the Maurer–Cartan equation
associated to the L∞-structure on the function ring C∞(M). Recall that there are
many types of twisted or homotopy structures in Poisson geometry and mathematical
physics. See [2,14,19,20,29,33,34] for lists of such examples. We provide a unified
framework to describe these structures in which they are viewed as solutions of the
Maurer–Cartan equation. For example, given a manifold M , the cotangent bundle
T ∗[1]M , equipped with the Schouten bracket l2 = [·, ·]S , is a homotopy Poisson
manifold of degree 1. Furthermore, a degree 2 functionπ ∈ C∞(T ∗[1]M) is aMaurer–
Cartan element on T ∗[1]M if and only if π is a Poisson tensor on M ; in the twisted
case, given a closed 3-form H , the cotangent bundle T ∗[1]M with l2 = [·, ·]S and a
ternary bracket l3 = H(·, ·, ·) on C∞(T ∗[1]M) is a new homotopy Poisson manifold
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Strong homotopy Lie algebras, homotopy Poisson ... 863

of degree 1, and a degree 2 function π satisfies the Maurer–Cartan equation if and
only if π is a twisted Poisson tensor.

A homotopy Poisson manifold M of degree n is called symplectic if its binary
bracket is non-degenerate (See [17] for the Z2-graded case). IfM is a symplectic N-
manifold of degree n, then a function α of degree n+ 1, satisfying the Maurer–Cartan
equation l2(α, α) = 0, induces a differential Q = l2(α, ·) of degree 1 on M. This
shows that a differential graded symplectic manifold or symplectic NQ-manifold is
a special homotopy symplectic manifold with a Maurer–Cartan element. A general
degree n homotopy symplectic manifold (M, {li }1≤i<∞) with l1 = 0 is, therefore,
a homotopy version of a symplectic N-manifold. In this case, the Maurer–Cartan
equation becomes

1

2! l2(α, α) − 1

3! l3(α, α, α) + · · · = 0,

which can be viewed as a homotopy version of the classical master equation. To relate
this to physical applications, we prove that homotopy symplecticmanifolds of degree n
with zero l1 are in one-to-one correspondence with twisted symplectic NQ-manifolds
with �|M = 0 (see Definition 3.11), to which the authors in [16] associate sigma
models with boundary via AKSZ formalism.

The notion of a Lie bialgebroid was introduced byMackenzie andXu [25]. To study
the double of a Lie bialgebroid,1 Liu–Weinstein–Xu introduced the notion of aCourant
algebroid [23]. ThenRoytenberg gave an equivalent definition in [30]. SymplecticNQ-
manifolds of degree 2 are in one-to-one correspondence with Courant algebroids [28].
On the other hand, a Courant algebroid gives rise to a 2-term L∞-algebra [27]. This
paper uses these facts to construct a new 2-term L∞-algebra from a given one as
follows. Given a Lie 2-algebra g = g0 ⊕ g−1, its dual g∗[1] is a homotopy Poisson
manifold of degree 1, which implies that T ∗[2]g∗[1] is a symplectic NQ-manifold
of degree 2. Thus, we obtain a Courant algebroid E = g∗−1 × (g0 ⊕ g∗

0), where
g∗−1 is the base manifold. Choosing some special sections of E and linear functions
on the base manifold g∗−1, we obtain a 2-term L∞-algebra g̃ = g̃0 ⊕ g̃−1, where
g̃0 = g0 ⊕ (g−1 ⊗ g∗

0) and g̃−1 = g−1. We thus have

2-term L∞-
algebra g �−→

homotopy
Poisson
manifold
g∗[1]

�−→
degree 2

symplectic
NQ-manifold
T ∗[2]g∗[1]

�−→ Courant algebroid
E = g∗−1 × (g0 ⊕ g∗

0)
�−→ 2-term L∞-

algebra g̃.

In particular, we obtain the 2-term L∞-algebra associated to the omni-Lie algebra
[36,41] from a vector space V , which is viewed as the abelian 2-term L∞-algebra

(V
id−→ V, l2 = 0, l3 = 0), and obtain the 2-term L∞-algebra of string type [36]

1 There are different ways to describe the double of a Lie bialgebroid, e.g. Mackenzie gave the description
of Drinfeld doubles for Lie bialgebroids using double Lie algebroids in [24]; Roytenberg and Voronov gave
the description of Drinfeld doubles for Lie bialgebroids using graded manifolds in [28,39] respectively.
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864 H. Lang et al.

from the 2-term L∞-algebra (R
0−→ k, l2 = [·, ·]k, l3 = 0), where (k, [·, ·]k) is a

Lie algebra. These interesting examples show that the construction of g̃ from g has
some important properties and applications, which will be studied in the future, since
it is unrelated to the key subject of this paper. Nevertheless, we prove that there is a
homomorphism from g̃ to g (see Theorem 4.11).

We also observe that the Courant algebroid E = g∗−1 × (g0 ⊕ g∗
0) obtained above

is the double of a Lie quasi-bialgebroid (A, δ, φ), where A = g∗−1 ×g∗
0 −→ g∗−1 is an

action Lie algebroid. By integration, we get a Lie-quasi-Poisson groupoid (�,�, φ),
where � = g∗−1 × g∗

0 ⇒ g∗−1 is an action groupoid. In summary, we have

Lie 2-algebra
equivalence

2-term L∞-algebra g
duality

homotopy Poisson mfd g∗[1]

Lie quasi-bi (A, δ, φ)

integration

Courant algebroid E sym NQ-mfd T ∗[2]g∗[1]

Lie-quasi-Poisson gpd (�,�, φ)

If we view the 2-vector space g∗−1 ⊕ g∗
0 ⇒ g∗−1 as the dual of the 2-vector space

g0⊕g−1 ⇒ g0, this Lie-quasi-Poisson groupoid can be viewed as the natural geometric
structure on the “dual” of a Lie 2-algebra.

Notations: For a graded vector space V = ∑
n∈Z Vn , we use V [l] to denote the l-

shifted graded vector space, namely V [l]n = Vl+n ; we use Sym(V ) to denote the
symmetric algebra of V . We use [·, ·]S to denote the Schouten bracket of sections of
a Lie algebroid.

2 Preliminaries

Lie algebras can be categorified to Lie 2-algebras. For a good introduction on this
subject see [4,21]. Vector spaces can be categorified to 2-vector spaces. Let Vect be
the category of vector spaces. A 2-vector space is a category in the category Vect. A
2-vector space C is a category with a vector space of objects C0 and a vector space of
morphisms C1, such that all the structure maps are linear. Let s, t : C1 −→ C0 be the
source and target maps respectively.

The 2-category of 2-vector spaces is equivalent to the 2-category of 2-term com-

plexes of vector spaces. Roughly speaking, given a 2-vector space C , ker(s)
t−→ C0

is a 2-term complex. Conversely, any 2-term complex of vector spaces V1
d−→ V0

gives rise to a 2-vector space of which the set of objects is V0, the set of morphisms is
V0 ⊕ V1, the source map s is given by s(v +m) = v, and the target map t is given by
t (v + m) = v + dm, where v ∈ V0, m ∈ V1.

A Lie 2-algebra is a 2-vector space C equipped with a skew-symmetric bilinear
functor, such that the Jacobi identity is controlled by a natural isomorphism, which
satisfies a coherence law of its own. The category of Lie 2-algebras is equivalent to
the category of 2-term L∞-algebras (see [4]).

123
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Definition 2.1 An L∞-algebra is a graded vector space g = ⊕i∈Zgi equipped with a
system {lk | 1 ≤ k < ∞} of linear maps lk : ∧kg −→ g with degree deg(lk) = 2 − k,
where the exterior powers are interpreted in the graded sense and the following relation
with Koszul sign “Ksgn” is satisfied for all n ≥ 0:

∑

i+ j=n+1

(−1)i( j−1)
∑

σ

sgn(σ )Ksgn(σ )l j (li (xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0. (1)

Here the summation is taken over all (i, n − i)-unshuffles with i ≥ 1.

We denote an L∞-algebra by (⊕i∈Zgi , {li }i≥1), or simply by g if there is no con-

fusion. In particular, we denote a 2-term L∞-algebra by (g−1
l1−→ g0, l2, l3).

Definition 2.2 Let g = (g−1
l1−→ g0, l2, l3) and g′ = (g′−1

l ′1−→ g′
0, l

′
2, l

′
3) be two 2-

term L∞-algebras. An L∞-algebra homomorphism F from g to g′ consists of: linear
maps F0 : g0 → g′

0, F1 : g−1 → g′−1 and F2 : g0 ∧ g0 → g′−1, such that the
following equalities hold for all x, y, z ∈ g0,m ∈ g−1,

(i) F0 ◦ l1 = l ′1 ◦ F1,
(ii) F0l2(x, y) − l ′2(F0(x), F0(y)) = l ′1F2(x, y),
(iii) F1l2(x,m) − l ′2(F0(x), F1(m)) = F2(x, l1(m)),
(iv) F2(l2(x, y), z) + c.p. + F1(l3(x, y, z)) = l ′2(F0(x), F2(y, z)) + c.p.

+ l ′3(F0(x), F0(y), F0(z)).

Given a graded vector space V = ∑
n∈Z Vn , it is well-known that there is a graded

version of Kosmann-Schwarzbach’s big bracket [18], which we denote by {·, ·}, on
Sym(V ∗[l])⊗Sym(V [k]) ∼= Sym(V ∗[l]⊕V [k]) ∼= Sym(T ∗[l+k]V [k]) by extend-
ing the usual pairing between V ∗ and V via a graded Leibniz rule

{u, v ∧ w} = {u, v} ∧ w + (−1)(|u|+l+k)|v|v ∧ {u, w}, (2)

{u, v} = −(−1)(|u|+k+l)(|v|+k+l){v, u}, (3)

where u ∈ Sym(V ∗[l] ⊕ V [k])|u| and v ∈ Sym(V ∗[l] ⊕ V [k])|v|. The big bracket is
in fact the canonical graded Poisson bracket on T ∗[−l − k]V ∗[−k]. Thus, we have a
graded Jacobi identity:

{u, {v,w}} = {{u, v}, w} + (−1)(|u|+k+l)(|v|+k+l){v, {u, w}}. (4)

We view li : ∧ig −→ g as elements in Symi (g∗[−1]) ⊗ g[k]. Then we have

Lemma 2.3 A series of degree 2 − k elements li ∈ (Symi (g∗[−1]) ⊗ g[k]) with
i = 1, 2, . . . on g = g0 ⊕ g−1 ⊕ · · · gives an L∞-algebra structure if and only if
{ ∑∞

i=1 li ,
∑∞

i=1 li } = 0.

Definition 2.4 ACourant algebroid is a vector bundle E −→ M , together with a fiber
metric (·, ·)+ (so we can identify E with E∗), a bundle map ρ : E −→ T M (called
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866 H. Lang et al.

the anchor), a bilinear bracket operation (Dorfman bracket) �·, ·� on �(E), such that
for all e1, e2, e3 ∈ �(E), we have

�e, e� = 1

2
D (e, e)+ , (5)

ρ(e1) (e2, e3)+ = (�e1, e2�, e3)+ + (e2, �e1, e3�)+ , (6)

�e1, �e2, e3�� = ��e1, e2�, e3� + �e2, �e1, e3��, (7)

where the operator D : C∞(M) −→ �(E) is the map defined by

(e, Df )+ = ρ(e) f.

One can also use the skew-symmetric Courant bracket �·, ·� : �e1, e2� =
1
2 (�e1, e2� − �e2, e1�). But the equality (7) does not hold anymore. We have

��e1, e2�, e3� + ��e2, e3�, e1� + ��e3, e1�, e2� = DT (e1, e2, e3),

where T (e1, e2, e3) ∈ C∞(M) is defined by

T (e1, e2, e3) = 1

6

(
�e1, e2�, e3

)
+ + c.p..

Theorem 2.5 ([27]) A Courant algebroid structure on a vector bundle E gives rise
to a 2-term L∞-algebra structure on C∞(M) ⊕ �(E), where li are given by

⎧
⎪⎪⎨

⎪⎪⎩

l1( f ) = Df, ∀ f ∈ C∞(M),

l2(e1, e2) = �e1, e2� ∀ e1, e2 ∈ �(E),

l2(e1, f ) = 1
2 (e1, Df )+ ∀ e1 ∈ �(E), f ∈ C∞(M),

l3(e1, e2, e3) = −T (e1, e2, e3) ∀ e1, e2, e3 ∈ �(E).

(8)

A Courant algebroid can be described by a symplectic NQ-manifold of degree 2
[28]. Explicitly, let (E, (·, ·)+) be a pseudo-Euclidean vector bundle over a manifold
M . Then, E[1] is a PoissonN-manifold of degree−2. LetM be itsminimal symplectic
realization. An NQ-structure onM is determined by a cubic Hamiltonian function �

onM satisfying {�,�} = 0, where {·, ·} is the even Poisson bracket onM of degree
−2. Such a � corresponds to a Courant algebroid structure on E . In fact, we define
the anchor ρ and the Dorfman bracket �·, ·� as the derived bracket by

ρ(e) f ={{e,�}, f }, �e1, e2�={{e1,�}, e2}, ∀ f ∈C∞(M), ∀ e, e1, e2∈�(E).

HereC∞(M) and�(E) are the algebras of degree 0 and degree 1 polynomial functions
onM, respectively. We refer to [39] for a general construction of doubles for graded
QS-manifolds and QP-manifolds.

For a vector bundle A, consider the graded manifold T ∗[2]A[1]. It is canonically
equipped with a Poisson bracket of degree −2, and is actually the minimal symplectic
realization of A ⊕ A∗. This Poisson bracket, called the big bracket in [18], is denoted
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Strong homotopy Lie algebras, homotopy Poisson ... 867

here by {·, ·}. Let (xi , ξa) be local coordinates on A[1], we denote by (xi , ξa, θa, pi )
the local coordinates on T ∗[2]A[1]. About their degrees, we have

degree(xi , ξa, θa, pi ) = (0, 1, 1, 2).

The big bracket satisfies

{xi , p j } = δij = −{p j , x
i }, {ξa, θb} = δij = {θb, ξa}.

A Lie algebroid structure on A is equivalent to a degree 3 function μ = ρi
b piξ

b +
1
2μ

a
bcξ

bξ cθa such that {μ,μ} = 0.
A Lie quasi-bialgebroid structure on A is given by a degree 3 function μ + γ + φ,

which can be locally written as

μ = ρi
b piξ

b + 1

2
μa
bcξ

bξ cθa, γ = �ib piθb + 1

2
γ bc
a ξaθbθc, φ = 1

6
φabcθaθbθc,

and they satisfy

{μ + γ + φ,μ + γ + φ} = 0.

More precisely, we have

{μ,μ} = 0, {μ, γ } = 0,
1

2
{γ, γ } + {μ, φ} = 0, {γ, φ} = 0. (9)

See [19] for more details. On A⊕ A∗, there is a natural Courant algebroid structure, in
which the degree 3 function � is exactly μ+γ +φ. Note that there are two canonical
fiber metric (·, ·)± on A ⊕ A∗:

(x + ξ, y + η)± = 〈ξ, y〉 ± 〈x, η〉, (10)

where 〈·, ·〉 is the usual pairing without any degree involved in.

3 Maurer–Cartan elements on homotopy Poisson manifolds

First, we recall the notions of homotopy Poisson algebras and homotopy Poisson
manifolds. They are also called P∞-manifolds in [10,32] and higher Poissonmanifolds
in [8,17,40]. Here, we follow the convention in [26].

Definition 3.1 A homotopy Poisson algebra of degree n is a graded commutative
algebra a over a field of characteristic zero with an L∞-algebra structure {lm}m≥1 on
a[n], such that the map

x −→ lm(x1, . . . , xm−1, x), x1, . . . , xm−1, x ∈ a
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868 H. Lang et al.

is a derivation of a of degree κ := 2−m−n(m−1)+∑m−1
i=1 |xi |, i.e., for all x, y ∈ a,

lm(x1, . . . , xm−1, xy) = lm(x1, . . . , xm−1, x)y + (−1)κ|x |xlm(x1, . . . , xm−1, y).

Here, |x | denotes the degree of x ∈ a.
A homotopy Poisson algebra of degree n is of finite type if there exists a q such

that lm = 0 for all m > q.
A homotopy Poisson manifold of degree n is a graded manifoldM whose algebra

of functionsC∞(M) is equipped with a degree n homotopy Poisson algebra structure
of finite type.

Throughout this paper, we use (M, {li }1≤i<∞) to denote a homotopy Poissonmani-
fold. Obviously, a usual Poissonmanifold is a homotopy Poissonmanifold of degree 0.

Remark 3.2 In this remark, we compare the related structures in the literature.

(i) In [10], the authors introduced the notion of a P∞-algebra, which is a graded
commutative algebra a with an L∞-algebra structure such that the Leibniz rule
is satisfied. So a P∞-algebra is a homotopy Poisson algebra of degree 0.

(ii) The notion of a higher Poisson structure was introduced in [40], and further
studied in [8,17], where the authors used the superized version of an L∞-algebra,
i.e., Z2-graded.

(iii) A graded Poisson algebra of degree k is a graded commutative algebra a with
a degree −k Lie bracket, such that the bracket is a biderivation of the product,
namely

[x, y · z] = [x, y] · z + (−1)|y|(|x |+k)y · [x, z].

See [9] formore details. Thus, a graded Poisson algebra of degree k is a homotopy
Poisson algebra of degree k. In particular, the associated L∞-algebra has only
one non-zero map l2.

In the following, we list a few interesting examples of different kinds.

Example 3.3 Let A be a Lie algebroid. Consider its dual vector bundle, A∗[1], which
is an N-manifold of degree 1. Its algebra of polynomial functions is

· · · ⊕ �(A) ⊕ C∞(M),

where �(A) is of degree 1, and C∞(M) is of degree 0. The Poisson bracket is in fact
the Schouten bracket [·, ·]S on �(∧•A). It is straightforward to see that A∗[1] is a
homotopy Poisson manifold of degree 1.

Example 3.4 For an arbitrary manifold M , the shifted cotangent bundle T ∗[1]M is a
symplectic N-manifold of degree 1 (see [11,28]). Its algebra of polynomial functions
is

· · · ⊕ X(M) ⊕ C∞(M),
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Strong homotopy Lie algebras, homotopy Poisson ... 869

where X(M) is of degree 1, and C∞(M) is of degree 0. The Poisson bracket is
exactly the Schouten bracket [·, ·]S on �(∧•T M). It is straightforward to see that
(T ∗[1]M, l2 = [·, ·]S) is a homotopy Poisson manifold of degree 1. Similarly, any
symplectic N-manifold of degree n is a homotopy Poisson manifold of degree n. The
L∞-algebra structure here only contains one nonzero l2.

Example 3.5 Given a 2-term L∞-algebra g = (g−1
l1−→ g0, l2, l3), its graded dual

space g∗[1] = g∗
0[1] ⊕ g∗−1[1] is an N-manifold of degree 1 with the base manifold

g∗−1. Its algebra of polynomial functions is

· · · ⊕ (
C∞(g∗−1) ⊗ g0

) ⊕ C∞(g∗−1).

There is a degree 1 homotopy Poisson algebra structure on it obtained by extending
the original 2-term L∞-algebra structure using the Leibniz rule. Thus, the dual of a
2-term L∞-algebra is a homotopy Poisson manifold of degree 1. This generalizes the
fact that the dual of a Lie algebra is a linear Poisson manifold.

Similarly, the dual of an n-term L∞-algebra is a homotopy Poisson manifold of
degree n − 1.

Example 3.6 Given a splitting Lie n-algebroid2 A = A0 ⊕ · · · ⊕ A1−n , its dual
A∗[n] = A∗

0[n]⊕· · ·⊕A∗
1−n[n] is anN-manifold of degree n. Its algebra of polynomial

functions is

· · · ⊕ (
�(A0) ⊕ �(∧n A1−n) ⊕ · · · ) ⊕ · · · ⊕ �(A1−n) ⊕ C∞(M).

There is a degree n homotopy Poisson algebra structure on it. Thus, the dual of a
splitting Lie n-algebroid is a homotopy Poisson manifold of degree n.

It is known that (M, π) is a Poisson manifold if and only if (T ∗[1]M, Q) is a
symplectic NQ-manifold of degree 1, where the homological vector field Q is given
by Q = {π, ·}. More generally, the cotangent bundle of a homotopy Poisson manifold
of degree n gives rise to a symplectic NQ-manifold of degree n + 1. Consider the
homotopy Poisson manifold given in Example 3.5, we have

Proposition 3.7 Given an n-term L∞-algebra g = (g0 ⊕ · · · ⊕ g−n+1, {li }1≤i≤n+1),
the cotangent bundle T ∗[n]g∗[n − 1] is a symplectic NQ-manifold of degree n, where
the degree 1 homological vector field Q is given by

Q =
{∑

li , ·
}

, (11)

in which {·, ·} is the canonical Poisson structure, and∑
li ∈ Sym(g∗[−1])⊗g[1−n]

is viewed as a polynomial function of degree n + 1 on T ∗[n]g∗[n − 1].

2 By definition, there is an L∞-algebra structure on the complex of section spaces together with some
compatibility conditions. See [7,35] for more details.
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870 H. Lang et al.

Similar to [13], aMaurer–Cartan element on a degree n homotopy Poissonmanifold
M is given by a function α on M satisfying the Maurer–Cartan equation

∑

i

(−1)i

i ! li (α, . . . , α) = 0. (12)

Example 3.8 (quasi-Poisson g-manifolds) Let M be a manifold and (k, [·, ·]k, K ) a
quadratic Lie algebra. Let {ea} be an orthogonal basis of k with respect to the metric
K , i.e. K (ea, eb) = δab, and {ea} its dual basis. Then K induces an isomorphism,
which we denote by K �, from k∗ to k via K (K �(ξ), u) = 〈ξ, u〉. More precisely, we
have K �(ea) = ea . We define R ∈ ∧3k∗ by

R(u, v, w) = K ([u, v]k, w), ∀ u, v, w ∈ k.

Then M := T ∗[1]M × k[1] is a homotopy Poisson manifold of degree 1. In fact, we
can define an L∞-algebra structure on C∞(M) generated by

l2(X, f ) = X f, l2(X,Y ) = [X,Y ]S, l1(ξ) = δ(ξ), l3(ξ, η, γ ) = K �(R)(ξ, η, γ ),

where f ∈ C∞(M), X,Y ∈ X(M), ξ, η, γ ∈ k∗, and δ : ∧•k∗ −→ ∧•+1k∗ is the
coboundary operator associated to the Lie algebra k.

A degree 2 function α = π + ρ, where π ∈ ∧2X(M) and ρ ∈ k∗ ⊗ X(M), is a
Maurer–Cartan element, i.e. −l1(α) + 1

2 l2(α, α) − 1
3! l3(α, α, α) = 0, if and only if

the following three conditions hold:

l1(ρ) = 1

2
[ρ, ρ]S, [π, ρ]S = 0,

1

2
[π, π ]S = 1

6
K �(R)(ρ, ρ, ρ).

These conditions are equivalent to that ρ : k −→ X(M) is a Lie algebra morphism, π
is k-invariant and 1

2 [π, π ]S = ∧3ρ(K �(R)), respectively. Therefore, a quasi-Poisson
g-manifold [1,2] gives rise to a Maurer–Cartan element on M.

A homotopy Poisson manifold (M, {li }1≤i<∞) is called symplectic if the binary
bracket l2 is non-degenerate. We refer the reader to [17] for a thorough discussion of
homotopy symplectic structures in the setting of Z2-graded manifolds.

We turn to study Maurer–Cartan elements on a homotopy symplectic manifold of
degree n. First, we present some examples with mathematical and physical interests.

Example 3.9 (Twisted Poisson structures) The shifted cotangent bundle T ∗[1]M of
a manifold M is canonically a symplectic N -manifold of degree 1. Slightly different
from Example 3.4, with a choice of a closed 3-form H , we introduce a nontriv-
ial l3 on the algebra of functions of T ∗[1]M by l3(X,Y, Z) = H(X,Y, Z), for all
X,Y, Z ∈ X(M). The compatibility of l2 and l3 is due to the fact that H is closed.
Thus, (T ∗[1]M, l2 = [·, ·]S, l3 = H) is a homotopy symplectic manifold of degree 1.
The idea of adding a closed 3-form to obtain a new L∞-algebra was first introduced
in [31].

123



Strong homotopy Lie algebras, homotopy Poisson ... 871

A degree 2 function π is a Maurer–Cartan element of T ∗[1]M if and only if

1

2
l2(π, π) − 1

3! l3(π, π, π) = 0,

which is equivalent to 1
2 [π, π ] = ∧3π�H , that is, π is a twisted Poisson structure

([29,34]) on M .

Example 3.10 (Twisted Courant algebroids) Let E −→ M be a vector bundle with a
fiber metric (·, ·)+, and H a closed 4-form on M . Let M be its minimal symplectic
realization. See [28] for details. Then A2 is the section space of a vector bundle A,
which fits in the following exact sequence:

0 −→ ∧2E∗ −→ A
a−→ T M −→ 0.

Similar to the treatment in Example 3.9, we can define a new degree 2 homotopy
Poisson algebra structure on the algebra of functions of M by adding

l4(χ1, χ2, χ3, χ4) = H
(
a(χ1), a(χ2), a(χ3), a(χ4)

)
, ∀ χi ∈ A2.

Choose a local coordinate (xi , pi , ξa). A degree 3 function α = ρi
a piξ

a −
1
3! fabcξ

aξbξ c is aMaurer–Cartan element if and only if 1
2 l2(α, α)+ 1

24 l4(α, α, α, α) =
0. Define an anchor ρ : E → T M and a derived bracket �·, ·� on �(E) by

ρ(e) f = l2(l2(e, α), f ), �e1, e2� = l2(l2(e1, α), e2).

According to [28, Theorem 4.5], we have

l2(α, α) = (ρ∗(dxi ), ρ∗(dx j ))pi p j + ξaξbdx j ([ρ(ea), ρ(eb)]S − ρ(�ea, eb�)
)
p j

+ 1

12
(��ea, eb�, ec� + �eb, �ea, ec�� − �ea, �eb, ec��, ed)+ ξaξbξ cξd .

On the other hand, a straightforward calculation gives that

l4(α, α, α, α) = ρ∗H.

Thus, the condition for that α is a Maurer–Cartan element is equivalent to that
(E, K , ρ, �·, ·�, H) is a twisted Courant algebroid, which arises from the study of
three dimensional sigma models with Wess–Zumino term [14]. See [42] for its close
relation with coisotropic Cartan geometry.

We have seen that the study of a general homotopy symplectic manifold of degree n
and its Maurer–Cartan elements is inspired by many interesting geometric structures.
Next, we will see that these structures naturally appear in the study of topological
field theory. To be precise, it is known that there exists a systematic method to con-
struct a topological sigma model from a symplectic NQ-manifold, which is called the
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Alexandrov–Kontsevich–Schwartz–Zaboronsky (AKSZ) formalism [3].Wewill show
that this construction can be extended to the case of a degree n homotopy symplectic
manifold (M, {li }2≤i<∞) with a degree n + 1 Maurer–Cartan element α. To do this,
we need the notion of a twisted symplectic NQ-manifold, which was introduced in
[16] to describe the structure on the target supermanifold of the AKSZ sigma model
with boundary.

Definition 3.11 [16] Let (M, {·, ·}s) be a symplectic N -manifold of degree n and α

a degree n + 1 function on it. Then (M, {·, ·}s, α) is called a twisted symplectic NQ-
manifold if there is a degree n + 1 symplectic NQ-manifold (T ∗[n + 1]M, {·, ·},�)

such that

(a) {·, ·}s = {·, {·,�}}|M;
(b) it satisfies the canonical transformation equation e−α�|M = 0, where

e−α� = � − {α,�} + 1

2
{α, {α,�}} − · · · .

The following theorem states that a homotopy symplectic manifold with a Maurer–
Cartan element naturally gives rise to a twisted symplectic NQ-manifold.

Theorem 3.12 Degree n homotopy symplectic manifolds (M, {li }2≤i<∞) with a
degree n+1Maurer–Cartan element α are in one-to-one correspondence with twisted
symplectic NQ-manifolds (M, {·, ·}s, α) with �|M = 0.

Proof Let (M, {li }2≤i<∞) be a homotopy symplectic manifold of degree n and α

a degree n + 1 Maurer–Cartan element. Then (T ∗[n + 1]M, {·, ·},� = ∑
li ) is a

symplectic NQ-manifold of degree n + 1, and the following equality holds:

lk(a1, . . . , ak) =
{
ak, . . . ,

{
a2,

{
a1,

∑
li
}}

· · ·
}

|M. (13)

Define {·, ·}s = l2, which is a Poisson bracket determined by a nondegenerate closed
2-form. Now we extend α to a function on T ∗[n + 1]M, which is constant along the
fiber. By (13), we have �|M = {α,�}|M = 0 and

e−α�|M = 1

2
{α, {α,�}}|M − 1

6
{α, {α, {α,�}}}|M + · · ·

= 1

2
l2(α, α) − 1

3! l3(α, α, α) + · · · .

Thus, the condition for that α satisfies theMaurer–Cartan equation on (M, {li }2≤i<∞)

is equivalent to that the canonical transformation equation e−α�|M = 0 holds on
T ∗[n + 1]M. ��

One immediate consequence of the main construction in [16] is that, associated
to a degree n homotopy symplectic manifold (M, {li }2≤i<∞) with a degree n + 1
Maurer–Cartan element α, there is an AKSZ sigma model with boundary. This can be
viewed as a generalization of AKSZ formalism to the setting of homotopy symplectic
manifolds. In particular, if (M, {li }2≤i<∞) is a symplectic NQ-manifold, i.e. li = 0
for i ≥ 3, it becomes the AKSZ construction.
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4 2-term L∞-algebras and Courant algebroids

In this section, we obtain a Courant algebroid from a 2-term L∞-algebra. Con-
sequently, we give a general construction of a 2-term L∞-algebra from a 2-term
L∞-algebra, which could produce many interesting examples including the 2-term
L∞-algebra associated to an omni-Lie algebra and the 2-term L∞-algebra of string
type.

Let g = (g−1
l1−→ g0, l2 = l02 + l12 , l3) be a 2-term L∞-algebra, where

l1 ∈ g∗−1 ⊗ g0, l02 ∈ ∧2g∗
0 ⊗ g0, l12 ∈ g∗

0 ∧ g∗−1 ⊗ g−1, l3 ∈ ∧3g∗
0 ⊗ g−1.

By Proposition 3.7, the cotangent bundle T ∗[2]g∗[1] is a symplectic NQ-manifold
of degree 2. Now the canonical Poisson structure {·, ·} is given by (2)–(4), in which
k = l = −1. We give the relation between li and {·, ·} by the following lemma.

Lemma 4.1 For all x, y ∈ g0 and m ∈ g−1, we have

l1(m) = {m, l1} = −{l1,m},
l02(x, y) = {y, {x, l02}} = −{{x, l02}, y},
l12(x,m) = {m, {x, l12}} = −{{x, l12},m},

l3(x, y, ·) = {y, {x, l3}} = −{{x, l3}, y}.

On the other hand, symplectic NQ-manifolds of degree 2 are in one-to-one corre-
spondence with Courant algebroids [28]. Thus, from T ∗[2]g∗[1], we obtain a Courant
algebroid E :

E = g∗−1 × (g∗
0 ⊕ g0) −→ g∗−1, (14)

in which the anchor and the Dorfman bracket are defined by the derived bracket using
the degree 3 function l = −∑

li . Note that E is the direct sum of two vector bundles
A and A∗, where A = g∗−1 × g∗

0 −→ g∗−1 and A∗ = g∗−1 × g0 −→ g∗−1. The fiber
metric is given by the canonical pairing between A and A∗.

It is necessary to give the precise structures on the Courant algebroid E .

Proposition 4.2 Consider theCourant algebroid E given above. For constant sections
x, y ∈ g0, ξ, η ∈ g∗

0 and a linear function m ∈ g−1, we have

(i) the anchor of x is a linear vector field, more precisely, ρ(x)(m) = l12(x,m);
(ii) the anchor of ξ is a constant vector field, more precisely, ρ(ξ) = −l∗1 (ξ), where

l∗1 is defined by 〈l∗1 (ξ),m〉 = −〈ξ, l1(m)〉;
(iii) the image of a linear function under the operator D is not a constant section, we

have
Dm = l1(m) − l12(m, ·) ∈ g0 + g∗

0 ⊗ g−1; (15)

(iv) the constant sections in g0 under the Dorfman bracket are not closed, but we
have

�x, y� = l02(x, y) + l3(x, y, ·) ∈ g0 + g∗
0 ⊗ g−1;
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(v) the Dorfman bracket of two constant sections in g∗
0 is zero, i.e. �ξ, η� = 0;

(vi) the Dorfman bracket of a constant section in g∗
0 and a constant section in g0 is

a constant section in g∗
0,

�x, ξ� = −�ξ, x� = l02(x, ·)∗ξ ∈ g∗
0,

where l02(x, ·) ∈ gl(g0) can be viewed as the adjoint map, and l02(x, ·)∗ is its dual
map.

Proof By the relation ρ(x)(m) = {{x,−l},m} and Lemma 4.1, (i) is obvious. (ii)
follows from

ρ(ξ)(m) = {{ξ,−l},m} = {{ξ,−l1},m} = −{ξ, {l1,m}}
= {ξ, {m, l1}} = {ξ, l1(m)} = −〈l∗1 (ξ),m〉.

(iii) follows from the relation Dm = {−l,m} and Lemma 4.1. (iv)-(vi) also follow
from the relation �a, b� = {{a,−l}, b} for all sections a, b and Lemma 4.1. ��

We have seen that we can obtain linear sections through the Dorfman bracket of
constant sections. Thus, it is not enough if we only consider constant sections.

Corollary 4.3 Let x ∈ g0 be a constant section, and φ = ξ ⊗ m, ψ = η ⊗ n :
g∗−1 −→ g∗

0 be linear sections, where ξ, η ∈ g∗
0 and m, n ∈ g−1. Then we have

(i) �x, ξ ⊗ m� = ξ ⊗ l12(x,m) + (l02(x, ·)∗ξ) ⊗ m;
(ii) �ξ ⊗ m, x� = −ξ ⊗ l12(x,m) − (l02(x, ·)∗ξ) ⊗ m + ξ(x)

(
l1(m) − l12(m, ·));

(iii) �ξ ⊗ m, η ⊗ n� = 〈l∗1η,m〉ξ ⊗ n − 〈l∗1ξ, n〉η ⊗ m, equivalently, we have

�φ,ψ� = φ ◦ l∗1 ◦ ψ − ψ ◦ l∗1 ◦ φ. (16)

Proof Using the property of the Dorfman bracket, it is straightforward to obtain (i)
and (ii). We only give the proof of (iii). We have

�ξ ⊗ m, η ⊗ n� = η ⊗ ρ(ξ ⊗ m)(n) + �ξ ⊗ m, η� ⊗ n

= ρ(ξ)(n)η ⊗ m − �η, ξ ⊗ m� ⊗ n

= −l∗1ξ(n)η ⊗ m + l∗1η(m)ξ ⊗ n.

Let it act on an arbitrary α ∈ g∗−1. We obtain

�ξ ⊗ m, η ⊗ n�(α) = α(n)l∗1η(m)ξ − α(m)l∗1ξ(n)η = (φ ◦ l∗1 ◦ ψ − ψ ◦ l∗1 ◦ φ)(α).

This finishes the proof. ��
Remark 4.4 Note that the bracket (16) is naturally skew-symmetric and satisfies the
Jacobi identity. Thus, it is a Lie bracket. It has already appeared in other places, e.g.
see [37, Proposition 3.1] for more details.
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Given a Courant algebroid E −→ M , using the skew-symmetric Courant bracket,
we get a 2-term L∞-algebra structure on C∞(M)⊕�(E). Now consider the Courant
algebroid (14) obtained from a 2-term L∞-algebra. Since it is linear, we pick linear
functions on g∗−1 as the degree −1 part and g0 ⊕ (g−1 ⊗ g∗

0) as the degree 0 part.
Before we give the precise structure of the corresponding 2-term L∞-algebra, we give
some properties of the skew-symmetric Courant bracket �·, ·�.
Corollary 4.5 With the above notations, for any x, y, z ∈ g0, and ξ ⊗ m, η ⊗ n ∈
g∗
0 ⊗ g−1, we have

⎧
⎨

⎩

�x, y� = x ◦ y = l02(x, y) + l3(x, y, ·);
�x, ξ ⊗ m� = ξ ⊗ l12(x,m) + (l02(x, ·)∗ξ) ⊗ m − 1

2ξ(x)
(
l1(m) − l12(m, ·));

�ξ ⊗ m, η ⊗ n� = l∗1η(m)ξ ⊗ n − l∗1ξ(n)η ⊗ m.

(17)

Now we can give the main theorem in this section.

Theorem 4.6 Given a 2-term L∞-algebra g = (g−1
l1−→ g0, l2 = l02 +l12 , l3), we can

obtain a new 2-term L∞-algebra g̃ = (g−1
l̃1−→ g0 ⊕ (g−1 ⊗ g∗

0), l̃2 = l̃02 + l̃12 , l̃3)
from the corresponding Courant algebroid (14), in which l̃1 = D (given by (15)), l̃02
is given by (17), l̃12 and l̃3 are given by

l̃12(x + ξ ⊗ m, n) = 1

2
l12(x, n) + 1

2
〈ξ, l1(n)〉m, (18)

and

l̃3(x1 + ξ1 ⊗ m1, x2 + ξ2 ⊗ m2, x3 + ξ3 ⊗ m3)

= −1

2
l3(x1, x2, x3) − 1

2

(〈l02(x1, x2), ξ3〉m3 + c.p.
)

−1

4

(〈ξ1, x2〉〈ξ3, l1m1〉m3 − 〈ξ2, x1〉〈ξ3, l1m2〉m3 + c.p.
)

−1

4

(〈ξ2, x3〉l12(x1,m2) − 〈ξ3, x2〉l12(x1,m3) + c.p.
)
. (19)

Proof It follows from Theorem 2.5, Proposition 4.2 and Corollary 4.5. ��
Now we give some examples to illustrate that the construction given in the above

theorem is full of interest.

Example 4.7 (omni-Lie algebra) Let V be a vector space. Consider the abelian 2-term

L∞-algebra (V
id−→ V, l2 = 0, l3 = 0). By Theorem 4.6, we get a new 2-term

L∞-algebra (V
i−→ V ⊕ gl(V ), l̃2, l̃3), in which i is the natural inclusion, and

⎧
⎨

⎩

l̃12(u + A,m) = 1
2 Am,

l̃02(u + A, v + B) = 1
2 (Av − Bu) + [A, B],

l̃3(u + A, v + B, w + C) = − 1
4 ([A, B]w + [B,C]u + [C, A]v),
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for all u, v, w ∈ V0 = V,m ∈ V−1 = V and A, B,C ∈ gl(V ). This 2-term L∞-
algebra is the one associated to the omni-Lie algebra V ⊕gl(V ). See [36,41] for more
details.

Example 4.8 (2-term L∞-algebra of string type) Let (k, [·, ·]k) be a Lie algebra. Con-
sider the 2-term L∞-algebra (R

0−→ k, l2 = [·, ·]k, l3 = 0). By Theorem 4.6, we get

a new 2-term L∞-algebra (R
0−→ k ⊕ k∗, l̃2, l̃3), where l̃2 and l̃3 are given by

⎧
⎨

⎩

l̃12(u + ξ, r) = 0,
l̃02(u + ξ, v + η) = [u, v]k + ad∗

uη − ad∗
vξ,

l̃3(u + ξ, v + η,w + ζ ) = − 1
2 (〈[u, v]k, ζ 〉 + 〈[v,w]k, ξ 〉 + 〈[w, u]k, η〉),

for all u, v, w ∈ k, ξ, η, ζ ∈ k∗ and r ∈ R. This is exactly the 2-term L∞-algebra of
string type studied in [36].

Example 4.9 Let (k, [·, ·]k, K ) be a quadratic Lie algebra, and (R
0−→ k, l2, l3) the

corresponding string Lie 2-algebra. More precisely,

l02(u, v) = [u, v]k, l12(u, r) = 0, l3(u, v, w) = K ([u, v]k, w), ∀u, v, w ∈ k, r ∈ R.

Then we get a new 2-term L∞-algebra (R
0−→ k ⊕ k∗, l̃2, l̃3), in which

⎧
⎪⎪⎨

⎪⎪⎩

l̃12(u + ξ, r) = 0,

l̃02(u + ξ, v + η) = [u, v]k + K ([u, v]k, ·) + ad∗
uη − ad∗

vξ,

l̃3(u + ξ, v + η,w + ζ ) = − 1
2 K ([u, v]k, w) − 1

2 (〈[u, v]k, ζ 〉 + 〈[v,w]k, ξ〉 + 〈[w, u]k, η〉),

for all u, v, w ∈ k, r ∈ R and ξ, η, ζ ∈ k∗.

Example 4.10 Consider the 2-term L∞-algebra (k
id−→ k, l2 = [·, ·]k, l3 = 0), where

(k, [·, ·]k) is a Lie algebra. By Theorem 4.6, we obtain a new 2-term L∞-algebra

(k
l̃1−→ k ⊕ gl(k), l̃2, l̃3), where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l̃1(m) = m − adm ,

l̃12(u + A,m) = 1
2 [u,m]k + 1

2 Am,

l̃02 (u + A, v + B) = [u, v]k + 1
2 (Av − Bu) + [adu , B] + [A, adv] + 1

2 (adBu − adAv) + [A, B],
l̃3(u + A, v + B, w + C) = − 1

2C[u, v]k − 1
4 [A, B]w − 1

4 ([u, Bw]k + [Bu, w]k) + c.p.,

for all u, v, w ∈ k,m ∈ k and A, B,C ∈ gl(k). This 2-term L∞-algebra can be viewed
as a deformation of the one associated to the omni-Lie algebra. It can also be viewed
as a linearization of the Courant algebroid T M ⊕ T ∗

π M , where T ∗
π M denotes the Lie

algebroid associated to the Poisson manifold (M, π). We will study its full properties
in a separate paper.

Now let us consider the relation between the 2-term L∞-algebra given in the above
theorem and the original 2-term L∞-algebra.
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Theorem 4.11 With the above notations, there is an L∞-algebra homomorphism
F = (F0 = pr1, F1 = id, F2) from g̃ to g, in which pr1 is the projection to the first
component, and F2 : ∧2(g0 ⊕ (g∗

0 ⊗ g−1)) −→ g−1 is given by

F2(x + ξ ⊗ m, y + η ⊗ n) = 1

2

(〈ξ, y〉m − 〈x, η〉n) = 1

2
(x + ξ ⊗ m, y + η ⊗ n)− ,

(20)
for all x, y ∈ g0, ξ ⊗ m, η ⊗ n ∈ g∗

0 ⊗ g−1.

Proof We verify the conditions of an L∞-algebra homomorphism step by step. It is
obvious that

F0 ◦ D = l1 ◦ F1. (21)

Then, by Corollary 4.5, we obtain

F0l̃
0
2(x + ξ ⊗ m, y + η ⊗ n) = l02(x, y) + 1

2

(〈ξ, y〉l1m − 〈x, η〉l1n
)
.

On the other hand, it is obvious that

l02(F0(x + ξ ⊗ m), F0(y + η ⊗ n)) = l02(x, y).

Therefore, we have

F0l̃
0
2(x + ξ ⊗ m, y + η ⊗ n) − l02(F0(x + ξ ⊗ m), F0(y + η ⊗ n))

= 1

2

(〈ξ, y〉l1m − 〈x, η〉l1n
)

= l1F2(x + ξ ⊗ m, y + η ⊗ n). (22)

By (18), we obtain

F1l̃
1
2(x + ξ ⊗ m, n) = 1

2
l12(x, n) + 1

2
〈ξ, l1(n)〉m,

which implies that

F1l̃
1
2(x + ξ ⊗ m, n) − l12(F0(x + ξ ⊗ m), F1(n)) = −1

2
l12(x, n) + 1

2
〈ξ, l1(n)〉m.

On the other hand, we have

F2(x + ξ ⊗ m, Dn) = F2(x + ξ ⊗ m, l1(n)−l12(n, ·)) = −1

2
l12(x, n)+ 1

2
〈ξ, l1(n)〉m.

Thus, we have

F1l̃
1
2(x + ξ ⊗ m, n) − l12(F0(x + ξ ⊗ m), F1(n)) = F2(x + ξ ⊗ m, Dn). (23)
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It is left to prove the compatibility condition, that is, for all a, b, c ∈ g0 ⊕g∗
0 ⊗g−1,

l12(F0a, F2(b, c))+c.p.+ l3(F0a, F0b, F0c) = F2(l̃
0
2(a, b), c)+c.p.+F1l̃3(a, b, c).

(24)
First, for all a, b, c ∈ g−1 ⊗ g∗

0, it is obvious that both sides of the equation are 0.
While for all a, b, c ∈ g0 (we use the notation x, y, z instead), it is obvious that the
left hand side is equal to l3(x, y, z). It is not hard to see that

F2(l̃
0
2(x, y), z) + c.p. = F2(l3(x, y, ·), z) + c.p. = 1

2
l3(x, y, z) + c.p.

= 3

2
l3(x, y, z),

F1l̃3(x, y, z) = −1

2
l3(x, y, z), by Theorem 4.6

which implies that (24) holds for all x, y, z ∈ g0. For x, y in g0 and ξ ⊗m in g∗
0 ⊗g−1,

we have

l12(F0x, F2(y, ξ ⊗ m)) + c.p. + l3(F0x, F0y, F0(ξ ⊗ m))

= l12

(

x,−1

2
〈ξ, y〉m

)

+ l12

(

y,
1

2
〈ξ, x〉m

)

= −1

2
〈y, ξ 〉l12(x,m) + 1

2
〈x, ξ 〉l12(y,m),

and

F2(l̃
0
2(x, y), ξ ⊗ m) + c.p. + F1l̃3(x, y, ξ ⊗ m)

=
(

−1

2
−1

6

)

〈�x, y�, ξ 〉m +
(
1

2
−1

6

)

〈�y, ξ ⊗ m�, x〉+
(
1

2
−1

6

)

〈�ξ ⊗ m, x�, y〉

= −2

3
〈l02(x, y), ξ 〉m + 1

3

{

〈ξ, x〉l12(y,m) − 〈ξ, l02(y, x)〉m + 1

2
〈ξ, y〉l12(m, x)

}

+1

3

{

−〈ξ, y〉l12(x,m) + 〈ξ, l02(x, y)〉m − 1

2
〈ξ, x〉l12(m, y)

}

= −1

2
〈y, ξ 〉l12(x,m) + 1

2
〈x, ξ 〉l12(y,m),

which implies that (24) holds for two elements in g0 and one element in g∗
0 ⊗ g−1. At

last, for x ∈ g0 and ξ ⊗ m, η ⊗ n ∈ g∗
0 ⊗ g−1, it is obvious that the left hand side of

(24) is equal to 0. Furthermore, we have

F2(l̃
0
2(x, ξ ⊗ m), η ⊗ n) + c.p. + F1l̃3(x, ξ ⊗ m, η ⊗ n)

=
(

−1

2
− 1

6

)

〈�x, ξ ⊗ m�, η〉n +
(
1

2
− 1

6

)

〈�ξ ⊗ m, η ⊗ n�, x〉
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+
(

−1

2
− 1

6

)

〈�η ⊗ n, x�, ξ 〉m

= −2

3
×

(

−1

2

)

〈ξ, x〉〈l1m, η〉n + 1

3

{ − 〈l1m, η〉〈ξ, x〉n + 〈l1n, ξ 〉〈η, x〉m}

−2

3
× 1

2
〈l1n, ξ 〉〈η, x〉m

= 0.

Thus, (24) holds for all a, b, c ∈ g0 ⊕ g∗
0 ⊗ g−1. By (21)–(24), we deduce that F is

an L∞-algebra homomorphism. ��

5 Lie 2-algebras and quasi-Poisson groupoids

In this section, we show that the Courant algebroid associated to a 2-term L∞-algebra
is the double of a Lie quasi-bialgebroid. Then, by integration, we obtain a quasi-
Poisson groupoid. Since a 2-term L∞-algebra is equivalent to a Lie 2-algebra, this
quasi-Poisson groupoid can serve as the geometric structure on the dual of a Lie
2-algebra.

Let g = (g−1
l1−→ g0, l2 = l02 + l12 , l3) be a 2-term L∞-algebra. The vector bundle

E −→ M givenby (14) canbedecomposed as A⊕A∗,where A = g∗−1×g∗
0 −→ g∗−1 is

a trivial vector bundle. By Lemma 2.3 (k = −1), the 2-term L∞-algebra structure l =
l1 + (l12 + l02)+ l3, where l1 ∈ g∗−1 ⊗ g0, l02 ∈ ∧2g∗

0 ⊗ g0, l12 ∈ g∗
0 ∧ g∗−1 ⊗ g−1, l3 ∈

∧3g∗
0 ⊗ g−1, satisfies {l, l} = 0. By the degree reason, {l, l} = 0 implies that

{l1, l1} = 0 {l1, l2} = 0,
1

2
{l2, l2} + {l1, l3} = 0, {l2, l3} = 0. (25)

Comparing this with (9), we can see that Eq. (25) implies Eq. (9) for μ = −l1, γ =
−l2 = −l02 − l12 , φ = −l3. Therefore, we have

Theorem 5.1 Let g = (g−1
l1−→ g0, l2 = l02 + l12 , l3) be a 2-term L∞-algebra.

Then (A,−l) is a Lie quasi-bialgebroid, where A = g∗−1 × g∗
0 −→ g∗−1 and l =

l1 + (l12 + l02) + l3, and the Courant algebroid E is the double of the Lie quasi-
bialgebroid (A,−l).

Now we give the precise structure on A and A∗ using the general method of differ-
ential geometry. By Theorem 5.1 and Proposition 4.2, we have

Corollary 5.2 The Lie algebroid structure on A, determined by −l1, is given by

(i) for any constant section ξ ∈ g∗
0, the anchor ρA is given by ρA(ξ) = −l∗1 (ξ);

(ii) for any constant sections ξ, η ∈ g∗
0, we have [ξ, η]A = 0;

(iii) for any constant section ξ ∈ g∗
0 and linear section η ⊗ n ∈ g∗

0 ⊗ g−1, we have

[ξ, η ⊗ n]A = 〈ξ, l1(n)〉η;
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(iv) for any linear sections ξ ⊗ m, η ⊗ n ∈ g∗
0 ⊗ g−1, we have

[ξ ⊗ m, η ⊗ n]A = 〈l∗1η,m〉ξ ⊗ n − 〈l∗1ξ, n〉η ⊗ m.

Thus, A is an action Lie algebroid of the abelian Lie algebra g∗
0 acting on g

∗−1 via−l∗1 ,
which sends an element ξ ∈ g∗

0 to a constant vector field −l∗1 (ξ) ∈ g∗−1. The corre-
sponding Chevalley-Eilenberg coboundary operator dA : �(∧•A∗) −→ �(∧•+1A∗)
is determined by

dAm = {−l1,m} = l1(m).

Corollary 5.3 For all constant section x ∈ g0 of A∗, −l12 gives rise to the anchor
map ρA∗ of A∗ via

ρA∗(x) = l12(x, ·),

which is a linear vector field. For all constant sections x, y ∈ g0, −l02 gives rise to the
bracket operation on A∗:

[x, y]A∗ = l02(x, y).

The Jacobi identity of [·, ·]A∗ is controlled by φ = −l3 ∈ ∧3g∗
0 ⊗ g−1 ⊂ �(∧3A).

More precisely, we have

[[x, y]A∗ , z]A∗ + c.p. = dAφ(x, y, z) + φ(dAx, y, z) − φ(x, dAy, z) + φ(x, y, dAz).

Now we can restate Theorem 5.1 using usual language of differential geometry. This
is necessary since we will consider the integration of Lie quasi-bialgebroids at the end
of this section.

Corollary 5.4 Given a 2-term L∞-algebra g = (g−1
l1−→ g0, l2 = l02 + l12 , l3),

we obtain a Lie quasi-bialgebroid (A, δ, φ), where the Lie algebroid A = g∗−1 ×
g∗
0 −→ g∗−1 is given by Corollary 5.2, δ : �(∧k A) −→ �(∧k+1A) is the generalized

Chevalley-Eilenberg operator determined by the anchor ρA∗ and the bracket [·, ·]A∗
given in Corollary 5.3, and φ = −l3.

In the last section, we have seen that, given a 2-term L∞-algebra, there is a new
2-term L∞-algebra associated to the Courant algebroid E (Theorem 4.6), and there is
an L∞-algebra homomorphism from the new 2-term L∞-algebra to the original one
(Theorem 4.11). In this section, we see that the Courant algebroid is exactly the double
of the Lie quasi-bialgebroid (A, δ, φ). In fact, we can obtain a more general result than
Theorem 4.11. Namely, given any Lie quasi-bialgebroid (A, δ, φ), we can obtain a
2-term L∞-algebra C∞(M) ⊕ ker(dA|�(A∗)), where dA is the coboundary operator
associated to Lie algebroid A and dA|�(A∗) : �(A∗) −→ �(∧2A∗) is the restriction of
dA on �(A∗). Furthermore, we construct an L∞-algebra homomorphism from the 2-
term L∞-algebra associated the Courant algebroid A⊕A∗ toC∞(M)⊕ker(dA|�(A∗)).
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Theorem 5.5 Let (A, δ, φ) be a Lie quasi-bialgebroid. Then there is a 2-term L∞-
algebra structure on C∞(M) ⊕ ker(dA|�(A∗)), where C∞(M) is of degree −1,
ker(dA|�(A∗)) is of degree 0, and {li } are given by

⎧
⎪⎪⎨

⎪⎪⎩

l1( f ) = dA f, ∀ f ∈ C∞(M),

l2(e1, e2) = [e1, e2]A∗ ∀ e1, e2 ∈ ker(dA|�(A∗)),
l2(e1, f ) = ρA∗(e1)( f ) ∀ e1 ∈ ker(dA|�(A∗)), f ∈ C∞(M),

l3(e1, e2, e3) = −φ(e1, e2, e3) ∀ e1, e2, e3 ∈ ker(dA|�(A∗)).

(26)

Furthermore, there is an L∞-algebra homomorphism F = (F0 = pr2, F1 =
id, F2) from the 2-term L∞-algebra associated to the Courant algebroid A ⊕ A∗,
C∞(M) ⊕

(
�(A) ⊕ ker(dA|�(A∗))

)
, to C∞(M) ⊕ ker(dA|�(A∗)), where pr2 is the

projection to the second component, and F2 is given by

F2(e1, e2) = 1

2
(e1, e2)− , ∀e1, e2 ∈ �(A) ⊕ ker(dA|�(A∗)). (27)

Proof Since A is a Lie algebroid, we have d2A = 0, i.e. Im(dA) ⊂ ker(dA). Thus, l1 is
well-defined. By the fact that (A, δ, φ) is a Lie quasi-bialgebroid, it is straightforward
to see that {li } is a 2-term L∞-algebra structure. Furthermore, it is not hard to see that
the Courant bracket on �(A) ⊕ ker(dA|�(A∗)) is closed, which implies that the 2-term
L∞-algebra C∞(M) ⊕ (�(A) ⊕ �(A∗)) associated to the Courant algebroid A ⊕ A∗
can be reduced to C∞(M) ⊕ (�(A) ⊕ ker(dA|�(A∗))). We can also prove that F is
indeed a homomorphism similar as the proof of Theorem 4.11. ��

Next, we return to the Lie quasi-bialgebroid (A, δ, φ) associated to a 2-term L∞-
algebra. Clearly, the Lie algebroid A can be integrated to an action groupoid � :
g∗−1 × g∗

0 ⇒ g∗−1 with the abelian group structure on g
∗
0, where the source, target and

inclusion maps are given by

s(α, ξ) = α, t (α, ξ) = α + l∗1ξ, i(α) = (α, 0),

for all (α, ξ) ∈ g∗−1×g∗
0. By Theorem 4.9 in [15], we know that � has a quasi-Poisson

structure, such that its corresponding Lie quasi-bialgebroid is exactly (A, δ, φ). Recall
that a quasi-Poisson groupoid is a triple (�,�, φ), where � is a Lie groupoid whose
Lie algebroid is A, � ∈ ∧2X(�), and φ ∈ �(∧3A), satisfying 1

2 [�,�]S = ←−
φ −−→

φ , [�,
←−
φ ] = 0. Generally, it is a rather difficult work to get the bivector field from the

data of an ordinary Lie quasi-bialgebroid. Nevertheless, we can elaborate the quasi-
Poisson structure in our specific case, since all the structures are determined by the
information of the 2-term L∞-algebra.

Theorem 5.6 The quasi-Poisson groupoid corresponding to (A, δ, φ) is (�,�, φ =
−l3), where � is characterized by

�(dx, dy) = −l02(x, y), �(dx, dm) = −l12(x,m), �(dm, dn) = −l12(l1(m), n),
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where d is the usual de Rham differential, and x, y ∈ g0,m, n ∈ g−1 are linear
functions on g∗−1 × g∗

0.

We need to make some preparations to prove the theorem. Let us take a general action
groupoid into account.

Let M�G be an action groupoid and M�g the corresponding Lie algebroid, where
g is the Lie algebra of Lie group G, and the anchor is given by the infinitesimal action
of g on M , i.e. a Lie algebra homomorphism ·̂ : g −→ X(M),

X̂(x) = d
dt x · exp(−t X), ∀X ∈ g, x ∈ M.

We assume that the derivatives are all taken at t = 0. We use la(resp. ra) to denote
the left(right)-translation on the Lie group G and l(x,a)(resp. r(x,a)) the left(right)-
translation on the groupoid M �G, respectively. Let (la)∗, (ra)∗ and (l(x,a))∗, (r(x,a))∗
be the corresponding tangent maps.

For the Lie algebroid A of a Lie groupoid �, when we say the left-translation←−
� (right-translation

−→
� ) of � ∈ �(A), we are identifying �(A) with left-invariant

(right-invariant) vector fields on �.

Lemma 5.7 Let M�G be an action Lie groupoid and M�g the corresponding Lie
algebroid. For all φ ∈ �(M�g), (x, a) ∈ M × G, we have

←−
φ (x,a) = (0x , (la)∗eφx ·a),

−→
φ (x,a) = ((φ̂x )x , (ra)∗eφx ).

Proof For this action groupoid, the s-fiber over x is s−1(x) = {(x, a); ∀a ∈ G} =
{x}×G, and the t-fiber over x is t−1(x) = {(x ·a−1, a); ∀a ∈ G}. The tangent map of
l(x,a) : s−1(x · a) −→ s−1(x) is (l(x,a))∗(x ·a,e) : T(x ·a,e)s−1(x · a) −→ T(x,a)s−1(x).
Let φ : M −→ g be a section of M � g and γ (t) a smooth curve on G satisfying
γ (0) = e, γ ′(0) = φ(x · a). Then we have

←−
φ (x,a) = (l(x,a))∗φx ·a = d

dt
(x, a)(x · a, γ (t)) = d

dt
(x, aγ (t)) = (0x , (la)∗eφx ·a).

Similarly, the tangent map of r(x,a) : t−1(x) −→ t−1(x · a) is (r(x,a))∗(x,e) :
T(x,e)t−1(x) −→ T(x,a)t−1(x · a). Let γ (t) be a smooth curve onG satisfying γ (0) =
e, γ ′(0) = φ(x). When φ is considered as a right-invariant vector field, we have

φx = d

dt
(x, γ (−t))−1 = d

dt
(x · γ (−t), γ (−t)−1).

Thus, we get

−→
φ (x,a) = (r(x,a))∗φx = d

dt
(x · γ (−t), γ (−t)−1)(x, a)

= d

dt
(x · γ (−t), γ (t)a) = ((φ̂x )x , (ra)∗eφx ).

��

123



Strong homotopy Lie algebras, homotopy Poisson ... 883

Proof of Theorem 5.6 According to Theorems 2.34 and 4.9 in [15], we only need to
prove δ� = δ, that is, for any function f ∈ C∞(g∗−1) and any section e ∈ �(A), we

have
←−
δ f = [t∗ f,�]S, ←−

δe = [←−e ,�]S . We only give the proof for a linear function
m ∈ g−1 and a constant section ξ ∈ g∗

0.
By calculation, we have t∗(m) = m − l1(m). Considering the linear action of the

abelian group g∗
0 on g

∗−1 and by Lemma 5.7, we have,

←−
δm = δm − l1(δm) = −l12(m, ·) + l1(l

1
2(m, ·)),

←−
δξ = δξ − l1(δξ) = δξ,
←−
ξ = ξ.

Thus, for a linear function n + x on g∗−1 × g∗
0, we have

←−
δm(n + x) = −l12(m, x) + l1(l

1
2(m, x)),

while

[t∗m,�]S(n + x) = �(dm, dn) + �(dm, dx) − �(dl1(m), dn) − �(dl1(m), dx)

= −l12(m, x) + l02(l1(m), x).

Then, we have
←−
δm = [t∗m,�]S . To prove δξ = [ξ,�]S as bivector fields, we just need

to verify that it holds on two 1-forms on g∗
0, since it vanishes for all the other cases. By

straightforward calculation, we have δξ(dx, dy) = −〈ξ, [x, y]A∗ 〉 = −〈ξ, l02(x, y)〉,
and

[ξ,�]S(dx, dy) = Lξ�(dx, dy)

= −〈ξ, l02(x, y)〉 − �(Lξdx, dy) − �(dx, Lξdy)

= −〈ξ, l02(x, y)〉.

Therefore, we complete the proof. ��
There is a one-to-one correspondence between 2-term chain complex V1

d−→ V0
and 2-vector space V : V1 ⊕ V0 ⇒ V0. Actually, the 2-vector space V is an action
Lie groupoid V0 � V1, where V1 is seen as an abelian group and the action is given by
v0 · v1 := v0 + dv1, for all v0 ∈ V0, v1 ∈ V1.

Definition 5.8 Let V be a 2-vector space. If (V,�, φ) is a quasi-Poisson groupoid
such that the bivector field � and the trisection φ are both linear, we call (V,�, φ) a
Lie-quasi-Poisson groupoid.

Consider the 2-vector space g∗−1 ⊕ g∗
0 ⇒ g∗−1 given by the 2-term chain complex

g∗
0

l∗1−→ g∗−1, which is the dual of the complex g−1
l1−→ g0. Consequently, by Theorem

5.6, we generalize the fact that there is a Lie-Poisson structure on the dual space of a
Lie algebra to the case of Lie 2-algebras.
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Theorem 5.9 The dual of a Lie 2-algebra is a Lie-quasi-Poisson groupoid.

We obtain our result through the integration of the Lie quasi-bialgebroid associated
to a Lie 2-algebra. One can also obtain a quasi-Poisson Lie 2-group from a Lie 2-
algebra via the integration of Lie 2-bialgebras. See [12] for more details.
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