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Abstract We investigate the structure of representations of the (positive half of the)
Virasoro algebra and situations in which they decompose as a tensor product of Lie
algebra representations. As an illustration, we apply these results to the differential
operators defined by the Virasoro conjecture and obtain some factorization properties
of the solutions as well as a link to the multicomponent KP hierarchy.
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1 Introduction

The breakthrough discovery ofWitten–Kontsevich [22,39] established an intimate link
betweenmathematical physics and enumerative geometry. From a general perspective,
one aims at studying the Gromov–Witten invariants of a smooth projective variety
X in terms of suitable integrable hierarchies. From this point of view, the Witten–
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Kontsevich case corresponds to the situation when X is a point and it was shown
that the exponential of the generating function of intersection numbers on the moduli
space of curves was a common solution of the Virasoro constraints and of the KdV
hierarchy. Therefore, following the generalization for the case of the projective space
proposed in [9], on the one hand, one wonders if the generating function fulfills a
generalization of the Virasoro constraints. On the other hand, one also wants to know
if the generating function is given by (the logarithm of) a particular tau-function
of an integrable hierarchy. Nowadays, the case of varieties with semisimple quantum
cohomology is well understood and the answer to both questions is affirmative ([7,38];
see also [6,13,14,26,31,32]).

It is worth pointing out that, for each X , the explicit Virasoro operators as well as
the relevant integrable hierarchy may vary; for instance, the 2-Toda hierarchy appears
when dealing with the equivariant GW invariants of P1 [32]. Nevertheless, one recog-
nizes some common features that arise among these results. Let us mention some
of them. In [15], Givental studied a case in which the total descendent potential is
a τ -function for the nKdV-hierarchy using n − 1 copies of the KdV. Thus, the total
descendent potential of a semisimple Frobenius manifold was defined in [14] as (a
suitable operator acting on) a product of n copies of Witten–Kontsevich τ -functions.
Dealing with a case of orbifold quantum cohomology, it has been proved in [17] that
the Virasoro constraints decomposed as n copies of (half of) the Virasoro algebra, that
their solution was the product of Witten–Kontsevich τ -functions, and that the relevant
integrable hierarchy consisted of n commuting copies of the KdV hierarchy. Finally,
in [5,18] it was shown that the solution of the Virasoro constraints in the case of
Witten–Kontsevich is unique (up to a constant factor) and this uniqueness also holds
in other setups (e.g. [25]).

This paper, making use of the representation theoretic properties of the Virasoro
algebra, offers new insights into and results about these properties and provides evi-
dences that the above-mentioned properties rely heavily on the structure of theVirasoro
algebra and its representations. Our study of explicit expressions for Virasoro repre-
sentations (see Sect. 2) is general enough to encodemany of the known representations
within the frameworkofVirasoro constraints. Further, it allowsus to determinewhether
a representation is the tensor product of Lie algebra representations and if a solution
factorizes as a product of solutions of those representations. An explicit realization of
these ideas is carried out in Sect. 3 for the case of smooth projective varieties with triv-
ial odd cohomology and vanishing first Chern class. Thus, we think that our approach
may help in determining the explicit expression of the Virasoro operators as well as
the corresponding integrable hierarchies for other types of varieties X (see Sect. 3.6).
Now, let us be more precise and explain the contents of the paper.

We begin by fixing a pair (A, ( , )) consisting of a finite dimensional vector space
and a non-degenerate bilinear form.Associated to these data, we consider aHeisenberg
algebraH(A) and its universal enveloping algebra U(H(A)). Let us denote byW> the
positive half of theVirasoro algebra and recall that it contains sl(2) canonically. Section
2 is entirely devoted to the study of Lie algebra maps W> → U(H(A)). To begin
with, we show that, under some homogeneity condition, there is a canonical bijection
between HomLie-alg(W>,U(H(A))) and HomLie-alg(sl(2),U(H(A)) (Theorem 2.9).
This is highly non-trivial since, in general, the problem of extending a map defined on
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sl(2) to W> involves infinitely many conditions (see [35]). Accordingly, it is natural
to expect that many properties of a map W> → U(H(A)) can be stated in terms
of its restriction to sl(2). Actually, we prove that such a map decomposes as tensor
product of Lie algebra representations if and only if its restriction does. Moreover, this
factorization is possible only if A decomposes as the orthogonal sum of two subspaces
(Theorem 2.10).We finish this section by showing that the fact thatW> admits no non-
trivial finite dimensional representations has important consequences for the structure
of the solutions of the equations (ρ1⊗1+1⊗ρ2)(L)(

∑
i fi ⊗gi ) = 0, where L ∈ W>

(see Theorem 2.12), that is, decompositions of the representation and of the solutions
depend strongly on the structure of W> and of (A, ( , )).

Although the previous results are interesting on their own, Sect. 3 explores their
application to concrete situations; for instance, relations with integrable hierarchies
(e.g. multicomponent KdV). The case we have chosen to illustrate this issue is that of
the differential operators appearing in the Virasoro conjecture when X has trivial odd
cohomology (for instance, whenever X has semisimple even quantum cohomology)
and its first Chern class vanishes. Then, Theorem 3.3 shows explicitly how to obtain
these operators as the images of the generators Lk ∈ W> by:

ρ̂ : W>
ρ−→ U(H(A))

̂−→ End
(
C[[{ti,α|1 ≤ α ≤ dim(A), i = 1, 3, . . .}]])

for A = H∗(X,C) endowed with the Poincaré pairing. Then, our results of Sect. 2
imply that ρ̂ decomposes as the tensor product ofLie algebra representations associated
with data (C, ( , )), i.e. the one-dimensional case. The detailed study of the one-
dimensional case carried out in Sect. 3.4 shows that, up to re-scaling the variables, the
corresponding operators always come from a representation:

σ : W> −→ Diff1(C((z)))

which means that we can profit from [18,33] to build the unique solution in terms
of a τ -function of the KdV hierarchy. Putting everything together, we have the main
results of this section. First, in the case of dim A = 1:

Theorem (see Theorem 3.14) Let ρ ∈ HomLie-alg(W>,End(C[[t1, t3, . . .]])) be such
that ρ(Lk) is of type k for k ≥ −1 and that all coefficients of ρ(L−1) are non-zero.

Then, there exists a unique τ(t) ∈ C[[t1, t3, . . .]], with τ(0) = 1, such that:

ρ(Lk)(τ (t)) = 0 k ≥ −1

Further, the solution τ(t) is a τ -function of the scaled KdV hierarchy.

and, for dim A = N ≥ 2:

Theorem (see Theorem 3.16) Let ρ : W> → U(H(A)) be as in Sect. 3.3.
There exist S ∈ Gl(A) and functions τα(t1,α, t3,α, . . .) ∈ C[[t1,α, t3,α, . . .]] such

that:

ρ̂(Lk)

(

S

(
∏

α

τα(tα)

))

= 0
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Further, τα(t1,α, t3,α, . . .) are τ -functions of the scaled KdV hierarchy.

Wehope that ourmethods shed some light on the explicit expressions of theVirasoro
operators and of the relevant integrable hierarchies that appear when studying the
Virasoro conjecture. We also think that the techniques presented here can be applied
to many instances of representations of W> which appear in a variety of problems
such as recursion relations, Hurwitz numbers, and knot theory. We sketch some ideas
in Sect. 3.6 although all of them deserve further research.

2 Lie algebras

Let W be the Witt algebra; that is, the C-vector space with basis {Lk}k∈Z endowed
with the Lie bracket [Li , L j ] = (i − j)Li+ j , and letW> be the subalgebra generated
by {Lk}k≥−1. It contains a copy of sl(2) via sl(2) = 〈L−1, L0, L1〉 ⊂ W>. Recall
that W> is also called the positive half of the centerless Virasoro algebra.

In this section, we study certain maps from sl(2) and their extensions toW>. These
results will eventually allow us to relate the representation theories of W> and sl(2).
A further consequence is that, to construct the operators L0, L1, L2, . . . one only has
to start with L−1 and follow some simple procedures and choices.

It is worth mentioning that a study of the representation theory of W> in terms of
the representation theory of its subalgebra sl(2) ⊂ W> has been carried out in [35] in
full generality.

2.1 Preliminaries

Let us bemore precise. Let (A, ( , )) be given, where A is a finite dimensionalC-vector
space and ( , ) is a non-degenerated bilinear pairing. For a basis {aα|α = 1, . . . , n}
of A, let η = (ηαβ) denote the matrix associated to the given bilinear product; that is,
ηαβ := (aα, aβ). The inverse will be denoted with superindices; i.e. ηαβ := (η−1)αβ .

Let us consider unknowns {pi , qi |i ≥ 1} and introduce pi,α := pi ⊗ aα and
qi,α := qi ⊗ aα . Let H(A) be the Heisenberg algebra generated by {1, pi,α, qi,α|i ≥
1, α = 1, . . . , n}, whose elements will be called operators, endowed with the Lie
bracket:

[pi,α, q j,β ] = δi, j iη
αβ · 1

[pi,α, p j,β ] = [qi,α, q j,β ] = 0

[pi,α, 1] = [qi,α, 1] = 0 (1)

We define their degree by deg(qi,α) = i , deg(pi,α) = −i and deg(1) = 0.
Although the definition of the Heisenberg algebra depends on the pair (A, ( , )), it

will be simply denoted by H if no confusion arises.
ForH as above, let us define U(H) the universal enveloping algebra ofH, which is

the quotient of the tensor algebra ofH by the two-sided ideal generated by the relations
u ⊗ v − v ⊗ u − [u, v].
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Motivated by the explicit forms of theVirasoro operators considered in the literature
[5,6,11,13,14,19,21], we introduce the following notion. Lemma 3.7 will help us to
understand the meaning of this notion.

Definition 2.1 An operator T ∈ U(H) is of type i ≥ −1 if it is a linear combina-
tion of p2i+3,α and double products of degree −2i ; i.e. p j,α p2i− j,β , q j,α p2i+ j,β and
q j,αq− j−2i,β . If i = 0 we also allow a constant times the central element 1 ∈ H(A).

The subset consisting of operators of type i ≥ −1 will be denoted by U(H(A))i
(or, simply, U(H)i ).

This section deals with the study of homomorphisms of Lie algebras:

ρ : W> −→ U(H) s.t. ρ(Li ) ∈ U(H)i

Let us illustrate the previous definition. From now on, according to Einstein con-
vention, summation over repeated indiceswill be understood. For instance, an operator
of type −1 is of the form:

b0,1−1 p1 + q1a
1,1
−1q

T
1 + qi+2b

i+2,i
−1 pi ∈ U(H)−1 (2)

(the sum runs over the set of positive integers i), pi is the column vector
(pi,1, . . . , pi,n)T , qi is the row vector (qi,1, . . . , qi,n), b

0,1
−1 is a row vector, a1,1−1 and

bi+2,i
−1 are n × n matrices. For brevity, we set a := a1,1−1 .
Similarly, an type 0 operator can be expressed as:

b0,30 p3 + b0,00 + qib
i,i
0 pi ∈ U(H)0 (3)

while an operator of type i ≥ 1 is of the form:

b0,2i+3
i p2i+3 + pTj c

j,2i− j
i p2i− j + q jb

j,2i+ j
i p2i+ j ∈ U(H)i i ≥ 1 (4)

for a row vector b0,2i+3
i and n × n-matrices b j,2i+ j

i and c j,2i− j
i , where c j,2i− j

i =
(c2i− j, j

i )T and the sum runs over j positive.
It is convenient to offer an interpretation of these matrices. Recall that qi is the row

vector (qi,1, . . . , qi,n), which can be thought as an H-valued vector of A. A similar
argument holds for the column vector pi . Thus, under a basis change in A, the matrix
b in qi · b · pi behaves as a bilinear form on A. The same fact applies to all a, b and c
matrices. Similarly, column vectors b0,2i+3

i are understood as vectors on A while row
vectors are like linear forms.

It is worth noticing how these operators behave w.r.t. the Lie bracket. Indeed, the
computations given in the Appendix and the linearity of the bracket show that it is
compatible with the type:

[ , ] : U(H)i × U(H) j −→ U(H)i+ j (5)
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968 F. J. Plaza Martín, C. Tejero Prieto

where i, j, i+ j ≥ −1. In particular, it follows that⊕i≥−1U(H)i is a partial Lie algebra
(see [27]). Note that the notion of partial Lie algebras turned out to be essential in the
approach of [35].

2.2 Maps from sl(2) to Heisenberg

Let sl(2) be the Lie algebra of Sl(2,C). We fix a basis {e, f, h} of sl(2) satisfying the
relations:

[e, f ] = h , [h, e] = 2e , [h, f ] = −2 f .

In particular, the previous choice yields a natural embedding:

ι : sl(2) ↪→ W> (6)

by mapping f to L−1, h to −2L0, and e to −L1.

Lemma 2.2 Let F ∈ U(H)−1 be as in (2). Assume that b
i+2,i
−1 is invertible for all i . It

holds that: bi+2,i
−1 is invertible for all i . It holds that:

{
H ∈ U(H)0 s.t.
[H, F] = −2F

}

�
{

(b, B) ∈ C × Matn×n(C) s.t.
(Bη−1 + Id)(a + aT ) + (a + aT )(Bη−1 + Id)T = 0

}

Proof Our task consists of computing the bracket [H, F] explicitly. Recall that, for
simplicity, we have set a = a1,1−1 . Since H ∈ U(H)0, it must be of the form H :=
b0,30 p3 + b0,00 + qib

i,i
0 pi where b

0,3
0 is a row vector, b0,00 is an homothety, and bi,i0 are

n × n matrices.
Having in mind the commutation relations of the Appendix, the bracket [H, F] is a

linear combination of p1, q1αq1β and qi+2,α pi,β . Therefore, the expression [H, F] =
−2F is equivalent to the following identities:

(
3b0,30 η−1b3,1−1 − b0,1−1η

−1b1,10

)
p1 = −2b0,1−1 p1

q1b
1,1
0 η−1

(
a + aT

)
qT1 = −2q1aq

T
1

qi+2

(
(i + 2)bi+2,i+2

0 η−1bi+2,i
−1 − ibi+2,i

−1 η−1bi,i0

)
pi = −2qi+2b

i+2,i
−1 pi ∀i ≥ 1

Observe that q1AqT1 = q1BqT1 if and only if A + AT = B + BT . Hence, the above
system is equivalent to the following equations:

3b0,30 η−1b3,1−1 − b0,1−1η
−1b1,10 = −2b0,1−1 (7a)

b1,10 η−1(a + aT ) + (a + aT )(b1,10 η−1)T = −2(a + aT ) (7b)

(i + 2)bi+2,i+2
0 η−1bi+2,i

−1 − ibi+2,i
−1 η−1bi,i0 = −2bi+2,i

−1 ∀i ≥ 1 (7c)
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Note that, since bi+2,i
−1 and η are invertible, given a pair (b, B) as in the statement, this

system has a unique solution for b0,00 = b and b1,10 = B; namely,

b0,30 = 1

3
b0,1−1 (η

−1b1,10 − 2)(η−1b3,1−1)
−1

bi+2,i+2
0 = 1

i + 2
bi+2,i
−1 (iη−1bi,i0 − 2)(η−1bi+2,i

−1 )−1 ∀i ≥ 1 (8)

The converse is straightforward. ��
Example 2.3 Set F = b0,1−1 p1 + q1aqT1 + i+2

2 qi+2 pi and b1,10 = − 1
2 , then H =

−2b0,1−1 p3 + b0,00 + iqi pi . Note that iqi pi is the degree operator.

Example 2.4 Let us consider the case where the chosen basis in A is orthonormal, i.e.
η is the identity matrix, and suppose that:

F = b0,1−1 p1 + q1aq
T
1 + qi+2 pi ∈ U(H)−1

Then, operators H given by Lemma (2.2) acquire the form:

H = 1

3
b0,1−1 (b

1,1
0 − 2)p3 + b0,00 + 1

i
qi (b

1,1
0 − (i − 1))pi ,∈ U(H)0

where b0,00 ∈ C and b1,10 verifies (b1,10 + Id)a + a(b1,10 + Id)T = 0.

Example 2.5 Finally, let dim A = 1 , a, η ∈ C
∗ and F = b0,1−1 p1 + q1aqT1 + qi+2ηpi .

Then, bi,i0 = −η for all i and H = −b0,1−1 p3 + b0,00 − qiηpi .

Lemma 2.6 Let H be as in Eq. (3) and U(H)′i be the subspace:

U(H)′i := {T ∈ U(H)i s.t. [H, T ] = 2iT }

Then, for i, j, i + j ≥ −1, it holds that [U(H)′i ,U(H)′j ] ⊆ U(H)′i+ j .

Proof The claim follows easily from (5) and the Jacobi identity. ��
Theorem 2.7 Let F and H be as in Eqs. (2) and (3), respectively.

There is a surjective map:

⎧
⎨

⎩

c ∈ Mn×n(C) such that
b0,00 = Tr(cη−1(a + aT )(η−1)T )

and Eq. (10b) below

⎫
⎬

⎭
−→

⎧
⎨

⎩

σ ∈ HomLie-alg(sl(2),U(H))

such that σ( f ) = F,

σ (h) = H and σ(e) ∈ U(H)1

⎫
⎬

⎭

Moreover, c1 and c2 have the same image iff c1 + cT1 = c2 + cT2 . Thus, the restriction
of the above map to symmetric matrices yields a bijection.

123
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Proof Giving a map σ as in the r.h.s. is equivalent to set an operator E ∈ U(H)1, such
that [E, F] = H and [H, F] = −2F . Consider:

E = b0,51 p5 + pT1 c
1,1
1 p1 + qib

i,i+2
1 pi+2 ∈ U(H)1 (9)

where, for simplicity, we will set c = c1,11 . The identity [H, E] = 2E , expressed
in terms of the coefficients of the operators, is equivalent to the following equations
(thanks to the computations of the Appendix):

3b0,30 η−1b3,51 − 5b0,51 η−1b5,50 = 2b0,51 (10a)

−(cT + c)η−1b1,10 − (η−1b1,10 )T (cT + c) = 2(cT + c) (10b)

rbr,r0 η−1br,r+2
1 − (r + 2)br,r+2

1 η−1br+2,r+2
0 = 2br,r+2

1 (10c)

Analogously, expanding the relation [E, F] = H with the help of the Appendix
yields the system:

Tr(cη−1(a + aT )(η−1)T ) = b0,00 (11a)

−b0,1−1η
−1b1,31 + 5b0,51 η−1b5,3−1 = b0,30 (11b)

3b1,31 η−1b3,1−1 + (a + aT )(η−1)T (c + cT ) = b1,10 (11c)

(r + 2)br,r+2
1 η−1br+2,r

−1 − (r − 2)br,r−2
−1 η−1br−2,r

1 = br,r0 ∀r > 2 (11d)

Having in mind the properties of the trace, one observes that these equations only
depend on c + cT .

It remains to show that Eqs. (10) and (11) are equivalent to the conditions of the
claim; that is, that they can be reduced to (10b) and (11a).

Assuming (10b) and (11a), one gets b1,31 from (11c); then, b0,51 is determined by

(11b), and br,r+2
1 is obtained from (11d). We claim that (10a) is fulfilled too. Indeed,

a long but straightforward computation shows that (10a) is derived from (8), (10b)
together with the case r = 3 of (11d). Similarly, (10c) follows from (8), (7c) and
(11d). ��

2.3 Extending to W>

To extend a map defined on sl(2) to one onW>, one should choose an endomorphism
T , define ρ(Li ) by Eqs. (12) and (13) and check infinitely many constraints (see [35]).
However, in our situation the following Lemma simplifies that approach drastically;
there will exist a unique T satisfying all the requirements.

Lemma 2.8 Let F, H be as in Eqs. (2) and (3). The map:

ad(F) : U(H)′i
∼−→ U(H)′i−1

is an isomorphism for i ≥ 2.
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Proof First, one has to prove that given an operator:

S := b0,2i+1
i−1 p2i+1 + pTj c

j,2i− j−2
i−1 p2i− j−2 + q jb

j, j+2i−2
i−1 p j+2i−2 ∈ U(H)i−1

of type i − 1 ≥ 1, there is exactly one operator:

T := b0,2i+3
i p2i+3 + pTj c

j,2i− j
i p2i− j + q jb

j, j+2i
i p j+2i ∈ U(H)i

of type i satisfying ad(F)(T ) = S where ad denotes the adjoint representation and F
is given by Eq. (2).

Now, one proceeds as in the proof of Lemma 2.2 and shows that ad(F)(T ) =
[F, T ] = S has exactly one solution.

Finally, let us check that if S ∈ U(H)′i−1 and ad(F)(T ) = S, then T ∈ U(H)′i .
Using the injectivity of ad(F) and the relation:

ad(F)(ad(H)(T )) = ad(H)(ad(F)(T )) + ad([F, H ])(T )

= ad(H)(S) + ad(2F)(T ) = 2(i − 1)S + 2S = 2i S

one obtains ad(H)(T ) = 2iT , as we wanted.

Theorem 2.9 Let F be as in (2) where a is symmetric and bi,i−2
−1 are invertible.

Then, the map ι of (6) yields a bijection:

⎧
⎨

⎩

ρ ∈ HomLie-alg(W>,U(H))

such that ρ(L−1) = F
and ρ(Li ) ∈ U(H)i for i ≥ 0

l

⎫
⎬

⎭

ι∗−→∼

⎧
⎨

⎩

σ ∈ HomLie-alg(sl(2),U(H))

such that σ( f ) = F ,

σ (h) ∈ U(H)0 and σ(e) ∈ U(H)1

⎫
⎬

⎭

Proof Given ρ, we define σ := ι∗(ρ) := ρ ◦ ι and, therefore, σ( f ) = ρ(ι( f )) =
ρ(L−1), σ(h) = ρ(−2L0) and σ(e) = ρ(−L1).

For the converse, one requires several steps and the previous Lemmas.

Step 1. Let σ be given. There exists aC-linear homomorphism ρ : W> → U(H) such
that σ = ι∗(ρ). First, we set:

ρ(L−1) := σ( f ) = F , ρ(L0) := −1

2
σ(h) , ρ(L1) := −σ(e)

The fact that σ is a map of Lie algebras and Lemma 2.2 implies that:

ρ(L0) = −1

2
H

where H := σ(h) is a type 0 operator and has the form given in Eq. (3). Furthermore,
it holds that ρ(Li ) ∈ U(H)′i for i = −1, 1. Having in mind Lemma 2.8 we obtain that
there is a unique T ∈ U(H)′2 such that:

ad(ρ(L−1))(T ) = ρ(L1)
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972 F. J. Plaza Martín, C. Tejero Prieto

Then, we define:
ρ(L2) := −3T ∈ U(H)′2 (12)

and, recursively,

ρ(Li ) := 1

i − 2
[σ(e), ρ(Li−1)] for i > 2 . (13)

Step 2. It holds that [ρ(L0), ρ(L j )] = − jρ(L j ) for j ≥ −1. This is equivalent to
show that ρ(L j ) ∈ U(H)′j for all j ≥ 1. Bearing in mind that ρ(L1) ∈ U(H)′1 and
Lemma 2.6, the conclusion follows.

Step 3. It holds that [ρ(L−1), ρ(L j )] = −(1 + j)ρ(L j−1) for j ≥ −1. The cases
j ≤ 1 follow from the fact that σ is a homomorphism of Lie algebras. The choice of
T implies the case j = 2. Let us proceed by induction on j . For j ≥ 3, the definition
of ρ(Li ), the Jacobi identity and the induction hypothesis yield:

[ρ(L−1), ρ(L j )] =
[

ρ(L−1),− 1

j − 2
[ρ(L1), ρ(L j−1)]

]

= 1

j − 2

([ρ(L1), [ρ(L j−1), ρ(L−1)]]
+[ρ(L j−1), [ρ(L−1), ρ(L1)]]

)

= 1

j − 2

([ρ(L1), jρ(L j−2)]
+[ρ(L j−1), (−2)ρ(L0)]

)

= 1

j − 2

(
j (3 − j)ρ(L j−1) − 2( j − 1)ρ(L j−1)

)

= (−1 − j)ρ(L j−1)

Step 4. The identity:

[ρ(Li ), ρ(L j )] − (i − j)ρ(Li+ j ) = 0 (14)

holds for i, j ≥ 1.We proceed by induction on n = i+ j . The case n = 4 (i.e. i, j ≥ 1
and i + j = 4) holds by the very definition of ρ(L4). Now, let us assume that it holds
true up to n − 1 = i + j − 1 and let us prove the case n = i + j > 4. Observe that,
by Step 2, the l.h.s of the Eq. (14) lies in U(H)′i+ j . By Lemma 2.8, it suffices to show
that its image under ad(F) = ad(ρ(L−1)) vanishes. In fact, the Jacobi identity, the
Step 3 and the induction hypothesis show that:

ad(ρ(L−1))
([ρ(Li ), ρ(L j )] − (i − j)ρ(Li+ j )

)

= [[ρ(L−1), ρ(Li )], ρ(L j )] + [ρ(Li ), [ρ(L−1), ρ(L j )]]
−(i − j)[ρ(L−1), ρ(Li+ j )]

= [−(1 + i)ρ(Li−1), ρ(L j )] + [ρ(Li ),−(1 + j)ρ(L j−1)]
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+ (i − j)(1 + i + j)ρ(Li+ j−1)

= − ((1+i)(i− j−1) + (1 + j)(i − j + 1) − (i − j)(1 + i + j)) ρ(Li+ j−1)

= 0

Step 5. ρ is a Lie algebra homomorphism. This follows from the properties of σ and
Steps 2, 3, 4. ��

2.4 Factorization as a product

It is remarkable that if the vector space (A, ( , )) decomposes as A1 ⊥ A2 (i.e. A =
A1 ⊕ A2 and (a1, a2) = 0 for all ai ∈ Ai ), then the very definition of the associated
Heisenberg algebra implies that H(Ai ) is a subalgebra of H(A) and that there is a
canonical Lie algebras homomorphism:

U(H(A)) � U(H(A1)) ⊗C[K ] U(H(A2))

where we identify C[K ] with the universal enveloping algebra of the center ofH(Ai )

for i = 1, 2. So, we may wonder under which circumstances a morphism ρ : W> →
U(H(A)) would decompose accordingly. The following Theorem provides an answer
in terms of the restriction ρ|sl(2). For this goal, recall that matrices a, b and c behave
as bilinear forms on A (w.r.t. the action of Gl(A)).

Theorem 2.10 Let F, H, E be as in (2), (3) and (9). Let ρ : W> → U(H(A)) be a
map of Lie algebras satisfying ρ(L−1) = F, ρ(L0) = − 1

2H and ρ(L1) = −E.
If the vector space A decomposes as A1 ⊥ A2 w.r.t. η and this decomposition is

compatible with the action of F and with the bilinear forms b1,10 and c1,11 , then there
are Lie algebra maps ρi : W> → U(H(Ai )) for i = 1, 2 such that:

ρ = ρ1 ⊗ 1 + 1 ⊗ ρ2

If this is the case, and ρ(Lk) ∈ U(H(A))′k for all k ≥ −1, then ρi (Lk) ∈ U(H(Ai ))
′
k

for all k ≥ −1 and i = 1, 2.

Proof Step 1. The case of ρ(L−1). The hypothesis says that we can find {aα|α =
1, . . . , n}, a basis of A, and an index m such that, for 1 ≤ i < m ≤ j ≤ n, the vectors
ai and a j are orthogonal w.r.t. to the bilinear form defined by a. Equivalently, w.r.t.
the splitting A1 ⊕ A2 the matrix of this bilinear form acquires a block decomposition
as follows:

a =
(∗ 0
0 ∗

)

It is now straightforward that the terms of the operator F (as given in Eq. (2)) can be
grouped into two sets, the first one involving pi,α and qi,α for i ∈ N and 1 ≤ α < m,
and the second one depending only on pi,α and qi,α for i ∈ N andm ≤ α ≤ n. Denote
these operators as L̄−1,1 and L̄−1,2, respectively. One checks that:
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ρ(L−1) = L̄−1,1 ⊗ 1 + 1 ⊗ L̄−1,2

L̄−1,α ∈ U(H(Aα))−1 α = 1, 2. (15)

Step 2. The case of ρ(L0). Bearing in mind that it is defined as − 1
2H and that the

coefficients of the latter fulfill the relations (7), one can proceed as in the previous
case. More precisely, considering the following block decompositions:

η =
(

η1 0
0 η2

)

a =
(
a1 0
0 a2

)

c1,11 =
(
c1 0
0 c2

)

andmotivated by the computations of theAppendix, onemayuse the following identity
as a defining relation for L̄0,α ∈ U(H(Aα))0:

ρ(L0) − b0,00 =
(
L̄0,1 − 2 Tr(c1η

−1
1 (a1 + aT1 )(ηT1 )−1)

)

+
(
L̄0,2 − 2 Tr(c2η

−1
2 (a2 + aT2 )(ηT2 )−1)

)

Step 3. The case of ρ(Lk) for k ≥ 1. Recall from the proof of Theorem 2.7 that the
coefficients br,r+2

1 of ρ(L1) can be expressed in terms of a, b1,10 and c1,11 and that a

close look of these expressions shows that br,r+2
1 are compatible w.r.t. to the splitting

of A. Thus, we can express ρ(L1) as the sum of two factors, namely L̄1,α for α = 1, 2
which consists of the terms of ρ(L1) in pi,α, qi,α for 1 ≤ α < m and for m ≤ α ≤ n,
respectively. Now, we proceed as above.

For the case of ρ(Lk) for k ≥ 2 one proceeds recursively (using the expressions of
the proof of Lemma 2.8).

Step 4. [L̄k,α, L̄l,β ] = 0 for k, l ≥ −1 and α �= β, since these two operators involve
disjoint sets of variables.

Step 5. The maps ρα . Consider:

ρα(Lk) := L̄k,α for k ≥ −1 and α = 1, 2

The previous steps show that ρ = ρ1 ⊗ 1 + 1 ⊗ ρ2.
It remains to check that ρα are morphisms of Lie algebras. For this goal, we will

expand both sides of the identity [ρ(Lk), ρ(Ll)] = (k − l)ρ(Lk+l) using the above
facts. The l.h.s. is:

[ρ(Lk), ρ(Ll)] = [L̄k,1 + L̄k,2, L̄l,1 + L̄l,2] = [L̄k,1, L̄k,1] + [L̄k,2, L̄l,2]

while the r.h.s. reads:

(k − l)ρ(Lk+l) = (k − l)(L̄k+l,1 + L̄k+l,2)

Comparing both expressions and having in mind the separation of variables, it follows
that:
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[L̄k,α, L̄k,α] = (k − l)L̄k+l,α

and we conclude that ρα is a map of Lie algebras W> → U(H(Aα)).

Step 6. Type of the operators. To show that ρ(Lk) ∈ U(H(A))′k implies that ρα(Lk) ∈
U(H(Aα))′k , it suffices to expand the Lie bracket [ρ(L0), ρ(Lk)] using ρ(Lk) =
ρ1(Lk) ⊗ 1 + 1 ⊗ ρ2(Lk). ��
Remark 2.11 It is worth noticing that if a decomposition is compatible with a, it does
not need to be compatible with b1,10 . Indeed, for A = C

2, η = a = (
1 0
0 1

)
, the general

form of b1,10 is given by
(−1 λ

λ −1

)
.

For later use, the following general result will be required.

Theorem 2.12 Let ρi : W> → End Vi , i = 1, 2, be two representations of the Lie
algebra W>. And let us consider the product representation:

ρ = ρ1 ⊗ 1 + 1 ⊗ ρ2 : W> −→ End(V1 ⊗ V2)

Let
∑r

i=1 f1,i ⊗ f2,i ∈ V1 ⊗ V2. Assume that fi,1, . . . , fi,r are linearly independent
(for i = 1, 2). It then holds that:

ρ(Lk)

(
∑

i

f1,i ⊗ f2,i

)

= 0 ∀k ≥ −1

if and only if:

ρi (Lk)( fi, j ) = 0 for all i, j and k ≥ −1.

Proof The converse is obvious.
The direct implication is more subtle. The hypothesis and the decomposition of ρ

yield:

0 = ρ(Lk)

(
∑

i

f1,i ⊗ f2,i

)

= (ρ1 ⊗ 1 + 1 ⊗ ρ2)(Lk)

(
∑

i

f1,i ⊗ f2,i

)

=
∑

i

ρ1(Lk)( f1,i ) ⊗ f2,i +
∑

i

f1,i ⊗ ρ2(Lk)( f2,i )

Let E be the vector space generated by { f1,1, . . . , f1,r } ⊂ V1. Suppose that there
exists l such that ρ1(Lk)( f1,l) does not belong to E . Then, let χ : V1 → C be a linear
form such that χ( f1,i ) = 0 for all i and χ(ρ1(Lk)( f1,l)) �= 0. Applying χ to the
above equation, one obtains:

0 =
∑

i

χ
(
ρ1(Lk)( f1,i )

)
f2,i ∈ V2
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which contradicts the fact that f2,1, . . . , f2,r are linearly independent. Therefore, it
follows that ρ1( f1,l) belongs to E for all l or, equivalently,

ρ1,E : W> −→ End(E)

Lk �−→ ρ1,E (Lk) := ρ1(Lk)|E

is a Lie algebra homomorphism. Recall that, being W> simple, the non-trivial repre-
sentations ofW> are faithful. Since E is finite dimensional, ρ1,E must be trivial; that
is, ρ1,E (Lk) = 0 for all k. In particular,

0 = ρ1,E (Lk)( f1, j ) = ρ1(Lk)( f1, j ) ∀ j

The identities ρ2(Lk)( f2, j ) = 0 are proven similarly. ��

3 An application

As an application of the previous sections,we offer here an example that illustrates how
our results can be used for studying the representation ofW> appearing in the study of
the Virasoro conjecture. Regarding the Virasoro conjecture, our main references are
the works of Dubrovin–Zhang, Eguchi–Hori–Xiong, Getzler, Givental and Liu–Tian
[6,9,13,14,26].

In our example, will consider (A, (, )) to be the cohomology ring of a smooth pro-
jective variety X , with c1(X) = 0 and trivial odd cohomology groups, endowed with
the Poincaré pairing. Recall that the hypothesis on the first Chern class is equivalent
to the vanishing of the operator R in [6,13]; however, it does not seem difficult to
extend the results of Sect. 2 to include this case. On the other hand, the hypothesis on
the odd cohomology groups is fulfilled if X has generically semisimple even quantum
cohomology [16]. It seems to be very hard to weaken this assumption.

Finally, let us point out that bilinear form ( , ) is not necessary symmetric in
Sects. 3.1–3.2 while it will be assumed to be symmetric from Sect. 3.3 on.

3.1 Preliminaries

Let A be a n-dimensional vector space over C endowed with a bilinear form ( , ). Let
{a1, . . . , an} be a basis and η be the matrix associated to the pairing, ηαβ := (aα, aβ).
Let us consider the subspaceC[[t1, t3, t5, . . .]] of the boson Fock spaceC[[t1, t2, . . .]]
and the subalgebra of C[[t1, . . .]]⊗̂CS•A generated by ti,α := ti ⊗ aα with i odd:

Vodd(A) := C[[{ti,α|1 ≤ α ≤ n, i odd}]] ⊆ C[[t1, . . .]]⊗̂CS
•A (16)

If no confusion arises, we will simply write Vodd.
Now we study a distinguished representation of W> in Vodd; eventually, we will

see that it is the representation coming from the action of the Heisenberg algebra via
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Givental’s quantization [14]. More precisely, we will combine the chain of inclusions
of Lie algebras:

sl(2) ↪→ W> ↪→ U(H)

which has been studied in the previous section, with a map:

̂ : U(H(A)) −→ EndC(Vodd(A))

P �−→ P̂

whose obstruction to be compatible with the Lie brackets is governed by a cocycle.
This map is defined following the results of Dubrovin–Zhang, Givental and Kazarian
[6,14,20]; namely, we set:

1̂ = 1 , p̂i,α = ηαβ ∂

∂ti,β
, q̂i,α = i ti,α (17)

(recall that i is a positive odd integer number).

Remark 3.1 Givental has developed a beautiful formalism for this construction in
terms of quantization of quadratic Hamiltonians [14]. An alternative approach, orig-
inated in the Japanese school and strongly linked to the Sato Grassmannian, can be
found in [19]. The forthcoming section (Sect. 3.4) is deeply inspired by the latter.

3.2 The representation

Bearing in mind the results of Sect. 2.2, we know that the operator:

F := b0,1−1 p1 + q1ηq
T
1 + qi+2ηpi

together with the data:

• b0,1−1 arbitrary,

• b1,10 such that (7b) holds, and

• c1,11 := 1
16η

T b1,10 η−1(b1,10 η−1 + 2),

determine a map σ : sl(2) → U(H). Indeed, Eqs. (7), (11) and (10) allow us to obtain
the explicit expressions for H and F :

H = 1

3
b0,1−1 (η

−1b1,10 − 2)p3 + 1

i
qi (b

1,1
0 − (i − 1)η)pi

+ 1

16
Tr(b1,10 η−1(b1,10 η−1 + 2)(1 + η−1ηT ))

123



978 F. J. Plaza Martín, C. Tejero Prieto

E = 1

5!!b
0,1
−1

(
2η−1b1,10 − 2 − (η−1 + (η−1)T )(c1,11 + (c1,11 )T )

)
p5

+ 1

16
pT1 ηT b1,10 η−1(b1,10 η−1 + 2)p1

− 1

4i(i + 2)
qi (b

1,1
0 η−1 − (i − 1))(b1,10 η−1 − (i + 1))ηpi+2 (18)

Now, by Theorem 2.9, the map σ extends uniquely to an homomorphism ρ : W> →
U(H). And one can now compute the induced action on Vodd. Let us write down the
first operators:

L̂−1 := (ρ(L−1))̂ = F̂ = b0,1−1η
−1 ∂

∂t1
+ t1ηt

T
1 + (i + 2)ti+2

∂

∂ti

L̂0 := (ρ(L0))̂ = −1

2
Ĥ = −1

6
b0,1−1 (η

−1b1,10 − 2)η−1 ∂

∂t3

− 1

2
ti (b

1,1
0 η−1 − (i − 1))

∂

∂ti
− 1

32
Tr(b1,10 η−1(b1,10 η−1 + 2)(1 + η−1ηT ))

L̂1 := (ρ(L1))̂ = −Ê

− 1

5!!b
0,1
−1

(
2η−1b1,10 − 2 − (η−1 + (η−1)T )(c1,11 + (c1,11 )T )

)
η−1 ∂

∂t5

− 1

16
(

∂

∂t1
)T ηT b1,10 η−1(b1,10 η−1 + 2)

∂

∂t1

+ 1

4(i + 2)
ti (b

1,1
0 η−1 − (i − 1))(b1,10 η−1 − (i + 1))

∂

∂ti+2

where, as usual, we write ti for the row vector (ti,1, . . . , ti,n) and ∂
∂ti

for the column

vector ( ∂
∂ti,1

, . . . , ∂
∂ti,n

)T .

3.3 The operators of the Virasoro conjecture: a baby model

Now, we are ready to show how the operators appearing in the Virasoro conjecture
agree with our approach for the case of manifolds with trivial odd cohomology and
whose first Chern class vanishes.

From now on, we suppose we are given X , whose first Chern class is zero, and
with trivial odd cohomology. Under this hypothesis, the Poincaré pairing defines on
A := H•(X,C) a symmetric non-degenerated bilinear form:

(a, b) =
∫

X
a ∪ b for a, b ∈ A,

Let r := dim(X) and fix a basis {aα|α = 1, . . . , n} of A, with a1 = 1 ∈ H0(X,C),
such that it is homogeneous w.r.t. the Hodge decomposition; that is, aα ∈ H pα,qα (X)

for certain pα, qα . Let η̄ the matrix associated to the Poincaré pairing w.r.t. the chosen
basis and let us define μα := pα − r

2 and μ the matrix with μ1, . . . , μr along its
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diagonal and 0 elsewhere. Observe that the compatibility of the Poincaré pairing w.r.t.
the Hodge decomposition yields:

η̄αβ �= 0 �⇒ μα + μβ = 0 (19)

The operators appearing in the Virasoro conjecture when the first Chern class van-
ishes [13, Equation (1.2)] are as follows:

L̄−1 := − ∂

∂ t̄0,1
+ 1

2h̄
t̄0η̄t̄

T
0 + t̄i+1

∂

∂ t̄i

L̄0 := −3 − r

2

∂

∂ t̄1,1
+

(

μα + i + 1

2

)

t̄i,α
∂

∂ t̄i,α
+ 1

48
(3 − r)

∫

X
cr (X) (20)

and, for k ≥ 1, as:

L̄k := −�(k + 5−r
2 )

�( 3−r
2 )

∂

∂ t̄k+1,1
+ �(μα + i + k + 3

2 )

�(μα + i + 1
2 )

t̄i,α
∂

∂ t̄k+i,α

+ h̄

2
(−1)i

�(μα + i + k + 3
2 )

�(μα + i + 1
2 )

η̄αβ ∂

∂ t̄−1−i,α

∂

∂ t̄k+i,β
(21)

where cr (X) is the r th Chern class and we have used variables t̄i,α with α = 1, . . . , n
and i = 0, 1, 2, . . ..

Similarly to the case of U(H), we say that a second-order differential operator
in {t̄i,α} is of type i if it is a linear combination of ∂

∂ t̄i+1,α
and the following terms

∂
∂ t̄ j−1,α

∂
∂ t̄i− j,β

, t̄ j,α ∂
∂ t̄ j+i,β

and t̄ j−1,α t̄−i− j,β and, if i = 0, a constant term. Observe that

L̄k is of type k. Now, we offer a simple proof of a folk statement.

Proposition 3.2 The operators {L̄k |k ≥ 2} are uniquely determined by {L̄−1, L̄0, L̄1}
and the condition that L̄k is of type k for all k ≥ −1.

Proof Under the change of variables t̄i := √
2h̄(2i+1)!!t2i+1, it is clear that a second-

order differential operator in t̄i s is of type k if and only if is equal to T̂ for T ∈ U(H)k .
Now, it is easy to check that the hypothesis of Theorem 2.9 hold; namely, F̂ = L̄−1
and L̄k are of type k for k = 0, 1. The conclusion follows.

Theorem 3.3 It holds:

L̄i = L̂i i = −1, 0, 1, . . .

for the choice t̄i := √
2h̄(2i + 1)!!t2i+1, η = η̄, b0,1−1 = (0, . . . , 0, −1√

2h̄
) and:

b1,10 := −(2μ + 1)η = −
(

0 2μ1 + 1

. .
.

2μn + 1 0

)
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Proof Theorem 2.9 implies that it suffices to show that L̄i = L̂i for i = −1, 0, 1.
Indeed, this fact follows from the explicit substitution of ti , η, etc. as in the statement in
the operators L̂i . The only identity which is not obvious is the one corresponding to the
constant term of L̂0. Bearing in mind the definitions and the fact that η is symmetric,
this term is:

− 1

32
Tr(b1,10 η−1(b1,10 η−1 + 2)(1 + η−1ηT ))

= − 1

16

n∑

α=1

(2pα − r + 1)(2pα − r − 1)

= 1

4

∑

p,q

h p,q(
r + 1

2
− p)(p − r − 1

2
)

where h p,q = dim H p(X,�q).
Now, observe that the Libgober–Wood identity [24, Proposition 2.3] can be stated

as:

∑

p,q

(−1)p+qh p,q
(
r + 1

2
− p

) (

p − r − 1

2

)

= 1

6

∫

X

(
3 − r

2
cr (X) − c1(X)cr−1(X)

)

Recalling that we are assuming that X has trivial odd cohomology, the constant term
equals:

1

48

∫

X
((3 − r)cr (X) − 2c1(X)cr−1(X))

which agrees with the free term of L̄0 (see (20)) since c1(X) = 0. ��
Remark 3.4 It is worth noticing that up to rescaling the variables and a Dilaton shift,
these operators coincide with those of [5, Equation (3.5)] and [14, §3] (for b1 = 0)

and with those of [4, Equation (7.33)] and [39, Equation (2.59)] (for b1 = − 1
3

√
η
2h̄ ).

Now, we will go one step further in the study of the above representation. Recall
that in Sect. 2.1 it was stated that matrices a, b j−2i, j

i and c j,2i− j
i behave as bilinear

forms under the action of Gl(A). A fundamental observation is that all results and
equations above are invariant under the action of the general linear group (acting as
base changes on the given basis {a1, . . . , an}). Let us briefly discuss this statement.
For instance, let S ∈ Gl(A), then the row vector qi = (qi,1, . . . , qi,n) is transformed
to qi ST , accordingly the column vector pi goes to Spi . The action of S sends the
bilinear form η to (S−1)T ηS−1 and analogously with a, etc. Note that, since η and
b1,10 behave as bilinear forms, η−1b1,10 defines an endomorphism of A. Finally, the
Heisenberg algebra is also affected.
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Definition 3.5 Let Hη be the Heisenberg algebra defined in (1). Given a map of Lie
algebras ρ : W> → U(Hη) and S ∈ Gl(A), we denote by ρS the map of Lie algebras:

W>
ρ−→ U(Hη)

∼−→ U(H(S−1)T ηS−1
)

where the last map sends qi to qi ST and pi to Spi .

With the hypothesis and choices of above, we have the following,

Theorem 3.6 Let ρ : W> → U(Hη) be as above; i.e. ρ̂ defines the Virasoro con-
straints, (20) and (21), of a smooth projective variety with trivial odd cohomology and
vanishing first Chern class.

Then there exists S ∈ Gl(A) such that ρS decomposes as the product of n repre-
sentations of dimension 1; that is, there exists ρi : W> → U(H(C)) such that:

ρS = ρ1 ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ ρn (22)

Proof Let us consider a basis which is orthonormal for η. Let S ∈ Gl(A) be the
matrix associated to this change of basis. Due to the choices of a, bi+2,i

−1 , b1,10 and

c1,11 , it is trivial that S also brings them into diagonal form; or, equivalently, there is a
common orthogonal basis for all these bilinear pairings. Applying Theorem 2.10, one
concludes. ��

In this situation, for each α = 1, . . . , n, one obtains a one-dimensional representa-
tionρα or, what is tantamount, our study essentially reduces to the case of Example 2.5.
That is, dim A = 1 , a = η ∈ C

∗ and, thus, b1,10 = −η. Setting b0 := b0,00 , one has
that (18) gives:

F = b−1 p1 + q1ηq1 + qi+2ηpi

H = −b−1 p3 − qiηpi − 1

8

E = −1

4
b−1 p5 − 1

4
p1ηp1 − 1

4
qiηpi+2

where b−1 and η are computed from the n-dimensional setup (20).
These three operators determine ρ completely and, according to the map (17) and

Theorem 3.3, one has:

L̄−1 := b−1
√
2h̄η−1 ∂

∂ t̄0
+ 1

2h̄
ηt̄20 + t̄i+1

∂

∂ t̄i

L̄0 := 3

2
b−1

√
2h̄η−1 ∂

∂ t̄1
+

(

i + 1

2

)

t̄i
∂

∂ t̄i
+ 1

16

L̄1 := 5!!
4
b−1

√
2h̄η−1 ∂

∂ t̄2
+ h̄

2
η−1 ∂

∂ t̄0

∂

∂ t̄0
+

(

i + 1

2

) (

i + 3

2

)

t̄i
∂

∂ t̄i+1
(23)
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3.4 On the solutions for the one-dimensional situation

Once the representation has been decomposed in terms of one-dimensional parts, we
wonder if one could deduce someproperties of the solutions of theVirasoro constraints.
Our approach follows closely our previous work [33] which is inspired in [18]. Briefly,
the idea is to show that each of our representations ρi come from an action of W>

on the Sato Grassmannian and that they admit exactly one solution τi , which are τ -
functions for the KP hierarchy and, then, conclude that the product τ1 · . . . · τn is a
solution for ρS .

Let us begin recalling that theSatoGrassmannian is the set of subspacesU ⊂ C((z))
such that the kernel and cokernel of πU : U → C((z))/C[[z]] are finite dimensional
[36,37]. Actually, it is an infinite dimensional scheme [1] and carries a distinguished
line bundle, the determinant line bundle D. Each integer n corresponds to a connected
component, Grn ; namely, those subspacesU such that dim ker πU − dim coker πU =
n. Sato-Sato’s achievement was to show that there was a bijection between the set
of those U s.t. πU is an isomorphism and the set of functions τ(t) ∈ C[t1, t2, . . .]]
with τ(0) = 1 and fulfilling the KP hierarchy (thus, each U has a τ -function; see
[1,36,37] for details). The same holds for the Sato grassmannian of C((z))⊕n and the
n-multicomponent KP hierarchy.

The fact that the space of global section of D∗ is isomorphic to the semi-infinite
wedge product or Fermion Fock space:

H0(Grn,D∗) � ∧∞
2 C((z)) =

〈{
zi1 ∧ zi2 ∧ · · · s.t. i1 < i2 < · · ·
and ik = k + n ∀k � 0

}〉

have allowed its extensive use in CFTs (in particular, by the Japanese school, see
[19] and references therein). Recall that the boson–fermion correspondence is the
isomorphism (we restrict us to Gr0; that is, the charge 0 sector):

∧∞
2 C((z)) � C[[t1, t2, . . .]]

that maps zi1 ∧ zi2 ∧ . . . to the Schur polynomial associated with the partition 1− i1 ≥
2− i2 ≥ . . .. Similarly, the space of global sections of D∗ over the Sato grassmannian
of C((z))⊕n is isomorphic to C[[{ti,α|α = 1, . . . , n, i = 1, 2, . . .}]].

Given a subgroup of the restricted linear group of C((z)) (see [37]), one has an
induced action on Grn(C((z))). Moreover, if the action preserves the determinant
bundle, it will yield a projective action on the space of global sections. In fact, an
analogous statement holds for the case of Lie algebras. Let us illustrate this issue
with the case of the Lie algebra Diff1(C((z))) of first-order differential operators on
C((z)). An operator D ∈ Diff1(C((z))) acts on sections as follows. If the matrix
(di j ) corresponding to D w.r.t. the basis {zi } has no non-trivial diagonal elements,
then:

D(zi1 ∧ zi2 ∧ · · · ) := D(zi1) ∧ zi2 ∧ · · · + zi1 ∧ D(zi2) ∧ · · · + · · ·
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If the matrix (di j ) is diagonal, then:

D(zi1 ∧ zi2 ∧ · · · ) :=
∞∑

j=1

(di j i j − d j j )z
i1 ∧ zi2 ∧ · · ·

Having in mind the boson–fermion correspondence, the above construction gives rise
to a linear map:

Diff1(C((z)))
β−→ End(C[[t1, t2, . . .]])

D �−→ β(D) (24)

which defines a projective representation.Note, nevertheless, that if we are given amap
of Lie algebras σ : W> → Diff1(C((z))), then, β ◦ σ can be canonically promoted
to a linear representation since W> has no non-trivial central extensions. Indeed, for
this goal, if suffices to add a constant to β ◦ σ(L0).

The following resultswill show that the operators of Sect. 3.3 arise from the previous
setup.

Lemma 3.7 Let D ∈ Diff1(C((z))). Then, β(D) is of type i if and only if D is a linear
combination of 1, z−(2i+3) and z−2i (z∂z + 1−2i

2 ).

Proof Recall that Diff1(C((z))) is generated as C-vector space by 1, zm for m ∈
Z acting as an homothety and zm(z∂z + m+1

2 ) for m ∈ Z. Let us recall from [20,
Table 1] the description of the operators induced by them via the boson–fermion
correspondence:

β(zm) =

⎧
⎪⎨

⎪⎩

mtm for m > 0

0 for m = 0
∂

∂t−m
for m < 0

and, for m > 0,

β

(

zm(z∂z + 1 + m

2
)

)

= 1

2

m−1∑

j=1

j (m − j)t j tm− j +
∞∑

j=1

( j + m)tm+ j
∂

∂t j

Analogously, the action of z−m(z∂z + 1−m
2 ) on C((z)) corresponds to the action of:

β

(

z−m(z∂z + 1 − m

2
)

)

=
∞∑

j=1

j t j
∂

∂tm+ j
+ 1

2

m−1∑

j=1

∂

∂t j

∂

∂tm− j
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Finally, recall that the case m = 0 is regularized as follows:

β

(

z−m(z∂z + 1 − m

2
)

)

:=
∞∑

j=1

j t j
∂

∂t− j

Checking the degrees, the conclusion follows. ��
Lemma 3.8 Let σ ∈ HomLie-alg(W>,Diff1(C((z)))). Recall that Vodd =
C[[t1, t3, . . .]].

β(σ(Li ))|Vodd takes values in Vodd and it is of type i for all i , if and only if there
exist s, t ∈ C such that:

σ(Li ) = t i
(
1

2
z−2i (z∂z + 1 − 2i

2
) + sz−2i−3

)

∀i ≥ −1

Proof The “if” part follows from Lemma 3.7 and the fact that σ as in the statement
defines a map of Lie algebras. Let us now deal with the “only if” part.

We know from [33, §2] (see also [34]) that there is a 1–1 correspondence:
{

σ ∈ HomLie-alg(W>,Diff1(C((z))))
such that σ �= 0

}
1−1←→

{
triples (h(z), c, b(z)) such that
h′(z) ∈ C((z))∗, c ∈ C, b(z) ∈ C((z))

}

which is explicitly given by:

σ(Li ) = −h(z)i+1

h′(z)
∂z − (i + 1)c · h(z)i + h(z)i+1

h′(z)
b(z) (25)

On the other hand, due to Lemma 3.7, the fact that σ(Li ) is of type i implies that
there exist ri , si , ti ∈ C satisfying:

σ(Li ) = ri · 1 + si · z−(2i+3) + ti · z−2i
(

z∂z + 1 − 2i

2

)

(26)

Comparing the coefficients of ∂z in the previous identities, it follows that h(z) =
ti

ti−1
z−2. Hence, the quotients ti

ti−1
are all equal to a constant, say t . Hence, ti = t i t0

and h(z) = t z−2. Further, the case i = 0 yields t0 = 1
2 .

Plugging this in Eqs. (25) and (26), one gets:

−(i + 1)c(t z−2)i − (t z−2)i+1

2t z−3 b(z) = ri + si z
−(2i+3) + 1

2
t i z−2i

(
1 − 2i

2

)

and, thus:

b(z) = −2(i + 1)cz−1 − 2t−i ri z
2i−1 − 2si t

−i z−4 − 1

2
z−1(1 − 2i)

Observe that the l.h.s. does not depend on i , one gets many conditions. First, for i �= 0
the term z2i−1 is an odd power of z different from z−1 that cannot be canceled with
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any other term; consequently, ri = 0 for i �= 0. Further, since the coefficient of z−4

in b(z) has to be independent of i , it follows that t−i si is a constant independent of i ,
and, thus, equal to s0. Finally, the coefficient of z−1 in b(z) is:

−2(i + 1)c − 2r0δi,0 − 1

2
(1 − 2i)

Since it has to be independent of i , it follows that c = 1
2 , r0 = 0 and, thus:

b(z) = −3

2
z−1 − 2s0z

−4

Substituting h(z), c, b(z) into expression (25) and setting s = s0, one obtains the
result. ��

Let us recall that the rescaling of the variables yields an action on the boson Fock
space. More precisely, λ = {λi } ∈ ∏

i oddC
∗ maps ti to λi ti . Accordingly, it acts on

HomLie-alg(W>,End(Vodd)) and sends ρ to ρλ := λ ◦ ρ ◦ λ−1.

Definition 3.9 The λ-scaled KP hierarchy is the hierarchy obtained by replacing
ti by λi ti in the KP hierarchy (for given λ = (λi ) ∈ ∏

i∈N C
∗). A function

τ1(t) ∈ C[[t1, t2, . . .]] is called τ -function of the λ-scaled KP hierarchy if τ(λ−1t) :=
τ(λ−1

1 t1, λ
−1
2 t2, . . .) is a τ -function of the KP hierarchy. For brevity, we simply say

scaled KP. We do similarly for KdV, multicomponent KP.

Note that the λ-scaled KP hierarchy for λ = (μi ) for μ ∈ C
∗ coincides with the

KP hierarchy. However, this does not happen in general.
The following Lemma is the key point to go from Virasoro to KdV.

Lemma 3.10 The map β of (24) induces a bijection between:

• the set of σ ∈ HomLie-alg(W>,Diff1(C((z)))) such that there exists s ∈ C satis-
fying:

σ(Li ) = 1

2
z−2i

(

z∂z + 1 − 2i

2

)

+ sz−2i−3

• the set of scale equivalence classes of ρ ∈ HomLie-alg(W>,End(Vodd)) whose
coefficients of quadratic terms in ρ(L−1) do not vanish and such that ρ(Li ) is of
type i for i ≥ −1.

Proof First, we prove the statement with no reference to r(z) on the first item and
with no mention to a linear function on the second item. Under these circumstances,
given σ as in the statement, Lemma 3.7 shows that (β ◦ σ)(Li )|Vodd takes values in
Vodd and it is of type i for all i . An explicit computation yields:
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(β ◦ σ)(L−1) = s
∂

∂t1
+ 1

4
t21 + 1

2

∞∑

j=1

j t j+2
∂

∂t j

(β ◦ σ)(L0) = s
∂

∂t3
+ 1

2

∞∑

j=1

j t j
∂

∂t j

(β ◦ σ)(Li ) = s
∂

∂t2i+3
+ 1

4

2i−1∑

j=1

∂

∂t j

∂

∂t2i− j
+ 1

2

∞∑

j=1

j t j
∂

∂t2i− j

(where j , as usual, is odd) and thus:

[(β ◦ σ)(L−1), (β ◦ σ)(L1)] − β([σ(L−1), σ (L1)]) = −1

8

which implies that we have a map of Lie algebras defined by:

ρ(Li ) := (β ◦ σ)(Li ) + 1

16
δi,0 (27)

Conversely, let us start with ρ as in the second set of the statement. The assumptions
yield the following expression:

ρ(L−1) = b0,1−1
∂

∂t1
+ at21 + bi+2,i

−1 ti+2
∂

∂ti

with a, bi+2,i
−1 �= 0. Considering the action of

∏
i oddC

∗ by conjugation, one finds
λ = {λi ∈ C

∗|i odd} and s ∈ C such that:

ρλ(L−1) = λ ◦ ρ(L−1) ◦ λ−1 = s
∂

∂t1
+ 1

4
t21 +

(
i + 2

2

)

ti+2
∂

∂ti

Lemma3.8 and the previous discussion show thatρλ is the representation associated
to the map σ : W> → Diff1(C((z))) defined by:

σ(Li ) = 1

2
z−2i

(

z∂z + 1 − 2i

2

)

+ sz−2i−3 ∀i ≥ −1

��

Remark 3.11 The statement can be generalized. On the one hand, we may consider
the conjugation of σ by an operator of the type exp(r(z)) while, on the other hand, we
replace ρ by its conjugate by exp(β(r(z))). For instance, for r(z) ∈ C[[z2]], one has
that β(r(z)) is a linear function on t1, t3, . . .. Thus, the first representation is:
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σ(Li ) = 1

2
z−2i

(

z(−r(z) + ∂z) + 1 − 2i

2

)

+ sz−2i−3

while ρ is as in the statement up to a linear function on ti s.

Remark 3.12 It is worth noticing that the Virasoro operators studied by Witten [39]
correspond to the case s = − 1

2 , r(z) = 0. Kac–Schwarz [18], using the fact that these
operators come from a representation in Diff1(C((z))), proved that there is a point in
the Sato Grassmannian whose τ -function is a solution of these equations and, hence,
is a solution of KdV hierarchy too. A study of common solutions of Virasoro-like
constraints and KdV has been carried out in [33].

Lemma 3.13 Let ρ be as in Lemma 3.10 and let τ(t) ∈ Vodd = C[[t1, t3, . . .]]. Then,
the Virasoro constraints:

ρ(Lk)(τ (t)) = 0 k ≥ −1

with the initial condition τ(0) = 1 admits no solution for s = 0 and at most one
solution for s �= 0.

Proof Since τ(0) = 1, let us consider the problem in terms of a formal function
F(t) ∈ Vodd = C[[t1, t3, . . .]] with F(0) = 0 and τ(t) = exp(F(t)). The function
F(t) has a series expansion:

F(t) =
∑

n

fntn (28)

where n := {n1, n3, . . .} is a sequence of non-negative integers such that ni = 0 for
all i � 0, fn ∈ C and tn := ∏

i≥1 t
ni
i . Further, the topology of Vodd = C[[t1, t3, . . .]]

comes from the definition deg(ti ) = i . In particular, the degree of tn is given by
|n| := ∑

i≥0 ini .
For the sake of brevity, let us denote by fn1n3...nk = fn for n = {n1, n3, . . .} with

nk �= 0 and ni = 0 for all i > k and we set f0 = F(0) = 0. As a brief summary, let
us write down the monomials and their coefficients up to degree 5:

degree 0 1 2 3 4 5
monomials 1 t1 t21 t31 , t3 t41 , t1t3 t51 , t21 t3, t5
coefficient f0 f1 f2 f3, f01 f4, f11 f5, f21, f001

After rescaling ti s and conjugation by an exponential, if needed, we may assume that
ρ is given by (27). The hypothesis ρ(Lk)(τ (t)) = 0 is equivalent to the vanishing
of the corresponding homogeneous parts of degree i for i = 0, 1, 2, . . .. An explicit
computation for low values of k and i yields:
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k i part of degree i in ρ(Lk)(τ (t))
−1 0 s f1
−1 1 2s f2t1
−1 2 3s f3t21 + 1

2 t
2
1−1 3 s

(
4 f4t31 + f13t3

) + t3 f1
0 0 s f01 + 1

16
0 1 s f11t1 + t1 f1
0 2 s f21t21 + 2 f2t21
1 0 s f001 + 1

2 f2 + 1
4 f 21

1 1 s f101 + 3
2 f3t1 + f11t1

Thus, it is clear that if a solution F does exist, then s �= 0. In this case, the vanishing of
the above polynomials implies that f1 = 0, f2 = 0, f3 = − 1

3!s , f01 = − 1
16s , f11 = 0,

f4 = 0, f11 = 0, etc. . Writing down the general expression for the homogeneous
part of degree i of ρ(Lk)(τ (t)), one observes that it allows us to determine fn with
|n| = i and nk �= 0 in terms of fn with |n| ≤ i − 2. Thus, if a solution F exists, the
coefficients fn can be recursively determined. ��
Theorem 3.14 Let ρ ∈ HomLie-alg(W>,End(C[[t1, t3, . . .]])) be such that ρ(Lk) is
of type k for k ≥ −1 and that all coefficients of ρ(L−1) are non-zero.

Then, there exists a unique τ(t) ∈ C[[t1, t3, . . .]], with τ(0) = 1, such that:

ρ(Lk)(τ (t)) = 0 k ≥ −1

Further, the solution τ(t) is a τ -function of the scaled KdV hierarchy.

Proof Lemma 3.10 implies that there is λ and σ : W> → Diff1(C((z))) such that
ρλ = β∗(σ ). Recalling Theorem 3.12 of [33], one knows that there is a function
τ0(t) which satisfies that ρλ(Ln)(τ0(t)) = 0 and that it is a τ -function of the KdV
hierarchy. Then, τ(t) := τ0(λt) fulfills the requirements. Since Lemma 3.13 implies
the uniqueness of the solution, the conclusion follows. ��
Remark 3.15 Let us make two comments on the solutions. First, an instance of the
notion of scaled KdV appears already in Kontsevich’s Theorem when it is claimed
that the exponential of the generating function in variables T2i+1 := ti/(2i + 1)!! is a
τ -function for the KdV hierarchy [22, Theorem 1.2]. On the other hand, although the
dilaton shift t̄i �→ t̄i − δi,0 transforms the operators ρ(Lk), it should be noted that it
does not induce an automorphism of the algebra C[[t̄0, t̄1, . . .]].

3.5 On the solutions for the n-dimensional situation

Let us now focus in the n-dimensional situation. That is, we aim at studying the
interplay betweenVirasoro representations andmulticomponentKP hierarchy. Special
attention will be paid at their common solutions.

Recall that Vodd(A) is the subalgebra ofC[[t1, t3, . . .]]⊗̂CS•A generated by ti ⊗a.
Then, S ∈ Gl(A) acts on it by the automorphism of algebras ti ⊗ a �→ ti ⊗ S(a).
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Theorem 3.16 Let ρ : W> → U(H(A)) be as in Sect. 3.3.
There exist S ∈ Gl(A) and functions τα(t1,α, t3,α, . . .) ∈ C[[t1,α, t3,α, . . .]] such

that:

ρ̂(Lk)

(

S

(
∏

α

τα(tα)

))

= 0 (29)

Further, τα(t1,α, t3,α, . . .) are τ -functions of the scaled KdV hierarchy.

Proof Theorem 3.6 shows that there is S ∈ Gl(A) such that ρS decomposes as the ten-
sor product of n one-dimensional Lie algebra representations ofW>. More precisely,
if {aα} is the chosen basis for A, then {S(aα)} is a orthogonal basis for η. Consequently,
there are ρα : W> → U(H(〈S(aα)〉)) such that (22) holds.

Now, apply the results of Sect. 3.4 on the one-dimensional case. Indeed, since η is
non-degenerated and {S(aα)} is a orthogonal basis, from Theorem 3.14 one obtains
functions τα(tα), such that τα(0) = 1, ρα(Lk)(τα) = 0 for all α, k and they are
τ -functions for the scaled KdV hierarchy.

Observe that (29) holds if and only if ρ̂S(Lk)(
∏

α τα(tα)) vanishes. Applying the
converse of Theorem 2.12 one concludes. ��
Remark 3.17 The previous Theoremmeans that, assuming the uniqueness of the solu-
tion [6, Theorem3.10.20], the solution of theVirasoro constraints has to be of the above
form; that is, an operator acting on a product ofWitten–Kontsevich τ -functions. Thus,
it agrees with the results of Givental [14] for the total descendent potential. It would
be interesting to relate both expressions explicitly (see also [12,15,23]). Alternatively,
one could combine Teleman’s classification of semisimple cohomological field the-
ories [38] with Givental’s results to deduce that this is the right expression for the
solution. Nevertheless, our result can be applied on other frameworks, as it will be
mentioned in Sect. 3.6.

Corollary 3.18 Let ρ be as in the Theorem 3.16.
If S, τα satisfy (29), then ρS = ρ1 + · · · + ρn and ρ̂α(Lk)(τα) = 0.
The matrix S is unique up to an orthogonal matrix.

Proof If S and τα are such that (29) vanishes, then the following expression also
vanishes:

0 = exp

(

−
∑

α

τ̃α(tα)

)

S−1ρ̂(Lk)

(

S

(
∏

α

τα(tα)

))

= ρ̂S(Lk)(exp(
∑

α τ̃α(tα)))

exp(
∑

α τ̃α(tα))

Recall that an operator ρS(Lk) of type (4) is the same as ρ(Lk) where the matrix
a has been replaced by (S−1)T aS−1 (and, accordingly, bk , ck , etc.). Expanding the
case k = −1 of the last identity, one obtains that (S−1)T ηS−1 is diagonal. Then,
Theorem 2.10, implies that ρS decomposes as a sum ρ1 + · · · + ρn and Theorem 2.12
implies that ρ̂α(Lk)(τα(tα)) = 0.

It is straightforward that S is unique up to an orthogonal matrix. ��
Corollary 3.19 Let ρ be as in the Theorem 3.16. If either S is diagonal or τα are τ -
functions of the same scaled hierarchy, then the solution is a τ -function for the scaled
multicomponent KP hierarchy.
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Proof In particular, the product S(
∏

α τα(tα)) is uniquely determined by ρ. Each
function τα(tα) satisfies the scaled KdV and, thus, there are λα := (λi,α) ∈ ∏

i oddC
∗

such that τα(λ−1
α tα) defines a point Uα ∈ Gr(C((z))). If ρ is expressed w.r.t. a basis

{a1, . . . , an}, then S determines a second basis {S(a1), . . . , S(an)} or, equivalently, an
isomorphism C ⊕ . . . ⊕ C � A. This isomorphism induces:

Gr(C((z))) × · · · × Gr(C((z))) ↪→ Gr(C((z)) ⊕ · · · ⊕ C((z))) � Gr(A ⊗ C((z)))

Since the τ -function of the image of (U1, . . . ,Un), which isU1⊕ . . .⊕Un , is given by∏
α τα(λ−1

α tα) it follows that S
∏

α τα(tα) is a τ -function of the scaledmulticomponent
KP in the two cases of the statement. ��
Remark 3.20 Recalling Remark 3.11, we observe that Theorems 3.14 and 3.16 could
be weaken and stated for representations satisfying the hypothesis up to a linear func-
tion on ti ’s.

3.6 Final comments

Let us finish with some brief comments. From a general perspective, we hope that our
methods shed some light on the explicit expressions of the Virasoro operators and of
the relevant integrable hierarchies that appear in the Virasoro conjecture. Furthermore,
they can also be applied to many instances of representations ofW> such as recursion
relations, Hurwitz numbers, and knot theory.

As an illustration, let us point out the results of [2,21] on Hurwitz numbers. In
both cases, the authors study the generating functions of the number of coverings of
P1 \ {0, 1,∞} with some properties. It is shown that these functions satisfy Virasoro
constraints, KP hierarchy and topological recursion (of the Eynard–Orantin type [11]).
It is remarkable that the Virasoro constraints are explicitly expressed as differential
operators of the form considered in Sect. 2 for the case A = C. Thus, the results of
Sect. 3.4 can be directly applied to conclude that Virasoro constraints imply the scaled
KP hierarchy.

Our results could also be of interest within the context of Eynard–Orantin topologi-
cal recursion [11]. Indeed, we learn from [30] that Mirzakhani’s recursion formula for
the Weil–Petersson volumes [29] is indeed a Virasoro constraint imposed on a gener-
ating function of these volumes and that this function satisfies the KdV hierarchy. It
is worth pointing out some recent results on the relation of topological recursion and
Virasoro constraints [10,28]. On the one hand, it has been shown in [10] that these
Virasoro constraints are actually equivalent to Eynard–Orantin topological recursion
for some spectral curve. On the other hand, one knows from [28] that the correlation
functions of a semisimple cohomological field theory satisfy the Eynard–Orantin topo-
logical recursion and that these recursion formulas are equivalent to n copies of the
Virasoro constraints for the ancestor potential. Therefore, two problems can be faced
with our techniques. First, we think that Theorem 3.16 should imply some bilinear
relations of Hirota type for the solution of the Eynard–Orantin topological recursion.
Second, due to the uniqueness of the solution and the fact that the solution satisfies
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the KP hierarchy, there must be a relation of the Eynard–Orantin spectral curve and
the Krichever construction.

Similarly, it would be interesting to interpret the recent papers [3,8] from our
perspective.
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Appendix

This appendix only collects the explicit computations of some Lie brackets used
in Sect. 2. From a formal point of view, we are dealing with generators of U(H),
1, qi,α, pi,α , with i = 1, 2, . . . and α = 1, . . . , n, that satisfy the following relations:

[pi,α, q j,β ] = δi, j iη
αβ · 1

[pi,α, p j,β ] = [qi,α, q j,β ] = [pi,α, 1] = [qi,α, 1] = 0

and, because of the associativity of composition, we will also use:

[a, bc] = [a, b]c + b[a, c]

Wewill use the Einstein convention; that is, repeated subindices of the variables p, qs
imply the summation is to be done. Recall that b0,2i+3

i and qi := (qi,1, . . . , qi,n)
denote row vectors, pi := (pi,1, . . . , pi,n)T are column vectors (the superscript T
denotes the transpose), and a, b j,2i+ j

i , c j,2i− j
i are n × n square matrices.

Let us compute some Lie brackets. For instance,

[b0,2i+3
i p2i+3, b

0,2 j+3
j p2 j+3] = [(b0,2i+3

i )α(p2i+3)α , (b0,2 j+3
j )β(p2 j+3)β ]

= (b0,2i+3
i )α[(p2i+3)α , (p2 j+3)β ](b0,2 j+3

j )β = 0

where subindices α, β denote the corresponding entries of the vectors. Analogously,
we have the following identities:

[q1aqT1 , b0,2i+3
i p2i+3] = 0 ∀i ≥ 0

[qrbr,r+2i
i pr+2i , b

0,2 j+3
j p2 j+3]

= −[b0,2 j+3
j p2 j+3, (qr )α](br,r+2i

i pr+2i )α

− (qrb
r,r+2i
i )α[b0,2 j+3

j p2 j+3, (pr+2i )α]
= −(b0,2 j+3

j )β [(p2 j+3)β, (qr )α](br,r+2i
i )αγ (pr+2i )γ

= −(2 j + 3)(b0,2 j+3
j )βηβα(b2 j+3,2 j+3+2i

i )αγ (p2 j+3+2i )γ

= −(2 j + 3)b0,2 j+3
j η−1b2 j+3,2 j+3+2i

i p2 j+3+2i
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[pr cr,2i−r
i p2i−r , b

0,2 j+3
j p2 j+3] = 0

[q1aqT1 , qrb
r,r+2 j
j pr+2 j ] = 0 ∀ j ≥ 1

[q1aqT1 , qrb
r,r
0 pr ]

= (q1b
1,1
0 )α[q1aqT1 , (p1)α]

= −(q1b
1,1
0 )α

(
[(p1)α, (q1)β ](aqT1 )β + (q1a)β [(p1)α, (q1)β ]

)

= −q1b
1,1
0 η−1

(
a + aT

)
qT1

[q1aqT1 , pTr c
r,2 j−r
j p2 j−r ]

= [q1aqT1 , (pr )α](cr,2 j−r
j p2 j−r )α + (pTr c

r,2 j−r
j )α[q1aqT1 , (p2 j−r )α]

= −
(
[(p1)α, (q1)β ](aqT1 )β + (q1a)β [(p1)α, (q1)β ]

)
(c1,2 j−1

j p2 j−1)α

− (pT2 j−1c
2 j−1,1
j )α

(
[(p1)α, (q1)β ](aqT1 )β + (q1a)β [(p1)α, (q1)β ]

)

= −q1
(
a + (a)T

)
(η−1)T c1,2 j−1

j p2 j−1 − pT2 j−1c
2 j−1,1
j η−1

(
a + (a)T

)
qT1

= −q1
(
a + (a)T

)
(η−1)T

(
c1,2 j−1
j + (c2 j−1,1

j )T
)
p2 j−1

− δ j1 Tr
(
c1,11 η−1(a + aT )(η−1)T

)

[qrbr,r+2i
i pr+2i , p

T
s c

s,2 j−s
j p2 j−s]

= [qrbr,r+2i
i pr+2i , (ps)α](cs,2 j−s

j p2 j−s)α

+ (pTs c
s,2 j−s
j )α[qrbr,r+2i

i pr+2i , (p2 j−s)α]
= −[(ps)α, (qr )β ](br,r+2i

i pr+2i )β(cs,2 j−s
j p2 j−s)α

− (pTs c
s,2 j−s
j )α[(p2 j−s)α, (qr )β ](br,r+2i

i pr+2i )β

= −rpT2 j−r (c
r,2 j−r
j )T η−1br,r+2i

i pr+2i − rpT2 j−r c
2 j−r,r
j η−1br,r+2i

i pr+2i

= −rpT2 j−r

(
(cr,2 j−r

j )T + c2 j−r,r
j

)
η−1br,r+2i

i pr+2i

[qrbr,r+2i
i pr+2i , qsb

s,s+2 j
j ps+2 j ]

= [qrbr,r+2i
i pr+2i , (qs)α](bs,s+2 j

j ps+2 j )α

+ (qsb
s,s+2 j
j )α[qrbr,r+2i

i pr+2i , (ps+2 j )α]
= −(qrb

r,r+2i
i )β [(qs)α, (pr+2i )β ](bs,s+2 j

j ps+2 j )α

− (qsb
s,s+2 j
j )α[(ps+2 j )α, (qr )β ](br,r+2i

i pr+2i )β

= (r + 2i)qrb
r,r+2i
i η−1br+2i,r+2i+2 j

j pr+2i+2 j − rqr−2 j b
r−2 j,r
j η−1br,r+2i

i pr+2i
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