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Abstract In this paper, we study the Cauchy problem for the Landau Hamiltonian
wave equation, with time-dependent irregular (distributional) electromagnetic field
and similarly irregular velocity. For such equations, we describe the notion of a ‘very
weak solution’ adapted to the type of solutions that exist for regular coefficients. The
construction is based on considering Friedrichs-type mollifier of the coefficients and
corresponding classical solutions, and their quantitative behaviour in the regularising
parameter. We show that even for distributional coefficients, the Cauchy problem does
have a very weak solution, and that this notion leads to classical or distributional-type
solutions under conditions when such solutions also exist.
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1 Introduction

The purpose of this paper is to establish the well-posedness results for the wave
equation for the Landau Hamiltonian with irregular electromagnetic field and sim-
ilarly irregular velocity. We are especially interested in distributional irregularities
appearing, for example, when modelling electric shocks by δ-function type behaviour.
While this leads to fundamental mathematical difficulties for the usual distributional
interpretation of the equation (and of the Cauchy problem) due to impossibility of
multiplication of distributions (see Schwartz [38]) we are able to establish the well-
posedness using a notion of very weak solutions introduced in [15] in the context
of space-invariant hyperbolic problems. This notion also allows us to recapture the
classical/distributional solution to the Cauchy problem for the Landau Hamiltonian
under conditions when it does exist.

Thus, we consider a non-relativistic particle with mass m and electric charge e
moving in a given electromagnetic field. We concentrate on the 2D version and then
indicate in Sect. 8 the changes for the multidimensional case in R

2d . To describe
the electromagnetic field in the plane, one usually uses the electromagnetic scalar and
vector potentials q,A. In a brief description of the physical model below, we follow [2]
which we can also refer for somemore details. The dynamics of a particle with massm
and charge e on the Euclidean xy-plane interacting with a perpendicular homogeneous
electromagnetic field is determined by the Hamiltonian (see [22])

H0 := 1

2m

(
ih∇ − e

c
A

)2 + eq, (1.1)

where h denotes Planck’s constant, c is the speed of light and i the imaginary unit (see
also Sect. 8). We denote by 2B > 0 the strength of the magnetic field, and can choose
the symmetric gauge given by

A = (−By, Bx).

As usual for mathematical models, we set m = e = c = h = 1 in (1.1), which leads
to the Landau Hamiltonian

H1 := H + q,

where

H := 1

2

((
i

∂

∂x
− By

)2

+
(
i

∂

∂y
+ Bx

)2
)

, (1.2)

acting on the Hilbert space L2(R2). It is well known (see [13,21]) that the spectrum
of the operatorH consists of infinite number of eigenvalues with infinite multiplicity
of the form

λn = (2n + 1)B, n = 0, 1, 2, . . . . (1.3)

123



Very weak solutions of wave equation… 593

These eigenvalues are called the Euclidean Landau levels. We denote the eigenspace
of H corresponding to the eigenvalue λn in (1.3) by

An(R
2) = {ϕ ∈ L2(R2), Hϕ = λnϕ}. (1.4)

The following functions form an orthogonal basis for An(R
2) (see [2,17]):

⎧⎨
⎩
e1k,n(x, y)=

√
n!

(n−k)! B
k+1
2 exp

(
− B(x2+y2)

2

)
(x + iy)k L(k)

n (B(x2 + y2)), 0≤k,

e2j,n(x, y)=
√

j !
( j+n)! B

n−1
2 exp

(
− B(x2+y2)

2

)
(x − iy)n L(n)

j (B(x2 + y2)), 0≤ j,

(1.5)
where L(α)

n is the Laguerre polynomial defined as

L(α)
n (t) =

n∑
k=0

(−1)kCn−k
n+α

tk

k! , α > −1.

To simplify the notation further, we denote

ekξ := ekj,n for ξ = ( j, n), j, n = 0, 1, 2, . . . ; k = 1, 2. (1.6)

To finish the brief literature review, we refer to [2, Remark 1] for an explanation
of relations of the basis (1.5) to Feynman and Schwinger’s work on finding matrix
elements of the displacement operator (see also Perelomov [28, p. 35]), the relations
to complex Hermite polynomials [18], to quantization questions [3,4,9], to time–
frequency analysis, partial differential equations and planar point processes, see [1,
16,17], respectively.

We can also mention papers [19,26], where the authors investigated properties of
eigenfunctions of perturbed Hamiltonians, and in [20,23,24,30–32,37] asymptotics
of the eigenvalues for perturbed Landau Hamiltonians were described.

In this paper, we are interested in the wave equation for the Landau Hamiltonian
with time-dependent irregular electric potential and varying in time electromagnetic
field. More precisely, for a distributional propagation speed function a = a(t) ≥ 0
and for the distributional electromagnetic scalar potential q = q(t), we consider the
Cauchy problem for the Landau Hamiltonian H in the form

⎧⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2.

(1.7)

A special feature of our analysis is that we want to allow a and q to be distributions.
For instance, if the electric potential produces shocks, these can be modelled with
δ-distributions; for example, by taking q = δ1, the δ-distribution at time t = 1.
Moreover, if the velocity a(t) also contained δ-type terms, as an example of such an
equation we could consider
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594 M. Ruzhansky, N. Tokmagambetov

⎧⎨
⎩

∂2t u(t, x) + δ1[H + δ1]u(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2.

(1.8)

Moreover, we could also look at discontinuous speeds given by, e.g. the Heaviside
function h(t) such that h(t) = 1 for t < 1 and h(t) = 2 for t ≥ 1, and singular
electric fields, e.g. q(t) = δ1 + h(t), in which case the Cauchy problem (1.7) would
take the form

⎧⎨
⎩

∂2t u(t, x) + h(t)[H + δ1 + h(t)]u(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2.

(1.9)

The physical problem that we are interested in is as follows:
How to understand the Cauchy problems (1.7)–(1.9) and their well-posedness?
There are several difficulties already at the fundamental level for such problems:

first of all, in general, impossibility of multiplying distributions due to the famous
Schwartz’ impossibility result [38]. Second, even if we could somehowmake sense of
the product aq being a distribution by, e.g. imposing wave front conditions, we would
still have to multiply it with u(t, x) which, a priori, may also have singularities in t ,
thus leading to another multiplication problem. Moreover, another difficulty [for the
global in space analysis of (1.7)] is that the coefficients of H increase in space thus
leading to potential problems at infinity if we treat the problem only locally.

In our analysis, we assume that a is a positive distribution so that the Cauchy
problem (1.7) is of hyperbolic type, at least when a and q are regular. More precisely,
we will assume that there exists a constant a0 > 0 such that

a ≥ a0 > 0,

where a ≥ a0 means that a−a0 ≥ 0, i.e. 〈a−a0, ψ〉 ≥ 0 for all ψ ∈ C∞
0 (R),ψ ≥ 0.

Incidentally, the structure theory of distributions implies that a is a Radon measure
but this does not remove the multiplication problems or problem with understanding
the meaning of the well-posedness of the Cauchy problem (1.7).

Nevertheless, we are able to study the well-posedness of (1.7) using an adaptation
of the notion of very weak solutions introduced in [15] in the context of hyperbolic
problems with distributional coefficients in Rn .

As noted, the Eq. (1.7) cannot be, in general, understood distributionally, so we
are forced to weaken the notion of solutions. However, we want to do it in a way so
that we can recapture classical solutions should they exist. Thus, in this paper we will
show the following facts:

• The Cauchy problem (1.7) admits a very weak solution even for distributional-type
Cauchy data u0 and u1. The very weak solution is unique in an appropriate sense.

• If the coefficients a and q are regular so that the Cauchy problem (1.7) has a
‘classical’ solution, the very weak solution recaptures this classical solution in the
limit of the regularising parameter. This shows that the introduced notion of a very
weak solution is consistent with classical solutions should the latter exist.
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• When the classical solution does not exist, the very weak solution comes with an
explicit numerical scheme modelling the limiting behaviour of regularised solu-
tions.

We also note that at the same time our analysis will yield results for the modified
problem

⎧
⎨
⎩

∂2t u(t, x) + a(t)Hu(t, x) + q(t)u(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

(1.10)

for distributions a, q with a ≥ a0 > 0 for some constant a0.
For second-order operators H independent of x , the Cauchy problems of this type

have been intensively studied; however, for more regular (starting fromHölder) coeffi-
cients, see for example [5–8,10] and references therein. For the setting of distributional
coefficients, see [15].

The analysis of this paper is different from the one in [15] that was adapted to
constant coefficients in Rn . At the same time, the techniques of the present paper may
be extended to treat more general operators; however, since such analysis is more
abstract and requires more background material, it will appear elsewhere.

The description of appearing function spaces is carried out in the spirit of [11] using
the general development of nonharmonic type analysis carried out by the authors in [33]
which is, however, ‘harmonic’ in the present setting. The treatment of the global well-
posedness in the appearing function spaces is an extension of the method developed
in [14] in the context of compact Lie groups.

In Sect. 7, we show an extension of the construction to also consider the inhomo-
geneous wave equation

⎧⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

(1.11)

The structure of the paper is as follows. In Sect. 2, we formulate our main results.
In Sect. 3, we discuss elements of the global Fourier analysis associated to the Landau
Hamiltonian as a special case of abstract constructions that have been developed in
[33]. In Sect. 4, we prove Theorem 2.1 and in Sect. 5 we prove Theorem 2.4. In
Sect. 6, we establish the uniqueness of very weak solutions and their consistence
with ‘classical’ solutions when they exist. In Sect. 7, we give an extension of our
constructions to the inhomogeneous wave equation. In Sect. 8, we discuss an extension
to higher dimensions, namely to the Landau Hamiltonian in R

2d .

2 The main results

In our results below, concerning the Cauchy problem (1.7), as the preliminary step we
first carry out the analysis in the strictly hyperbolic regular case a(t) ≥ a0 > 0, for
differentiable a, q with ∂t a, ∂t q ∈ L∞([0, T ]). Thus, we denote by L∞

1 ([0, T ]) the
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596 M. Ruzhansky, N. Tokmagambetov

space functions a ∈ L∞([0, T ]) with ∂t a ∈ L∞([0, T ]). In this case, we obtain the
well-posedness in the Sobolev spaces Hs

H associated to the operatorH: we define the
Sobolev spaces Hs

H associated to H, for any s ∈ R, as the space

Hs
H :=

{
f ∈ D′

H(R2) : Hs/2 f ∈ L2(R2)
}

,

with the norm ‖ f ‖Hs
H := ‖Hs/2 f ‖L2 . The global space of distributions D′

H(R2) is
defined in Sect. 3.

Theorem 2.1 Assume that a, q ∈ L∞
1 ([0, T ]) are such that a(t) ≥ a0 > 0 and

q(t) ≥ 0. For any s ∈ R, if the Cauchy data satisfy (u0, u1) ∈ H1+s
H × Hs

H, then the

Cauchy problem (1.7) has a unique solution u ∈ C([0, T ], H1+s
H ) ∩ C1([0, T ], Hs

H)

which satisfies the estimate

‖u(t, ·)‖2
H1+s
H

+ ‖∂t u(t, ·)‖2Hs
H

≤ C(‖u0‖2H1+s
H

+ ‖u1‖2Hs
H

). (2.1)

The same result is true also for the Cauchy problem (1.10).

Anticipating the material of the next section, using Plancherel’s identity (3.5), in
our case we can express the Sobolev norm as

‖ f ‖Hs
H =

⎛
⎜⎝

∑

ξ∈N2
0

(B + 2Bξ2)
s

2∑
j=1

∣∣∣∣
∫

R2
f (x)e jξ (x)dx

∣∣∣∣
2

⎞
⎟⎠

1/2

, (2.2)

with e jξ as in (1.6).
In Theorem 2.1, the assumption of q being real valued is actually enough to assure

the well-posedness; however, we assume that q ≥ 0 to facilitate the proofs of the
distributional results later.

We now describe the notion of veryweak solutions and formulate the corresponding
results for distributions a, q ∈ D′([0, T ]). The first main idea is to start from the
distributional coefficient a to regularise it by convolution with a suitable mollifier ψ

obtaining families of smooth functions (aε)ε, namely

aε = a ∗ ψω(ε), (2.3)

where ψω(ε)(t) = ω(ε)−1ψ(t/ω(ε)) and ω(ε) is a positive function converging to
0 as ε → 0 to be chosen later. Here, ψ is a Friedrichs-mollifier, i.e. ψ ∈ C∞

0 (R),
ψ ≥ 0 and

∫
ψ = 1. It turns out that the net (aε)ε is C∞-moderate, in the sense that

its C∞-seminorms can be estimated by a negative power of ε. More precisely, we will
make use of the following notions of moderateness.

In the sequel, the notation K � R means that K is a compact set in R.
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Definition 2.2 (i) A net of functions ( fε)ε ∈ C∞(R)(0,1] (i.e. ( fε)ε∈(0,1] ⊂ C∞(R))
is said to be C∞-moderate if for all K � R and for all α ∈ N0 there exist
N = Nα ∈ N0 and c = cα > 0 such that

sup
t∈K

|∂α fε(t)| ≤ cε−N−α,

for all ε ∈ (0, 1].
(ii) A net of functions (uε)ε ∈ C∞([0, T ]; Hs

H)(0,1] is said to be C∞([0, T ]; Hs
H)-

moderate if there exist N ∈ N0 and ck > 0 for all k ∈ N0 such that

‖∂kt uε(t, ·)‖Hs
H ≤ ckε

−N−k,

for all t ∈ [0, T ] and ε ∈ (0, 1].
We note that the conditions ofmoderateness are natural in the sense that regularisations
of distributions are moderate, namely we can regard

compactly supported distributions E ′(R) ⊂ {C∞-moderate families} (2.4)

by the structure theorems for distributions.
Thus, while a solution to the Cauchy problems may not exist in the space of distrib-

utions on the left-hand side of (2.4), it may still exist (in a certain appropriate sense) in
the space on its right-hand side. Themoderateness assumption will be crucial allowing
to recapture the solution as in (2.1) should it exist. However, we note that regularisation
with standard Friedrichs mollifiers will not be sufficient, hence the introduction of a
family ω(ε) in the above regularisations.

We can now introduce a notion of a ‘very weak solution’ for the Cauchy problem
(1.7).

Definition 2.3 Let s ∈ R and u0, u1 ∈ Hs
H. The net (uε)ε ∈ C∞([0, T ]; Hs

H) is a
very weak solution of order s of the Cauchy problem (1.7) if there exist

C∞-moderate regularisations aε and qε of the coefficients a and q,
such that (uε)ε solves the regularised problem

⎧
⎨
⎩

∂2t uε(t, x) + aε(t)[H + qε(t)]uε(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

uε(0, x) = u0(x), x ∈ R
2,

∂t uε(0, x) = u1(x), x ∈ R
2,

for all ε ∈ (0, 1], and is C∞([0, T ]; Hs
H)-moderate.

We note that according to Theorem 2.1 the regularised Cauchy problem (2.3) has
a unique solution satisfying estimate (2.1).

In [15], the authors studied weakly hyperbolic second-order equations with time-
dependent irregular coefficients, assuming that the coefficients are distributions. For
such equations, the authors of [15] introduced the notion of a ‘very weak solution’
adapted to the type of solutions that exist for regular coefficients. We now apply a
modification of this notion to the Cauchy problems (1.7) and (1.10).
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In the following theorem, we assume that a is a strictly positive distribution, which
means that there exists a constant a0 > 0 such that a − a0 is a positive distribution. In
other words,

a ≥ a0 > 0,

where a ≥ a0 means that a−a0 ≥ 0, i.e. 〈a−a0, ψ〉 ≥ 0 for all ψ ∈ C∞
0 (R),ψ ≥ 0.

Analogously, a distribution q is called real valued if 〈q, ψ〉 ∈ R for all real-valued
test functions ψ ∈ C∞

0 (R), and q is positive if 〈q, ψ〉 ≥ 0 whenever ψ ≥ 0.
The main results of this paper can be summarised as the following solvability

statement complemented by the uniqueness and consistency in Theorems 6.2 and 2.5.

Theorem 2.4 (Existence) Let the coefficients a and q of the Cauchy problem (1.7) be
positive distributions with compact support included in [0, T ], such that a ≥ a0 for
some constant a0 > 0. Let s ∈ R and let the Cauchy data u0, u1 be in Hs+1

H . Then the
Cauchy problem (1.7) has a very weak solution of order s.

The same result is true also for the Cauchy problem (1.10).

Since s is allowed to be negative, the Cauchy data are allowed to beH-distributions
(i.e. elements of Hs

H with negative s). In Theorem 6.2, we show that the very weak
solution is unique in an appropriate sense.

But now let us formulate the theorem saying that very weak solutions recapture
the classical solutions; in the case, the latter exist. This happens, for example, under
conditions of Theorem 2.1. So, we can compare the solution given by Theorem 2.1
with the very weak solution in Theorem 2.4 under assumptions when Theorem 2.1
holds.

Theorem 2.5 (Consistency) Assume that a, q ∈ L∞
1 ([0, T ]) are such that a(t) ≥

a0 > 0 and q(t) ≥ 0. Let s ∈ R, and consider the Cauchy problem

⎧⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

(2.5)

with (u0, u1) ∈ H1+s
H × Hs

H. Let u be a very weak solution of (2.5). Then for any
regularising families aε, qε in Definition 2.3, any representative (uε)ε of u converges
in C([0, T ], H1+s

H ) ∩ C1([0, T ], Hs
H) as ε → 0 to the unique classical solution in

C([0, T ], H1+s
H ) ∩ C1([0, T ], Hs

H) of the Cauchy problem (2.5) given by Theorem
2.1.

The same statement holds for (2.5) replaced by (1.10).

Here, the very weak solution is understood according to Definition 2.3. We now
proceed with preparation for proving theorems in this section.

3 Fourier analysis for the Landau Hamiltonian

In this section, we recall the necessary elements of the global Fourier analysis that
has been developed in [33] and applied to the present setting. Although the domain
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R
2 in our setting is unbounded, the following constructions carry over without any

significant changes. Moreover, there is a significant simplification since the appearing
Fourier analysis is self-adjoint. A more general version of these constructions under
weaker conditions can be found in [34]. For application of the general non-self-adjoint
analysis to the spectral analysis, we refer to [12].

The spaceC∞
H (R2) := Dom(H∞) is called the space of test functions forH, where

we define

Dom(H∞) :=
∞⋂
k=1

Dom(Hk),

where Dom(Hk) is the domain of the operator Hk , in turn defined as

Dom(Hk) := { f ∈ L2(R2) : H j f ∈ Dom(H), j = 0, 1, 2, . . . , k − 1}.

The Fréchet topology of C∞
H (R2) is given by the family of norms

‖ϕ‖Ck
H

:= max
j≤k

‖H jϕ‖L2(R2), k ∈ N0, ϕ ∈ C∞
H (R2). (3.1)

The space of H-distributions

D′
H(R2) := L(C∞

H (R2),C)

is the space of all linear continuous functionals on C∞
H (R2). For w ∈ D′

H(R2) and
ϕ ∈ C∞

H (R2), we shall write

w(ϕ) = 〈w, ϕ〉.

For any ψ ∈ C∞
H (R2), the functional

C∞
H (R2) � ϕ �→

∫

R2
ψ(x) ϕ(x) dx

is an H-distribution, which gives an embedding ψ ∈ C∞
H (R2) ↪→ D′

H(R2).
Taking into account the fact that the eigenfunctions of the Landau Hamiltonian in

(1.5) come in pairs, it will be convenient to group them together in the way suggested
by the notation (1.6). This leads to the following definitions. Let S(N2

0) denote the
space of rapidly decaying functions ϕ : N2

0 → C
2×2 of the form

ϕ :=
(

ϕ11 0
0 ϕ22

)
.

That is, ϕ ∈ S(N2
0) if for any M < ∞ there exists a constant Cϕ,M such that

|ϕ(ξ)| ≤ Cϕ,M 〈ξ 〉−M
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600 M. Ruzhansky, N. Tokmagambetov

holds for all ξ ∈ N
2
0, where we denote

〈ξ 〉 := |√λξ2 | = |√(2ξ2 + 1)B|.

The topology on S(N2
0) is given by the seminorms pk , where k ∈ N0 and

pk(ϕ) := sup
ξ∈N2

0

〈ξ 〉k |ϕ(ξ)|.

We now define theH-Fourier transform on C∞
H (R2) as the mapping

(FH f )(ξ) = ( f �→ f̂ ) : C∞
H (R2) → S(N2

0)

by the formula

f̂ (ξ) := (FH f )(ξ) =
∫

R2
f (x)eξ (x)dx, (3.2)

where

eξ (x) =
(
e1ξ (x) 0
0 e2ξ (x)

)
.

The H-Fourier transform FH is a bijective homeomorphism from C∞
H (R2) to

S(N2
0). Its inverse

F−1
H : S(N2

0) → C∞
H (R2)

is given by
(F−1

H h)(x) =
∑

ξ∈N2
0

Tr
(
h(ξ)eξ (x)

)
, h ∈ S(N2

0), (3.3)

so that the Fourier inversion formula becomes

f (x) =
∑

ξ∈N2
0

Tr
(
f̂ (ξ)eξ (x)

)
for all f ∈ C∞

H (R2). (3.4)

The Plancherel identity takes the form

‖ f ‖L2(R2) =
⎛
⎜⎝

∑

ξ∈N2
0

‖ f̂ (ξ)‖2HS

⎞
⎟⎠

1/2

=: ‖ f̂ ‖�2(N2
0)

, (3.5)

which we can take as the definition of the norm on the Hilbert space �2(N2
0), and where

‖ f̂ (ξ)‖2HS = Tr( f̂ (ξ) f̂ (ξ)) is the Hilbert–Schmidt norm of the matrix f̂ (ξ).
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One can readily check that test functions and distributions on R
2 can be charac-

terised in terms of their Fourier coefficients. Thus, we have

f ∈ C∞
H (R2) ⇐⇒ ∀N ∃CN such that ‖ f̂ (ξ)‖HS ≤ CN 〈ξ 〉−N for all ξ ∈ N

2
0.

In addition, for distributions, we have

u ∈ D′
H(R2) ⇐⇒ ∃M ∃C such that ‖û(ξ)‖HS ≤ C〈ξ 〉M for all ξ ∈ N

2
0.

In general, given a linear continuous operator L : C∞
H (R2) → C∞

H (R2) (or
even L : C∞

H (R2) → D′
H(R2)), we can define its matrix symbol by σL(x, ξ) :=

eξ (x)−1(Leξ )(x) ∈ C
2×2, where Leξ means that we apply L to the matrix compo-

nents of eξ (x), provided that eξ (x) is invertible in a suitable sense. In this case, we
may prove that

L f (x) =
∑

ξ∈N2
0

Tr
(
eξ (x)σL(x, ξ) f̂ (ξ)

)
. (3.6)

The correspondence between operators and symbols is one-to-one. The quantization
(3.6) has been extensively studied in [35,36] in the setting of compact Lie groups, and
in [33] in the setting of (non-self-adjoint) boundary value problems, to which we may
refer for its properties and for the corresponding symbolic calculus.

However, the situation with the Landau Hamiltonian is nowmuch simpler since this
operator can be treated as an ‘invariant’ operator in the corresponding global calculus.
The operator H acts as a Fourier multiplier in its own Fourier calculus; therefore, its
symbol σH(ξ) is independent of x , and since H is formally self-adjoint and positive
we can always write it in the form

σH(ξ) =
(

ν21 (ξ) 0
0 ν22 (ξ)

)
, (3.7)

for some ν j (ξ) ≥ 0. Indeed, we have ν2j (ξ) = B(1 + 2ξ2) for j = 1, 2.
Consequently, we can also define Sobolev spaces Hs

H associated to H. Thus, for
any s ∈ R, we set

Hs
H :=

{
f ∈ D′

H(R2) : Hs/2 f ∈ L2(R2)
}

, (3.8)

with the norm ‖ f ‖Hs
H := ‖Hs/2 f ‖L2 .Using Plancherel’s identity (3.5), we can write

‖ f ‖Hs
H = ‖Hs/2 f ‖L2

=
⎛
⎜⎝

∑

ξ∈N2
0

‖σH(ξ)s/2 f̂ (ξ)‖2HS

⎞
⎟⎠

1/2
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=
⎛
⎜⎝

∑

ξ∈N2
0

(B + 2Bξ2)
s

2∑
j=1

| f̂ (ξ) j j |2
⎞
⎟⎠

1/2

=
⎛
⎜⎝

∑

ξ∈N2
0

(B + 2Bξ2)
s

2∑
j=1

∣∣∣∣
∫

R2
f (x)e jξ (x)dx

∣∣∣∣
2

⎞
⎟⎠

1/2

, (3.9)

justifying the expression (2.2).

4 Proof of Theorem 2.1

We will prove the result for the Cauchy problem (1.7) since equation (1.10) can be
treated by the same argument with minor modification.

The operatorH has the symbol (3.7), which we can write in matrix components as

σH(ξ)mk = (B + 2Bξ2)δmk, 1 ≤ m, k ≤ 2,

with δmk standing for the Kronecker’s delta. Taking theH-Fourier transform of (1.7),
we obtain the collection of Cauchy problems for matrix-valued Fourier coefficients:

∂2t û(t, ξ) + a(t)[σH(ξ) + q(t)I]̂u(t, ξ) = 0, ξ ∈ N
2
0, (4.1)

where I is the identity 2 × 2 matrix. Writing this in the matrix form, we see that this
is equivalent to the system

∂2t û(t, ξ) + a(t)

(
(q(t) + B + 2Bξ2) 0

0 (q(t) + B + 2Bξ2)

)
û(t, ξ) = 0.

Rewriting (4.1) in terms of matrix coefficients û(t, ξ) = (̂u(t, ξ)mk)1≤m,k≤2, we get
the equations

∂2t û(t, ξ)mk+a(t)(q(t)+B+2Bξ2)̂u(t, ξ)mk = 0, ξ ∈ N
2
0, 1 ≤ m, k ≤ 2. (4.2)

The main point of our further analysis is that we can make an individual treatment of
the equations in (4.2) and then collect the estimates together using the H-Plancherel
theorem.

Thus, let us fix ξ ∈ N
2
0 and m, k with 1 ≤ m, k ≤ 2, and let us denote

v̂(t, ξ) := û(t, ξ)mk .

We then study the Cauchy problem

∂2t v̂(t, ξ)+a(t)(q(t)+B+2Bξ2)̂v(t, ξ) = 0, v̂(t, ξ) = v̂0(ξ), ∂t v̂(t, ξ) = v̂1(ξ),

(4.3)
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with ξ,m being parameters, and want to derive estimates for v̂(t, ξ). Combined with
the characterisation (3.9) of Sobolev spaces this will yield the well-posedness results
for the original Cauchy problem (1.7).

In the sequel, for fixed m, we set

ν2(ξ) := (B + 2Bξ2). (4.4)

Hence, the equation in (4.3) can be written as

∂2t v̂(t, ξ) + a(t)ν2(ξ)

[
1 + q(t)

ν2(ξ)

]
v̂(t, ξ) = 0. (4.5)

We now proceed with a standard reduction to a first-order system of this equation and
define the corresponding energy. The energy estimates will be given in terms of t and
ν(ξ) and we then go back to t , ξ and m using (4.4).

We can now do the natural energy construction for (4.5).We use the transformation

V1 := iν(ξ )̂v,

V2 := ∂t v̂.

It follows that the Eq. (4.5) can be written as the first-order system

∂t V (t, ξ) = iν(ξ)A(t, ξ)V (t, ξ), (4.6)

where V is the column vector with entries V1 and V2 and

A(t, ξ) =
(

0 1

a(t)
[
1 + q(t)

ν2(ξ)

]
0

)
.

The initial conditions v̂(0, ξ) = v̂0(ξ), ∂t v̂(0, ξ) = v̂1(ξ) are transformed into

V (0, ξ) =
(
iν(ξ )̂v0(ξ)

v̂1(ξ)

)
.

Note that the matrix A has eigenvalues ±
√
a(t)

[
1 + q(t)

ν2(ξ)

]
and its symmetriser is

given by

S(t, ξ) =
(
a(t)

[
1 + q(t)

ν2(ξ)

]
0

0 1

)
, (4.7)

i.e. we have

SA − A∗S = 0.
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It is immediate to prove that

min
t∈[0,T ](a(t)

[
1 + q(t)

ν2(ξ)

]
, 1)|V |2 ≤ (SV, V ) ≤ max

t∈[0,T ](a(t)

[
1 + q(t)

ν2(ξ)

]
, 1)|V |2,

(4.8)
where (·, ·) and | · | denote the inner product and the norm in C, respectively.

Since a(t) > a0 ≥ 0, q(t) ≥ 0, and a, q ∈ C([0, T ]), it is clear that there exist
constants a1 > 0 and a2 > 0 such that

a1 = min
t∈[0,T ] a(t)

[
1 + q(t)

ν2(ξ)

]
and a2 = max

t∈[0,T ] a(t)

[
1 + q(t)

ν2(ξ)

]
.

Hence, (4.8) implies that

c1|V |2 = min(a0, 1)|V |2 ≤ (SV, V ) ≤ max(a1, 1)|V |2 = c2|V |2, (4.9)

with c1, c2 > 0. We then define the energy

E(t, ξ) := (S(t, ξ)V (t, ξ), V (t, ξ)).

We get, from (4.9), that

∂t E(t, ξ) = (∂t S(t, ξ)V (t, ξ), V (t, ξ)) + (S(t, ξ)∂t V (t, ξ), V (t, ξ))

+ (S(t, ξ)V (t, ξ), ∂t V (t, ξ))

= (∂t S(t, ξ)V (t, ξ), V (t, ξ)) + iν(ξ)(S(t, ξ)A(t, ξ)V (t, ξ), V (t, ξ))

− iν(ξ)(S(t, ξ)V (t, ξ), A(t, ξ)V (t, ξ))

= (∂t S(t, ξ)V (t, ξ), V (t, ξ)) + iν(ξ)((SA − A∗S)(t, ξ)V (t, ξ), V (t, ξ))

= (∂t S(t, ξ)V (t, ξ), V (t, ξ))

≤ ‖∂t S‖|V (t, ξ)|2.

Since a(t)
[
1 + q(t)

ν2(ξ)

]
is bounded on [0, T ] and for all ξ , we obtain

∂t E(t, ξ) ≤ c′E(t, ξ), (4.10)

for some constant c′ > 0. A part of the subsequent application of the Gronwall’s
lemma is standard (see [25]) but we give it for completeness and clarity. By applying
Gronwall’s lemma to inequality (4.10), we conclude that for all T > 0 there exists
c > 0 such that

E(t, ξ) ≤ cE(0, ξ).

Hence, inequalities (4.9) yield

c0|V (t, ξ)|2 ≤ E(t, ξ) ≤ cE(0, ξ) ≤ cc1|V (0, ξ)|2,
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for constants independent of t ∈ [0, T ] and ξ . This allows us to write the following
statement: there exists a constant C1 > 0 such that

|V (t, ξ)| ≤ C1|V (0, ξ)|, (4.11)

for all t ∈ [0, T ] and ξ . Hence,

ν2(ξ)|̂v(t, ξ)|2 + |∂t v̂(t, ξ)|2 ≤ C ′
1(ν

2(ξ)|̂v0(ξ)|2 + |̂v1(ξ)|2).

Recalling the notation v̂(t, ξ) = û(t, ξ)mk and ν2(ξ) = (B + 2Bξ2), this means

(B + 2Bξ2)|̂u(t, ξ)mk |2+|∂t û(t, ξ)mk |2 ≤ C ′
1(B+2Bξ2)|̂u0(ξ)mk |2+|̂u1(ξ)mk |2)

(4.12)

for all t ∈ [0, T ], ξ ∈ N
2
0 and 1 ≤ m, k ≤ 2, with the constant C ′

1 independent of ξ ,
m, k. Now we recall that by Plancherel’s equality, we have

‖∂t u(t, ·)‖2L2 =
∑

ξ∈N2
0

‖∂t û(t, ξ)‖2HS =
∑

ξ∈N2
0

2∑
m,k=1

|∂t û(t, ξ)mk |2

and

‖H1/2u(t, ·)‖2L2 =
∑

ξ∈N2
0

‖σH (ξ)1/2 û(t, ξ)‖2HS =
∑

ξ∈N2
0

2∑
m,k=1

(B + 2Bξ2)|̂u(t, ξ)mk |2.

Hence, the estimate (4.12) implies that

‖H1/2u(t, ·)‖2L2 + ‖∂t u(t, ·)‖2L2 ≤ C(‖H1/2u0‖2L2 + ‖u1‖2L2), (4.13)

where the constant C > 0 does not depend on t ∈ [0, T ]. More generally, multiplying
(4.12) by powers of (B + 2Bξ2), for any s, we get

(B + 2Bξ2)
1+s |̂u(t, ξ)mk |2 + (B + 2Bξ2)

s |∂t û(t, ξ)mk |2
≤ C ′

1(B + 2Bξ2)
1+s |̂u0(ξ)mk |2 + (B + 2Bξ2)

s |̂u1(ξ)mk |2). (4.14)

Taking the sum over ξ , m and k as above, this yields the estimate (2.1).

5 Proof of Theorem 2.4

Again, in this sectionwe deal with the Cauchy problem (1.7) and the proof for equation
(1.10) can be done by minor modifications.

Wenowassume that the equation coefficients are distributionswith compact support
contained in [0, T ]. Since the formulation of (1.7) in this case might be impossible in
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the distributional sense due to issues related to the product of distributions, we replace
(1.7) with a regularised equation. In other words, we regularise a, q by convolution
with a mollifier in C∞

0 (R) and get nets of smooth functions as coefficients. More
precisely, let ψ ∈ C∞

0 (R), ψ ≥ 0 with
∫

ψ = 1, and let ω(ε) be a positive function
converging to 0 as ε → 0, with the rate of convergence to be specified later. Define

ψω(ε)(t) := 1

ω(ε)
ψ

(
t

ω(ε)

)
,

aε(t) := (a ∗ ψω(ε))(t), qε(t) := (q ∗ ψω(ε))(t), t ∈ [0, T ].

Since a is a positive distribution with compact support (hence a Radon measure) and
ψ ∈ C∞

0 (R), suppψ ⊂ K, ψ ≥ 0, identifying the measure a with its density, we can
write

aε(t) = (a ∗ ψω(ε))(t) =
∫

R

a(t − τ)ψω(ε)(τ )dτ =
∫

R

a(t − ω(ε)τ)ψ(τ)dτ

=
∫

K

a(t − ω(ε)τ)ψ(τ)dτ ≥ a0

∫

K

ψ(τ)dτ := ã0 > 0,

with a positive constant ã0 > 0 independent of ε.
By the structure theorem for compactly supported distributions, we have that there

exist L1, L2 ∈ N and c1, c2 > 0 such that

|∂kt aε(t)| ≤ c1 ω(ε)−L1−k, |∂kt qε(t)| ≤ c2 ω(ε)−L2−k, (5.1)

for all k ∈ N0 and t ∈ [0, T ]. We note that the numbers L1 and L2 may be related to
the distributional orders of a and q but we will not be needing such a relation in our
proof.

Hence, aε, qε are C∞-moderate regularisations of the coefficients a, q. Now, fix
ε ∈ (0, 1], and consider the regularised problem

⎧⎨
⎩

∂2t uε(t, x) + aε(t)[H + qε(t)]uε(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

uε(0, x) = u0(x), x ∈ R
2,

∂t uε(0, x) = u1(x), x ∈ R
2,

(5.2)

with the Cauchy data satisfy (u0, u1) ∈ H1+s
H × Hs

H and aε ∈ C∞[0, T ]. Then all
discussions and calculations of Theorem 2.1 are valid. Thus, by Theorem 2.1, the
Eq. (5.2) has a unique solution in the space C0([0, T ]; H1+s

H ) ∩ C1([0, T ]; Hs
H). In

fact, this unique solution is from C∞([0, T ]; Hs
H). This can be checked by taking

in account that aε, qε ∈ C∞([0, T ]) and by differentiating both sides of the equation
(5.2) in t inductively. Applying Theorem 2.1 to the equation (5.2), using the inequality

‖∂t Sε(t, ξ)‖ ≤ C(|∂t aε(t)||qε(t)| + |aε(t)||∂t qε(t)|) ≤ Cω(ε)−L1−L2−1,
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with Sε corresponding to (4.7), and Gronwall’s lemma, we get the estimate

‖uε(t, ·)‖2H1+s
H

+ ‖∂t uε(t, ·)‖2Hs
H

≤ C exp
(
cω(ε)−L1−L2−1T

)(
‖u0‖2H1+s

H
+ ‖u1‖2Hs

H

)
, (5.3)

where the coefficients L1 and L2 are from (5.1).
Put ω(ε) ∼ log(ε)−1. Then the estimate (5.3) transforms to

‖uε(t, ·)‖2H1+s
H

+ ‖∂t uε(t, ·)‖2Hs
H

≤ Cε−L1−L2−1
(

‖u0‖2H1+s
H

+ ‖u1‖2Hs
H

)
,

with possibly new constants L1, L2. To simplify the notation, we continue denoting
them by the same letters.

Now, let us show that there exist N ∈ N0, c > 0 and, for all k ∈ N0 there exist
Nk > 0 and ck > 0 such that

‖∂kt uε(t, ·)‖Hs
H ≤ ckε

−N−k,

for all t ∈ [0, T ], and ε ∈ (0, 1].
Applying (4.9) and (4.10) to the problem with aε and qε, and by taking account the

properties of aε and qε, we get

(B + 2Bξ2)|ûε(t, ξ)mk |2 + |∂t ûε(t, ξ)mk |2
≤ Cε−L1−L2−1((B + 2Bξ2)|̂u0(ξ)mk |2 + |̂u1(ξ)mk |2)

for all t ∈ [0, T ], ξ ∈ N
2
0 and 1 ≤ m, k ≤ 2, with the constant C independent of ξ ,

m, k. Thus, we obtain

‖∂t uε(t, ·)‖Hs
H ≤ Cε−L1−L2−1, ‖uε(t, ·)‖Hs+1

H
≤ Cε−L1−L2 .

Acting by the iterations of ∂t and by H on the equality

∂2t uε(t, x) = aε(t)[H + qε(t)]uε(t, x),

and taking it in L2-norms, we conclude that uε is C∞([0, T ]; Hs
H)-moderate.

This shows that the Cauchy problem (1.7) has a very weak solution.

6 Consistency with the classical well-posedness

In this section, we show that when the coefficients are regular enough then the very
weak solution coincides with the classical one: this is the content of Theorem 2.5
which we will prove here.
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608 M. Ruzhansky, N. Tokmagambetov

Moreover, we show that the very weak solution provided by Theorem 2.4 is unique
in an appropriate sense. For formulating the uniqueness statement, it will be convenient
to use the language of Colombeau algebras.

Definition 6.1 We say that (uε)ε is C∞-negligible if for all K � R, for all α ∈ N and
for all � ∈ N there exists a constant c > 0 such that

sup
t∈K

|∂αuε(t)| ≤ cε�,

for all ε ∈ (0, 1].
We now introduce the Colombeau algebra as the quotient

G(R) = C∞ − moderate nets

C∞ − negligible nets
.

For the general analysis of G(R), we refer to Oberguggenberger [27].

Theorem 6.2 (Uniqueness)Let a andq be positive distributionswith compact support
included in [0, T ], such that a ≥ a0 for some constant a0 > 0. Let (u0, u1) ∈
H1+s
H × Hs

H for some s ∈ R. Then there exists an embedding of the coefficients a and
q into G([0, T ]), such that the Cauchy problem (1.7), that is

⎧⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = 0, (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

has a unique solution u ∈ G([0, T ]; Hs
H) for all s ∈ R.

The same statement holds also for the Cauchy problem (1.10).

Here, G([0, T ]; Hs
H) stands for the space of families which are in G([0, T ]) with

respect to t and in Hs
H with respect to x .

Proof Let us show that by embedding coefficients in the corresponding Colombeau
algebras, the Cauchy problem has a unique solution u ∈ G([0, T ]; Hs

H). Assume now
that the Cauchy problem has another solution v ∈ G([0, T ]; Hs

H). At the level of
representatives, this means

⎧⎨
⎩

∂2t (uε − vε)(t, x) + aε(t)[H + qε(t)](uε − vε)(t, x) = fε(t, x),
(uε − vε)(0, x) = 0,
(∂t uε − ∂tvε)(0, x) = 0,

with

fε(t, x) = (aε(t) − ãε(t))Hvε(t, x) + (aε(t)qε(t) − ãε(t)q̃ε(t))vε(t, x),
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where (̃aε)ε and (q̃ε)ε are approximations corresponding to vε. It is obvious that fε is
C∞([0, T ]; Hs

H)-negligible. The corresponding first-order system is

∂t

(
W1,ε
W2,ε

)
=

(
0 iH1/2

iaε(t)[H1/2 + qε(t)H−1/2] 0

)(
W1,ε
W2,ε

)
+

(
0
fε

)
,

where W1,ε and W2,ε are obtained via the transformation

W1,ε = H1/2(uε − vε), W2,ε = ∂t (uε − vε).

This system will be studied after H-Fourier transform, as a system of the type

∂t Vε(t, ξ) = iν(ξ)Aε(t, ξ)Vε(t, ξ) + Fε(t, ξ),

with

Fε =
(

0
FH fε

)
,

and

Aε(t, ξ) =
(

0 1

aε(t)
[
1 + 1

ν2(ξ)
qε(t)

]
0

)
,

with Cauchy data

Vε(0, ξ) =
(
0
0

)
.

For the symmetriser

Sε(t, ξ) =
(
aε(t)

[
1 + 1

ν2(ξ)
qε(t)

]
0

0 1

)

define the energy

Eε(t, ξ) := (Sε(t, ξ)Vε(t, ξ), Vε(t, ξ)).

We get

∂t Eε(t, ξ) = (∂t Sε(t, ξ)Vε(t, ξ), Vε(t, ξ)) + (Sε(t, ξ)∂t Vε(t, ξ), Vε(t, ξ))

+ (Sε(t, ξ)Vε(t, ξ), ∂t Vε(t, ξ))

= (∂t Sε(t, ξ)Vε(t, ξ), Vε(t, ξ))+iν(ξ)(Sε(t, ξ)Aε(t, ξ)Vε(t, ξ), Vε(t, ξ))

− iν(ξ)(Sε(t, ξ)Vε(t, ξ), Aε(t, ξ)Vε(t, ξ))

+ (Sε(t, ξ)Fε(t, ξ), Vε(t, ξ)) + (Sε(t, ξ)Vε(t, ξ), Fε(t, ξ))
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= (∂t Sε(t, ξ)Vε(t, ξ), Vε(t, ξ)) + iν(ξ)((SεAε − A∗
ε Sε)(t, ξ)Vε(t, ξ),

Vε(t, ξ))

+ (Sε(t, ξ)Fε(t, ξ), Vε(t, ξ)) + (Vε(t, ξ), Sε(t, ξ)Fε(t, ξ))

= (∂t Sε(t, ξ)Vε(t, ξ), Vε(t, ξ)) + 2Re(Sε(t, ξ)Fε(t, ξ), Vε(t, ξ))

≤ ‖∂t Sε‖|Vε(t, ξ)|2 + 2Re(Sε(t, ξ)Fε(t, ξ), Vε(t, ξ))

≤ ‖∂t Sε‖|Vε(t, ξ)|2 + 2‖Sε‖|Fε(t, ξ)||Vε(t, ξ)|.

Assuming for the moment that |Vε(t, ξ)| > 1, we get the energy estimate

∂t Eε(t, ξ) ≤ ‖∂t Sε‖|Vε(t, ξ)|2 + 2‖Sε‖|Fε(t, ξ)||Vε(t, ξ)|
≤ (‖∂t Sε‖ + 2‖Sε‖|Fε(t, ξ)|)|Vε(t, ξ)|2
≤ (|∂t aε(t)||qε(t)|+2|aε(t)||∂t qε(t)|+|aε(t)||qε(t)||Fε(t, ξ)|) |Vε(t, ξ)|2
≤ cω(ε)−L1−L2−1Eε(t, ξ),

i.e. we obtain
∂t Eε(t, ξ) ≤ cω(ε)−L1−L2−1Eε(t, ξ), (6.1)

for some constant c > 0. ByGronwall’s lemma applied to inequality (6.1)we conclude
that for all T > 0

Eε(t, ξ) ≤ exp(cω(ε)−L1−L2−1 T )Eε(0, ξ).

Hence, inequalities (4.9) yield

c0|Vε(t, ξ)|2 ≤ Eε(t, ξ)

≤ exp(cω(ε)−L1−L2−1 T )Eε(0, ξ)

≤ exp(c1 ω(ε)−L1−L2−1 T )|Vε(0, ξ)|2,

for the constant c1 independent of t ∈ [0, T ] and ξ .
By putting ω(ε) ∼ log(ε)−1, we get

|Vε(t, ξ)|2 ≤ c ε−L1−L2−1|Vε(0, ξ)|2

for some constant c and some (new) L1, L2. Since |Vε(0, ξ)| = 0, we have

|Vε(t, ξ)| ≡ 0,

for all ξ and for t ∈ [0, T ].
Now consider the case when |Vε(t, ξ)| < 1. Assume that |Vε(t, ξ)| ≥ cω(ε)α for

some constant c and α > 0. It means

1

|Vε(t, ξ)| ≤ C ω(ε)−α.
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Then the estimate for the energy becomes

∂t Eε(t, ξ) ≤ C ω(ε)−L Eε(t, ξ),

where L = L1 + L2 + max{1, α}, and by Gronwall’s lemma

|Vε(t, ξ)|2 ≤ exp(C ′ ω(ε)−L T )|Vε(0, ξ)|2.

And again, by putting ω(ε) ∼ log−1(ε), we get

|Vε(t, ξ)|2 ≤ c′ ε−L |Vε(0, ξ)|2

for some c′ and some (new) L . Since |Vε(0, ξ)| = 0, we have

|Vε(t, ξ)| ≡ 0,

for all t ∈ [0, T ] and ξ .
The last case is when |Vε(t, ξ)| ≤ cω(ε)α for some constant c and α > 0. Indeed,

it completes the proof of Theorem 6.2. ��
Proof of Theorem 2.5 We now want to compare the classical solution ũ given by The-
orem 2.1 with the very weak solution u provided by Theorem 2.5. By the definition
of the classical solution we know that

⎧
⎨
⎩

∂2t ũ(t, x) + a(t)[H + q(t)]̃u(t, x) = 0,
ũ(0, x) = u0(x),
∂t ũ(0, x) = u1(x).

(6.2)

By the definition of the very weak solution u, there exists a representative (uε)ε of u
such that ⎧⎨

⎩
∂2t uε(t, x) + aε(t)[H + qε(t)]uε(t, x) = 0,
uε(0, x) = u0(x),
∂t uε(0, x) = u1(x),

(6.3)

for a suitable embedding of the coefficients a and q. Noting that for a, q ∈ L∞
1 ([0, T ])

the nets (aε −a)ε and (qε −q)ε are converging to 0 in C([0, T ]×R
2), we can rewrite

(6.2) as ⎧⎨
⎩

∂2t ũ(t, x) + aε(t)[H + qε(t)]̃u(t, x) = nε(t, x),
ũ(0, x) = u0(x),
∂t ũ(0, x) = u1(x),

(6.4)

where nε(t, x) = [(aε(t) − a(t))H + (aε(t)qε(t) − a(t)q(t))nε(t, x), and nε ∈
C([0, T ]; Hs

H) and converges to 0 in this space as ε → 0. From (6.3) and (6.4),
we get that ũ − uε solves the Cauchy problem

⎧⎨
⎩

∂2t (̃u − uε)(t, x) + aε(t)[H + qε(t)](̃u − uε)(t, x) = nε(t, x),
(̃u − uε)(0, x) = 0,
(∂t ũ − ∂t uε)(0, x) = 0.
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As in the first part of the proof we arrive, after reduction to a system and by application
of the Fourier transform to estimate |(Ṽ − Vε)(t, ξ)| in terms of (Ṽ − Vε)(0, ξ) and
the right-hand side nε(t, x), to the energy estimate

∂t Eε(t, ξ) ≤ (|∂t aε(t)||qε(t)| + |aε(t)||∂t qε(t)|) |(Ṽ − Vε)(t, ξ)|2
+ 2|aε(t)||qε(t)||nε(t, ξ)||(Ṽ − Vε)(t, ξ)|.

Since the coefficients are regular enough, we simply get

∂t Eε(t, ξ) ≤ c1 |(Ṽ − Vε)(t, ξ)|2 + c2 |nε(t, ξ)||(Ṽ − Vε)(t, ξ)|.

Since (Ṽ −Vε)(0, ξ) = 0 and nε → 0 in C([0, T ]; Hs
H) and continuing to discussing

as in Theorem 6.2we conclude that |(Ṽ−Vε)(t, ξ)| ≤ cω(ε)α for some constant c and
α > 0. Then we have uε → ũ in C([0, T ], H1+s

H )∩C1([0, T ], Hs
H). Moreover, since

any other representative of u will differ from (uε)ε by a C∞([0, T ]; Hs
H)-negligible

net, the limit is the same for any representative of u. ��

7 Inhomogeneous equation case

In this section, we are going to give brief ideas for how to deal with the inhomogeneous
wave equation

⎧⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

(7.1)

where a = a(t) ≥ 0 is a distributional propagation speed function, q = q(t) is the
distributional electromagnetic scalar potential, f = f (t, x) is the distributional source
term, and H is the Landau Hamiltonian.

Theorem 7.1 Given f ∈ C([0, T ]; Hs
H). Assume that a, q ∈ L∞

1 ([0, T ]) are such
that a(t) ≥ a0 > 0 and q(t) ≥ 0. For any s ∈ R, if the Cauchy data satisfy
(u0, u1) ∈ H1+s

H × Hs
H, then the Cauchy problem (7.1) has a unique solution u ∈

C([0, T ]; H1+s
H ) ∩ C1([0, T ]; Hs

H) which satisfies the estimate

‖u(t, ·)‖2
H1+s
H

+ ‖∂t u(t, ·)‖2Hs
H

≤ C

(
‖u0‖2H1+s

H
+ ‖u1‖2Hs

H
+ sup

0≤t≤T
‖ f (t, ·)‖2Hs

H

)
.

(7.2)

Keeping the notations the same as in the proof ofTheorem2.1,we canwrite equation
(7.1) as the first-order system

∂t V (t, ξ) = iν(ξ)A(t, ξ)V (t, ξ) + F(t, ξ), (7.3)
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where

F(t, ξ) =
(

0
f̂ (t, ξ)

)
,

and for the energy E(t, ξ) := (SV, V ) we get

∂t E(t, ξ) = (∂t SV, V ) + (S∂t V, V ) + (SV, ∂t V )

= (∂t SV, V ) − 2Im(SF, V )

≤ (‖∂t S‖ + 1)|V |2 + ‖SF‖2
≤ max(‖∂t S‖ + 1, ‖S‖2)(|V |2 + |F |2)
≤ C1E(t, ξ) + C2|F |2

with some constants C1 and C2. An application of Cronwall’s lemma combined with
the estimates (4.9) implies

|V |2 ≤ c−1
1 E(t, ξ) ≤ C1|V0|2 + C2 sup

0≤t≤T
|F(t, ξ)|2,

which is valid for all t ∈ [0, T ] with ‘new’ constants C1 and C2 depending on T . By
continuing our discussion as in the proof of Theorem 2.1, we prove Theorem 7.1.

Let us formulate definition of the very weak solution for the inhomogeneous wave
equation (7.1).

Definition 7.2 Let s ∈ R, f ∈ C([0, T ]; Hs
H) and u0, u1 ∈ Hs

H. The net (uε)ε ∈
C∞([0, T ]; Hs

H) is a very weak solution of order s of the Cauchy problem (7.1) if
there exist

C∞-moderate regularisations aε and qε of the coefficients a and q,
C∞([0, T ]; Hs

H)-moderate regularisation fε of the source term f ,

such that (uε)ε solves the regularised problem

⎧
⎨
⎩

∂2t uε(t, x) + aε(t)[H + qε(t)]uε(t, x) = fε(t, x), (t, x) ∈ [0, T ] × R
2,

uε(0, x) = u0(x), x ∈ R
2,

∂t uε(0, x) = u1(x), x ∈ R
2,

for all ε ∈ (0, 1], and is C∞([0, T ]; Hs
H)-moderate.

Without significant changes in the proofs of Theorems 2.4, 2.5 and 6.2, we conclude
the following modified results for the Cauchy problem (7.1) for the inhomogeneous
wave equation.

Theorem 7.3 (Existence) Let the coefficients a and q of the Cauchy problem (7.1)
be positive distributions with compact support included in [0, T ], such that a ≥ a0
for some constant a0 > 0, and let the source term f (·, x) be a distribution with
compact support included in [0, T ]. Let s ∈ R and let the Cauchy data (u0, u1) be in
Hs+1
H × Hs

H and the source term f (t, ·) be in Hs
H. Then the Cauchy problem (7.1)

has a very weak solution of order s.
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614 M. Ruzhansky, N. Tokmagambetov

Now let us formulate the theorem saying that very weak solutions recapture the
classical solutions in the case the latter exist. This happens, for example, under con-
ditions of Theorem 7.1. So, we can compare the solution given by Theorem 7.1 with
the very weak solution in Theorem 7.3 under assumptions when Theorem 7.1 holds.

Theorem 7.4 (Consistency) Assume that a, q ∈ L∞
1 ([0, T ]) are such that a(t) ≥

a0 > 0 and q(t) ≥ 0, and f ∈ C([0, T ], Hs
H). Let s ∈ R, and consider the Cauchy

problem

⎧
⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

(7.4)

with (u0, u1) ∈ H1+s
H × Hs

H. Let u be a very weak solution of (7.4). Then for any reg-
ularising families aε, qε, fε in Definition 7.2, any representative (uε)ε of u converges
in C([0, T ], H1+s

H ) ∩ C1([0, T ], Hs
H) as ε → 0 to the unique classical solution in

C([0, T ], H1+s
H )∩C1([0, T ], Hs

H) of the Cauchy problem (7.4) given by Theorem 7.1.

Theorem 7.5 (Uniqueness)Let a andq be positive distributionswith compact support
included in [0, T ], such that a ≥ a0 for some constant a0 > 0, and the source term
f (·, x) be a distribution with compact support included in [0, T ]. Let (u0, u1) ∈
H1+s
H × Hs

H and the source term f (t, ·) be in Hs
H for some s ∈ R. Then there exists

an embedding of the coefficients a and q into G([0, T ]) and of f into G([0, T ]; Hs
H),

such that the Cauchy problem (7.1), that is,

⎧
⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R
2,

u(0, x) = u0(x), x ∈ R
2,

∂t u(0, x) = u1(x), x ∈ R
2,

has a unique solution u ∈ G([0, T ]; Hs
H) for all s ∈ R.

8 Landau Hamiltonian in R
2d

Here, we indicate a few changes in the multidimensional case compared to that in 2D.
Let x = (x1, . . . , x2d) ∈ R

2d and setting all physical constants to be equal to 1, in
analogy to the case of d = 1 in (1.2), let

H := 1

2
(i∇ − A)2, (8.1)

where

A = (−B1x2, B1x1,−B2x4, B2x3, . . . ,−Bdx2d , Bdx2d−1),

corresponding to the magnetic fields of constant strengths 2Bl > 0, l = 1, . . . , d.
The essentially self-adjoint operator H on C∞

0 (R2d) in the Hilbert space L2(R2d) =
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⊗d
1L

2(R2) decomposes as

H = H1 ⊗ I⊗(d−1) + I ⊗ H2 ⊗ I⊗(d−2) + · · · + I⊗(d−1) ⊗ Hd ,

with self-adjoint 2D operators Hl on L2(R2) as in (1.2). Let k = (k1, . . . , kd) ∈ N
d
0

be a multi-index. Then in analogy to (1.3), the spectrum ofH consists of the infinitely
degenerate eigenvalues

λk =
d∑

l=1

Bl(2kl + 1), (8.2)

with eigenfunctions corresponding to (1.5). In particular, in the isotropic case when
Bl = B > 0 for all l, for two multi-indices k, k′ ∈ N

d
0 , if |k| = |k′| then λk = λk′

so that the spectrum of H consists of eigenvalues of the form λm = B(2m + 1) with
m ∈ N0. We refer to [29] and references therein for more details on the spectral
analysis of this case.

We can now consider the Cauchy problem

⎧⎨
⎩

∂2t u(t, x) + a(t)[H + q(t)]u(t, x) = 0, (t, x) ∈ [0, T ] × R
2d ,

u(0, x) = u0(x), x ∈ R
2d ,

∂t u(0, x) = u1(x), x ∈ R
2d ,

(8.3)

as a generalisation of (1.7), with an analogous generalisation of (1.10):

⎧⎨
⎩

∂2t u(t, x) + a(t)Hu(t, x) + q(t)u(t, x) = 0, (t, x) ∈ [0, T ] × R
2d ,

u(0, x) = u0(x), x ∈ R
2d ,

∂t u(0, x) = u1(x), x ∈ R
2d .

(8.4)

Let us indicate briefly the changes in the corresponding Fourier analysis generated by
H. Thus, for any s ∈ R, we set

Hs
H :=

{
f ∈ D′

H(R2d) : Hs/2 f ∈ L2(R2d)
}

,

with the norm ‖ f ‖Hs
H := ‖Hs/2 f ‖L2 given by

‖ f ‖Hs
H =

⎛
⎜⎝

d∑
l=1

∑

ξ∈N2
0

(Bl + 2Blξ2)
s

2∑
j=1

∣∣∣∣
∫

R2
f (x)e jl,ξ (x)dx

∣∣∣∣
2

⎞
⎟⎠

1/2

, (8.5)

where for each l the function e jl,ξ is as in (1.5)–(1.6) with Bl instead of B.
Consequently, all the statements of Theorems 2.1, 2.5 and 6.2 continue to hold for

the Cauchy problems (8.3) and (8.4). Namely, we have

Theorem 8.1 (Classical solutions) Assume that a, q ∈ L∞
1 ([0, T ]) are such that

a(t) ≥ a0 > 0 and q(t) ≥ 0. For any s ∈ R, if the Cauchy data satisfy (u0, u1) ∈
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H1+s
H × Hs

H, then the Cauchy problems (8.3) and (8.4) have unique solutions u ∈
C([0, T ], H1+s

H ) ∩ C1([0, T ], Hs
H) satisfying the estimate

‖u(t, ·)‖2
H1+s
H

+ ‖∂t u(t, ·)‖2Hs
H

≤ C

(
‖u0‖2H1+s

H
+ ‖u1‖2Hs

H

)
. (8.6)

We also have the corresponding very weak solutions’ result.

Theorem 8.2 (Veryweak solutions)Let the coefficients a andq of theCauchy problem
(8.3) be positive distributions with compact support included in [0, T ], such that
a ≥ a0 for some constant a0 > 0. Let s ∈ R and let the Cauchy data u0, u1 be in Hs

H.
Then we have the following statements:

• (Existence) The Cauchy problem (8.3) has a very weak solution of order s.
• (Uniqueness) There exists an embedding of the coefficients a and q into G([0, T ])
such that the Cauchy problem (8.3) has a unique solution u ∈ G([0, T ]; Hs

H).
• (Consistency) Let u be a very weak solution of (8.3). If a, q ∈ L∞

1 ([0, T ]) are
such that a(t) ≥ a0 > 0 and q(t) ≥ 0, then for any regularising families aε, qε,
any representative (uε)ε of u converges in C([0, T ], H1+s

H ) ∩ C1([0, T ], Hs
H) as

ε → 0 to the unique classical solution in C([0, T ], H1+s
H ) ∩ C1([0, T ], Hs

H) of
the Cauchy problem (8.3) given by Theorem 8.1.

The same result is true also for the Cauchy problem (8.4).

These theorems follow by an easy adaptation of the corresponding 2D proofs, so
we omit them.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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