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Abstract We consider a model of fermions interacting via point interactions, defined
via a certain weighted Dirichlet form. While for two particles the interaction cor-
responds to infinite scattering length, the presence of further particles effectively
decreases the interaction strength. We show that the model becomes trivial in the
thermodynamic limit, in the sense that the free energy density at any given particle
density and temperature agrees with the corresponding expression for non-interacting
particles.
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1 Introduction

Due to their relevance for cold-atom physics [27], quantum-mechanical models of
particles with zero-range interactions have recently received a lot of attention. Of par-
ticular interest is the unitary limit of infinite scattering length, where one has scale
invariance due to the lack of any intrinsic length scale (see, e.g., [3,4,11,12,25]).
Despite some effort [5–7,9,21], it remains an open problem to establish the existence
of a many-particle model with two-body point interactions. Such a model is known
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to be unstable in the case of bosons (a fact known as Thomas effect [3,5,24], closely
related to the Efimov effect [8,22,26]) and hence can only exist for fermionic particles.
In contrast, the two-body problem is completely understood and point interactions can
be characterized via self-adjoint extensions of the Laplacian on R

3\{0} (see [1] for
details). These self-adjoint extensions can be interpreted as corresponding to an attrac-
tive point interaction, parametrized by the scattering length a, with interaction strength
increasingwith 1/a. For non-positive scattering length,a ≤ 0, the attraction is tooweak
to support bound states, while there exists a negative energy bound state for a > 0.

In the case of non-positive scattering length, a ≤ 0, corresponding to the absence of
two-body bound states, point interactions can alternatively be defined via the quadratic
form

∫
R3

(
1

|x | − 1

a

)2
|∇ f (x)|2 dx on L2(R3, (|x |−1 − a−1)2dx) (1.1)

The unitary limit corresponds to a−1 = 0. Recall that the scattering length is defined
(see, e.g., [14, Appendix C]) via the asymptotic behavior of the solution to the
zero-energy scattering equation, which in this case is simply equal to |x |−1 − a−1,
corresponding to f ≡ 1. To see that (1.1) corresponds to a point interaction at the
origin, note that an integration by parts shows that
∫

|x |≥ε

(
1

|x | − 1

a

)2
|∇ f (x)|2 dx =

∫
|x |≥ε

∣∣∣∣∇
(

1

|x | − 1

a

)
f (x)

∣∣∣∣
2

dx

−
∫

|x |=ε

(
1

|x | − 1

a

)
1

|x |2 | f (x)|2dω (1.2)

for any ε > 0. The last term vanishes as ε → 0 if f vanishes faster than |x |1/2 at the
origin.

We consider here amany-body generalization of (1.1), whichwas introduced in [2].
It has the advantage of beingmanifestlywell defined, via a non-negativeDirichlet form.
As already noted above, in general it is notoriously hard to define many-body systems
with point interactions, see [5–7,9,21], due to the inherent instability problems. The
model under consideration here was studied in [10], where it was shown to satisfy a
Lieb–Thirring inequality, i.e., the energy canbe bounded frombelowby a semiclassical
expression of the form C

∫
ρ(x)5/3dx , with ρ the particle density and C a positive

constant. Up to the value of C , this is the same as the inequality for non-interacting
fermions used by Lieb and Thirring [15,16] in their proof of stability of matter. (For
other recent work on Lieb–Thirring inequalities for interacting particles, see [17–20].)

The model considered here has the disadvantage that the interaction is not purely
two-body, however. In fact, it is a full many-body interaction, its strength depends on
the position of all the particles and is weakened due to their presence. We shall show
here that the effects of the interaction actually disappear in the thermodynamic limit,
and the thermodynamic free energy density agrees with the one for non-interacting
fermions.

In the next section, we shall introduce the model and explain our main results. The
rest of the paper is devoted to their proof.
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2 Model and main results

For N ≥ 2, �x = (x1, . . . , xN ) ∈ R
3N , let g : R3N → R denote the function

g(�x) =
∑

1≤i< j≤N

1

|xi − x j | . (2.1)

We consider fermions with q ≥ 1 internal (spin) states, described by wave functions
in the subspace AN

q ⊂ L2((R3 × {1, . . . , q})N , g(�x)2d�x) of functions that are totally
antisymmetric with respect to permutations of the variables yi = (xi , σi ), where
xi ∈ R

3 and σi ∈ {1, . . . , q}. For ψ ∈ AN
q , our model is defined via the quadratic

form

Eg(ψ) =
N∑
i=1

∫
R3N

g(�x)2|∇iψ(�y)|2d�y (2.2)

where ∇i stands for the gradient with respect to xi ∈ R
3, and we introduced the

shorthand notation
∫

. . . d�y =∑�σ
∫

. . . d�x with �σ = (σ1, . . . , σN ). Since g is a har-
monic function away from the planes {xi = x j } of particle intersection, an integration
by parts as in (1.2) shows that (2.2) corresponds to a model of point interactions, as
Eg(ψ) = ∑N

i=1

∫ |∇i gψ |2 in case ψ has compact support away from these planes.
More generally, Eg(ψ) =∑N

i=1

∫ |∇i gψ |2 holds if ψ vanishes faster than the square
root of the distance to the planes of intersection, which is in particular the case for
smooth and completely antisymmetric functions of the spatial variables. In other
words, the model is trivial for q = 1.

For N particles in a cubic box [0, L]3 ⊂ R
3, the free energy at temperature T =

β−1 > 0 is defined as usual as:

Fg = −T ln tr e−βHg (2.3)

where Hg denotes the operator defined by the quadratic form (2.2), restricted to func-
tions in AN

q ∩ H1(R3N ; g(�x)2d�x) with support in ([0, L]3)N . The latter restriction
corresponds to choosing Dirichlet boundary conditions on the boundary of the cube
[0, L]3. Alternatively, one can use the variational principle [13, Lemma 14.1] to write
the free energy as:

Fg(β, N , L) = −T ln sup
{ψk }〈ψi |ψ j 〉g=δi j

∑
k

e−βEg(ψk ) (2.4)

where 〈 · | · 〉g denotes the inner product on L2((R3 × {1, . . . , q})N , g(�x)2d�x),

〈ψi |ψ j 〉g =
∫
R3N

g2(�x)ψi (�y)ψ j (�y)d�y, (2.5)
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and the supremum is over all finite sets of orthonormal functions in AN
q with support

in ([0, L]3)N . We are interested in the thermodynamic limit

fg(β, ρ) = lim
N→∞

ρ

N
Fg(β, N , (N/ρ)1/3) (2.6)

where ρ > 0 denotes the particle density.
In the non-interacting case corresponding to taking g ≡ 1, the free energy density

can be evaluated explicitly, and is given by [23]

f (β, ρ) = sup
μ∈R

[
μρ − qT

(2π)3

∫
R3

ln
(
1 + e−β(p2−μ)

)
dp

]
(2.7)

Our main result shows that the two functions, fg and f , are actually identical.

Theorem 2.1 For any β > 0 and ρ > 0, and any q ≥ 1,

fg(β, ρ) = f (β, ρ) (2.8)

We shall actually prove a stronger result below, namely a lower bound on
Fg(β, N , L) for finite N which agrees with the corresponding expression for non-
interacting particles, F(β, N , L), to leading order in N , with explicit bounds on the
correction term. Note that the corresponding upper bound is trivial, since for functions
φ ∈ C∞

0 ((R3 × {1, . . . , q})N )

Eg(φ/g) =
N∑
i=1

∫
|∇iφ(�y)|2 d�y (2.9)

and hence Fg(β, N , L) ≤ F(β, N , L). Moreover, as already noted above one has
Fg(β, N , L) = F(β, N , L) for q = 1, since functions inAN

1 vanishwhenever xi = x j
for some i �= j . Hence, it suffices to consider the case q ≥ 2.

Theorem 2.1 also holds true for the ground state energy, i.e., β = ∞, where
f (∞, ρ) = 3

5 (6π
2/q)2/3ρ5/3. The proof of the equality (2.8) in this case is actually

substantially easier, as the analysis of the entropy in Sect. 6 is not needed.
Intuitively, the result in Theorem 2.1 can be explained via a comparison of (2.2)

with (1.1). Effectively, the scattering process between two particles, i and j , say,
corresponds to a non-zero scattering length of the form

− 1

aeff
=

∑
{k,l}�={i, j}

1

|xk − xl | . (2.10)

In the limit of large particle number, the sum of these other terms diverges, corre-
sponding to an effective scattering length zero, i.e., no interactions.

A minor modification of the proof shows that Theorem 2.1 also holds for a model
where the function 1/|x | in (2.1) is replaced by 1/|x | − 1/a for a ≤ 0, corresponding
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to a two-body interaction with negative scattering length a. This only increases the
effective scattering length aeff .

From Theorem 2.1, we conclude that the model (2.2) is not suitable to describe a
gas of fermions with point interactions, as it becomes trivial in the thermodynamic
limit. No non-trivial models that are proven to be stable for arbitrary particle number
exist to this date, however. Such non-trivial models are not expected to be given by a
Dirichlet form of the type (2.2), since such forms are naturally well defined even in
the bosonic case, where point-interaction models are known to become unstable due
to the Thomas effect [3,5,8,22,24,26].

In the remainder of this paper, we shall give the proof of Theorem 2.1. We start
with a short outline of the main steps in the next section.

3 Outline of the proof

In the first step in Sect. 4, we shall localize particles in small boxes. This part of the
Dirichlet–Neumann bracketing technique is quite standard, but it does not directly
allow us to reduce the problem to fewer particles, as the interactions depend on the
location of all the particles, including the ones in different boxes. Still this step allows
us to compare our model with the corresponding one for non-interacting fermions,
by utilizing a suitable version of the Hardy inequality to quantify the effect of the
deviation of the weight function g in (2.1) from being a constant. This analysis is
done in Sect. 5. Note that the relevant constant to compare g with depends on the
distribution of the particles in the various boxes, hence the importance of the first step.
An important point in the analysis is a control on the particle number distribution,
which is obtained in Proposition 5.4.

In Sect. 6, we shall give a rough bound on the entropy for large energy, which will
allow us to conclude that to compute the free energy (2.4), it suffices to consider only
states with energy E � N ln N . We do this by applying the localization technique to
very small boxes, with side length decreasing with energy, in order to have to consider
effectively only the ground states in each small box.

In the low energy sector, corresponding to energies E � N ln N , our bounds in
Sect. 5 allow to make a direct comparison of our model with non-interacting fermions.
This comparison is detailed in Sect. 7. For this purpose, we shall choose much larger
boxes than in the previous step, very slowly increasing to infinity with N in order for
finite size effects to vanish in the thermodynamic limit. Finally, Sect. 8 collects all the
results in the previous sections to give the proof of Theorem 2.1.

Throughout the proof, we shall use the letter c for universal constants independent
of all parameters, even though c might have different values at different occurrences.
Similarly, we use cη for functions of η = βρ2/3 that are uniformly bounded for η > ε

for any ε > 0. Note that the free energy for noninteracting particles in (2.7) satisfies
the scaling relation

f (β, ρ) = ρ5/3 f (η, 1) , η = βρ2/3 , (3.1)

and η → ∞ corresponds to the zero-temperature limit.
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4 Particle localization in small boxes

Given an integer m ≥ 2, we shall divide the cube [0, L]3 into M = m3 disjoint cubes
of side length 
 = L/m, denoted by {Bi }Mi=1. To obtain a lower bound on Eg , we
introduce Neumann boundary conditions on the boundary of each box Bi .

Specifically, given a vector �n = {n1, . . . , nM } of nonnegative integers with∑M
j=1 n j = N , let Bsym(�n) denote the subset of [0, L]3N where exactly n j parti-

cles are in Bj , for all 1 ≤ j ≤ M . More precisely, if

B(�n) = Bn1
1 × · · · × BnM

M (4.1)

and, for general A ⊂ R
3N and π ∈ SN (the permutation group of N elements)

π(A) = {�x : π−1(�x) ∈ A} , π(�x) := (xπ(1), . . . , xπ(N )) (4.2)

we have

Bsym(�n) =
⋃

π∈SN
π(B(�n)) (4.3)

Then, clearly

1 =
∑

�n
χBsym(�n)(�x) (4.4)

for almost every �x ∈ [0, L]3N . Correspondingly, one can write for any ψ ∈ AN
q

supported in [0, L]3N

ψ(�y) =
∑

�n
χBsym(�n)(�x)ψ(�y) =:

∑
�n

ψ �n(�y) . (4.5)

Note that each ψ �n is a function in AN
q with the property that it is non-zero only if

exactly n j particles are in Bj for any 1 ≤ j ≤ M . In particular, the functions appearing
in the decomposition on the right side of (4.5) all have disjoint support.

Conversely, given a set of functions ψ �n ∈ AN
q supported in Bsym(�n), we can define

ψ ∈ AN
q via (4.5). Hence, there is a one-to-one correspondence between functions in

AN
q and sets of functions ψ �n . We now redefine our energy functional Eg as:

E

g(ψ) =

∑
�n

N∑
i=1

∫
Bsym(�n)

g(�x)2|∇iψ
�n(�y)|2d�y (4.6)

This coincideswith the definition (2.2) in caseψ ∈ H1((R3×{1, . . . , q})N , g(�x)2d�x),
but is more general since it allows for wave functions that are discontinuous at the
boundaries of the Bj , effectively introducing Neumann boundary conditions there.
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Note that with the definition (4.6) above, we have

E

g(ψ) =

∑
�n

E

g(ψ

�n) for ψ =
∑

�n
ψ �n (4.7)

In particular, the corresponding operator is diagonal with respect to the direct sum
decomposition of AN

q into functions supported on Bsym(�n), and hence the min–max
principle implies the bound

sup
{ψk }〈ψi |ψ j 〉g=δi j

∑
k

e−βEg(ψk ) ≤
∑

�n
sup
{ψ �n

k }
〈ψ �n

i |ψ �n
j 〉g=δi j

∑
k

e−βE

g (ψ

�n
k ) (4.8)

where on the right side it is understood that each ψ �n
j is supported in Bsym(�n).

As a final step in this section, we want to simplify the problem by getting rid of
the antisymmetry requirement for particles localized in different boxes. There exists
a simple isometry between functions ψ �n inAN

q and functions whose support is on the
smaller set B(�n) in (4.1), where x1, . . . , xn1 ∈ B1, xn1+1, . . . , xn1+n2 ∈ B2, etc., and
which are antisymmetric only with respect to permutations of the yi corresponding to
xi in the same box. This isometry is simply

ψ �n �→
(

N !∏M
j=1 n j !

)1/2
χB(�n)ψ

�n (4.9)

Note that the normalization factor is chosen such that both sides have the same norm,
and the left side can be obtained from the right by a suitable antisymmetrization over
all variables yi . Moreover, both functions yield the same value when plugged into E


g .

LetAN ,

q (�n) denote the set {χB(�n)ψ : ψ ∈ AN

q }, i.e., functions supported inB(�n) that
are antisymmetric in the variables corresponding to the same box. The bound (4.8)
and the above observation imply that

Fg(β, N , L) ≥ −T ln
∑

�n
sup

{ψk∈AN ,

q (�n)}

〈ψi |ψ j 〉g=δi j

∑
k

e−βE

g (ψk ) (4.10)

5 Energy and norm bounds

Our goal in this next step is to derive a lower bound on E

g(ψ) for ψ ∈ AN ,


q (�n), i.e.,
functions supported in B(�n), and to compare the norm of such a ψ with the standard,
unweighted L2 norm. For this purpose, we shall need a certain version of the Hardy
inequality, which will be derived in the next subsection.

5.1 Hardy inequalities

Recall the usual Hardy inequality
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∫
R3

|∇ f (x)|2dx ≥ 1

4

∫
R3

| f (x)|2
|x |2 dx (5.1)

for functions f ∈ Ḣ1(R3). We shall need a local version of (5.1) on balls.

Lemma 5.1 Let B
 ⊂ R
3 denote the open centered ball with radius 
. For any f ∈

H1(B
)

2
∫
B


|∇ f (x)|2dx + 9

2
2

∫
B


| f (x)|2dx ≥ 1

4

∫
B


| f (x)|2
|x |2 dx (5.2)

Proof We apply the Hardy inequality (5.1) to the function h(x) = f (x)[1− |x |/
]+,
where [ · ]+ denotes the positive part. For the right side of (5.1), we obtain

1

4

∫
B


|h(x)|2
|x |2 dx = 1

4

∫
B


| f (x)|2
|x |2

(
1 − 2|x |



+ |x |2


2

)
dx

≥ 1 − ε

4

∫
B


| f (x)|2
|x |2 dx − 1 − ε

4ε
2

∫
B


| f (x)|2dx (5.3)

for any ε > 0. For the left side of (5.1), a simple Schwarz inequality yields

∫
B


|∇h(x)|2dx ≤ (1 + δ)

∫
B


|∇ f (x)|2dx + 1 + δ

δ
2

∫
B


| f (x)|2dx (5.4)

for δ > 0. In combination, we obtain the desired inequality (5.2) by choosing ε = 1/6
and δ = 2/3. ��

For later use, we need a version of Lemma 5.1 on cubes with arbitrary location
relative to the singularity.

Lemma 5.2 Let C
 = [0, 
]3. For any y ∈ R
3 and any f ∈ H1(C
),

c0

∫
C


|∇ f (x)|2dx + c1

2

∫
C


| f (x)|2dx ≥ 1

4

∫
C


| f (x)|2
|x − y|2 dx (5.5)

with c0 ≤ 16 and c1 ≤ 144.

The stated bounds on the constants c0 and c1 are presumably far from optimal, but
suffice for our purpose.

Proof If y /∈ C
, we can replace it by the point in C
 closest to y. This can only
increase the right side. Hence, we may assume that y ∈ C
. Let B denote the ball of
radius 
/2 around y. Then

1

4

∫
C
\B

| f (x)|2
|x − y|2 dx ≤ 1


2

∫
C
\B

| f (x)|2 dx (5.6)
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Fig. 1 Two-dimensional illustration of the reflection technique used in the proof of Lemma 5.2. The boxC


and two of its neighbor boxes are shown, as well as the ball B around y ∈ C
. Using the extended function
f̃ , we can mirror C
\B back into C
 ∩ B. There are at most 8 reflected components in three dimensions,
the worst case being if the ball B intersects with a corner of C


Define a function f̃ by extending f to [−
, 2
]3 as

f̃ (x1, x2, x3) = f (τ (x1), τ (x2), τ (x3)) (5.7)

where

τ(x) :=

⎧⎪⎨
⎪⎩

−x x ∈ [−
, 0]
x x ∈ [0, 
]
2
 − x x ∈ [
, 2
]

(5.8)

Then, f̃ ∈ H1([−
, 2
]3). Since B ⊂ [−
, 2
]3, we get with the aid of the Hardy
inequality (5.2) on B (with 
/2 in place of 
)

1

4

∫
C
∩B

| f (x)|2
|x − y|2 dx ≤ 1

4

∫
B

| f̃ (x)|2
|x − y|2 dx

≤ 2
∫
B

|∇ f̃ (x)|2dx + 18


2

∫
B

| f̃ (x)|2dx

≤ 8

(
2
∫
C
∩B

|∇ f (x)|2dx + 18


2

∫
C
∩B

| f (x)|2dx
)

(5.9)

In the last step, we used that B intersects, besides C
, at most 7 other translates of
C
, and that the intersection of B with these translates is, when reflected back to C
,
contained in C
 ∩ B (see Fig. 1). In combination, (5.6) and (5.9) imply (5.5). ��

5.2 A lower bound on E�
g

Let ψ be an L2((R3 × {1, . . . , q})N , g(�x)2d�y)-normalized function in AN ,

q (�n),

defined just above (4.10). Let d jk denote the distance between boxes Bj and Bk .
For �x ∈ B(�n), we can bound
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g(�x) ≥
∑

1≤ j<k≤M

n jnk

d jk + 2
√
3


+
M∑
j=1

n j (n j − 1)

2
√
3


≥ K− + V

4
√
3


(5.10)

where

K− =
∑

1≤ j<k≤M
djk>0

n jnk

d jk + 2
√
3


and V =
M∑
j=1

n j (n j + m j − 1) (5.11)

Here,mk denotes the total number of particles in the 26 neighboring boxes of Bk . The
bound (5.10) immediately leads to the lower bound

E

g(ψ) ≥

(
K− + V

4
√
3


)2
E
(ψ) (5.12)

for ψ ∈ AN ,

q (�n), where E
 on the right side stands for the energy functional for

noninteracting particles, corresponding to g ≡ 1 in (4.6).

5.3 Bounds on norms

In the following, it will be necessary to compare the norm ‖ · ‖g = 〈 · | · 〉1/2g with

the standard L2 norm ‖ · ‖ without weight. For ψ ∈ AN ,

q (�n), the bound (5.10)

immediately implies the lower bound

‖ψ‖g ≥
(
K− + V

4
√
3


)
‖ψ‖ (5.13)

To obtain a corresponding upper bound, we proceed as follows. For given i , corre-
sponding to xi ∈ Bk for some box Bk , let N [i] be the set of js with j �= i such that
x j is either in the same box Bk or in one of the 26 neighboring boxes touching Bk .
With mk as defined above, |N [i]| = nk + mk − 1 for xi ∈ Bk . Then

g(�x) ≤ 1

2

N∑
i=1

∑
j∈N [i]

1

|xi − x j | + K+ with K+ =
∑

1≤ j<k≤M
djk>0

n jnk
d jk

(5.14)

for �x ∈ B(�n). The Cauchy–Schwarz inequality implies

‖ψ‖2g ≤ (1 + ε)K 2+‖ψ‖2 +
(
1 + ε−1

) V

4

N∑
i=1

∑
j∈N [i]

∫ |ψ(�y)|2
|xi − x j |2 d�y (5.15)
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for any ε > 0, where V is defined in (5.11). In the last term, we use the Hardy
inequality (5.5) for the integration over xi , and obtain

‖ψ‖2g ≤
[
(1 + ε)K 2+ + c1


2

(
1 + ε−1

)
V 2
]
‖ψ‖2

+
(
1 + ε−1

)
c0V

N∑
i=1

|N [i]|
∫

|∇iψ(�y)|2 d�y (5.16)

If we reinsert g(�x)2 into the last integrand using (5.10), we thus obtain the following
lemma.

Lemma 5.3 For ψ ∈ AN ,

q (�n), we have the bounds

(
K− + V

4
√
3


)2
‖ψ‖2 ≤ ‖ψ‖2g ≤ (1 + ε)

[
K 2+ + c1

ε
2
V 2
]
‖ψ‖2

+ (1 + ε−1)c0V(
K− + V

4
√
3


)2
N∑
i=1

|N [i]|
∫

|∇iψ(�y)|2g(�x)2 d�y

(5.17)

for any ε > 0, where K± and V are defined in (5.11) and (5.14), respectively.

5.4 A bound on the number of particles in a box

Let again ψ be a wavefunction in AN ,

q (�n) and let us assume it is normalized, i.e.,

‖ψ‖g = 1. We have the following a priori bound.

Proposition 5.4 There exists a constant κ > 0 such that for any normalized ψ ∈
AN ,


q (�n) and any 
 > 0 we have

E

g(ψ) ≥ κ

q2/3

M∑
j=1

[
n j − q

]5/3
+


2
(5.18)

Here, [ · ]+ = max{0, · } denotes the positive part. The bound (5.18) allows us to
conclude that for all normalized ψ ∈ AN ,


q (�n) with E

g(ψ) < E we have n j ≤ q for

all j if we choose 
 such that E
2q2/3 ≤ κ . Furthermore, for large E
2 we get the
bound max j n j � q2/5(E
2)3/5.

Proof We use Lemma 3 from [10] which states that for a subset A ⊆ {1, . . . , N }
corresponding to particles xk ∈ Bj for k ∈ A,

∑
i∈A

∫
B|A|
j

g(�x)2|∇iψ(�y)|2d�yA ≥ κ̃


2
[|A| − q]+

∫
B|A|
j

g(�x)2|ψ(�y)|2dyA (5.19)
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for some κ̃ > 0 independent of A, 
 and ψ . Here, �yA is short for {yi }i∈A. Integrating
this over the {y j } j /∈A and summing over j yield (5.18) with the exponent 5/3 replaced
by 1, and κ = κ̃q2/3.

To raise the exponent from 1 to 5/3, we partition Bj into μ3 disjoint cubes {Ck}k
of side length 
/μ for some integer μ ≥ 1. We use the identity

1 =
∑
Q⊆A

∏
s∈Q

χCk (xs)
∏
t∈Qc

χCc
k
(xt ) (5.20)

for �xA ∈ B|A|
j , where Qc denotes A\Q and Cc

k = Bj\Ck . By plugging (5.20) into
(5.19), we obtain

∑
i∈A

∫
B|A|
j

g(�x)2|∇iψ(�y)|2d�yA

=
∑
i∈A

μ3∑
k=1

∫
B|A|
j

χCk (xi )g(�x)2|∇iψ(�y)|2d�yA

=
∑
i∈A

μ3∑
k=1

∑
Q⊆A

∫
B|A|
j

∏
s∈Q

χCk (xs)
∏
t∈Qc

χCc
k
(xt )χCk (xi )g(�x)2|∇iψ(�x)|2d�xA

=
μ3∑
k=1

∑
Q⊆A

∑
i∈Q

∫
B|A|
j

∏
s∈Q

χCk (xs)
∏
t∈Qc

χCc
k
(xt )g(�x)2|∇iψ(�x)|2d�xA (5.21)

For the integration over {ys}s∈Q we can again use (5.19), with suitably rescaled
variables to replace the integration over Bj with the one over Ck . (Note that g is
homogeneous of order −1 and satisfies the simple scaling property g(λ�x) = λ−1g(�x)
for λ > 0.) This yields the bound

(5.21) ≥
μ3∑
k=1

∑
Q⊆A

μ2κ̃


2
(|Q| − q)

∫
C |Q|
k

d�yQ
∫
Cc
k
(|A|−|Q|)

d�yQc g(�x)2|ψ(�y)|2

= μ2κ̃


2
(|A| − μ3q)

∫
B|A|
j

g(�x)2|ψ(�y)|2d�yA (5.22)

In the last step, we used again the identity (5.20) as well as

|A| =
μ3∑
k=1

∑
Q⊆A

|Q|
∏
s∈Q

χCk (xs)
∏
t∈Qc

χCc
k
(xt ) (5.23)

Since the left side of (5.22) is obviously non-negative, we can replace |A| − μ3q by
its positive part on the right side.
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It remains to choose μ. If we ignore the restriction that μ ≥ 1 is an integer, we
would choose μ = (2/5)(|A|/q)1/3 to obtain the desired coefficient ∝ |A|5/3/q2/3.
It is easy to see that

sup
μ∈N

μ2
[
|A| − μ3q

]
+ ≥ c

q2/3
[|A| − q]5/3+ (5.24)

for some universal constant c > 0. This proves the desired bound, with κ = κ̃c. ��

6 A bound on the entropy

In this section, we shall use the estimates above to give a rough bound on

Ng(E) = tr χHg<E , (6.1)

that is, the maximal number of orthonormal functions in AN
q with Eg(ψ) < E , for

some (large) E . Its logarithm is, by definition, the entropy. Using the localization
technique described in Sect. 4, the min–max principle implies that

Ng(E) ≤
∑

�n
N �n
g (E) (6.2)

where N �n
g (E) is the maximal number of orthonormal functions in AN ,


q (�n) with

E

g(ψ) < E . Given E , we shall choose 
 small enough such E
2q2/3 ≤ κ , with

κ the constant in Proposition 5.4. As remarked there, this implies that n j ≤ q for all
1 ≤ j ≤ M .

We will actually show that if E
2 is small enough, then the spectral gap for an
excitation is larger than E , and hence N �n

g (E) is simply equal to the dimension of the
space of ground states.

Lemma 6.1 There exists a universal constant c > 0 such that if we choose E
2 ≤ c,
then

N �n
g (E) =

M∏
j=1

(
q

n j

)
(6.3)

Proof With the aid of (5.12), we have

E

g(ψ) ≥

(
K− + V

4
√
3


)2
E
(ψ) (6.4)

for ψ ∈ AN ,

q (�n). The ground states of the operator corresponding to the quadratic

form E
 are all constant, i.e., they are simply products of anti-symmetric functions of
the spin variables corresponding to each box, and have zero energy. The spectral gap
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above the ground state energy is given by (π/
)2. With P0 denoting the projection in
L2(B(�n), d�y) onto the ground state space, we thus have

E
(ψ) ≥ π2


2
‖(1 − P0)ψ‖2 (6.5)

To bound the norm on the right side from below in terms of the weighted ‖ · ‖g norm,
we shall use Lemma 5.3. In (5.17), we can simply bound

N∑
i=1

|N [i]|
∫

|∇iψ(�y)|2g(�x)2 d�y < E‖ψ‖2g
N∑
i=1

|N [i]| = EV ‖ψ‖2g (6.6)

to obtain

‖ψ‖2g ≤
[
(1 + ε)K 2+ + c1


2

(
1 + ε−1

)
V 2
]
‖ψ‖2 + 48c0

(
1 + ε−1

)
E
2‖ψ‖2g

(6.7)

for any ε > 0 and any ψ ∈ AN ,

q (�n) with E


g(ψ) < E‖ψ‖2g . If E
2 is small, we can
take ε = 1 to conclude that

‖ψ‖2g ≤ c
[
K 2+ + V 2
−2

]
‖ψ‖2 (6.8)

Moreover, note that K+ ≤ (1+2
√
3)K−, since d jk > 0 actually implies d jk ≥ 
. We

thus also have that

‖ψ‖2g ≤ c

(
K− + V

4
√
3


)2
‖ψ‖2 (6.9)

Applying this to (1 − P0)ψ in (6.5) and inserting the resulting bound in (6.4), we
obtain

E

g(ψ) ≥ c
−2 ‖(1 − P0)ψ‖2g (6.10)

Finally, note that the ground states of E

g and E
 actually agree, up to a multiplicative

normalization constant. Hence, if ψ is orthogonal to a ground state with respect to the
inner product 〈 · | · 〉g , then

‖(1 − P0)ψ‖2g = ‖ψ‖2g + ‖P0ψ‖2g ≥ ‖ψ‖2g (6.11)

This concludes the proof. ��
In combination with (6.2), Lemma 6.1 yields the bound

Ng(E) ≤
∑

�n

M∏
j=1

(
q

n j

)
=
(
qM

N

)
≤
(
qMe

N

)N

(6.12)
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for E
2 ≤ c. We recall that the number of boxes is M = (L/
)3 = N/(ρ
3), which
is large for E
2 ∼ 1 and E � L−2. Hence, we get the upper bound

Ng(E) ≤
(
c
qE3/2

ρ

)N

(6.13)

for a suitable constant c > 0. This bound readily implies the following proposition.

Proposition 6.2 Let {E j } j denote the eigenvalues of the Hamiltonian Hg associated
with the quadratic form Eg in (2.2) onAN

q . For given η = βρ2/3, there exists a cη > 0

such that if Ē ≥ cηβ
−1N ln N then

∑
E j≥Ē

e−βE j ≤ 2 e− 1
2β Ē (6.14)

Proof We have

∑
E j≥Ē

e−βE j ≤
∑
k≥0

Ng((k + 2)Ē)e−(k+1)β Ē (6.15)

and, thus, the result follows if

Ng((k + 2)Ē)e−(k+ 1
2 )β Ē ≤ 1

2k
(6.16)

for all k ≥ 0. Using the bound (6.13), one easily checks that this is the case under the
stated condition on Ē for suitable cη. ��

For evaluating the free energy, we can thus limit our attention to eigenvalues E j

satisfying βE j ≤ cηN ln N for suitable cη > 0. We shall show in the next section that
in this low energy sector the eigenvalues are well approximated by the corresponding
ones for non-interacting particles.

7 Comparison with non-interacting particles in the low-energy sector

We shall now investigate the bounds derived in Sect. 5 more closely and apply them
to the low energy sector, where Eg(ψ) ≤ E‖ψ‖2g for some E � N ln N . We again
localize the particles into boxes, this time with much larger 
, however. We start with
the estimate on the ratio of the norm ‖ψ‖g to the standard, non-weighted L2 norm ‖ψ‖.

Proposition 7.1 Letψ ∈ AN ,

q (�n) satisfy E


g(ψ) ≤ E‖ψ‖2g for some E with E
2 � 1
for large N. Then

1 ≥
(
K− + V

4
√
3


)2 ‖ψ‖2
‖ψ‖2g

≥ 1 − δ (7.1)
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with

δ ≤ c
[
q1/5(E
2)3/10N−1/3(ρ
3)−1/6 + q2/5(E
2)11/10N−7/6(ρ
3)−1/3

]
(7.2)

with K− and V defined in (5.11).

We note that δ is small if

E
2 � min{N 10/9(ρ
3)5/9, N 35/33(ρ
3)10/33} (7.3)

which gives us freedom to choose 
 large while E � N ln N . We will choose 
 ∼ N ν

for rather small ν below, in which case the first term in (7.2) will be dominating.

Proof The first bound in (7.1) follows immediately (5.17). For the lower bound, we
use

N∑
i=1

|N [i]|
∫

|∇iψ(�y)|2g(�x)2 d�y ≤ 27n̄E‖ψ‖2g (7.4)

in (5.17), where we denote n̄ = max j n j . We can also bound V ≤ 27n̄N and

K− + V

4
√
3


≥ N (N − 1)

2
√
3L

(7.5)

The second bound in (5.17), thus, becomes

[
1−
(
1+ε−1

)
c0
12L2(27n̄)2

N (N − 1)2
E

]
‖ψ‖2g ≤

[
(1 + ε)K 2+ + c1


2

(
1 + ε−1

)
V 2
]
‖ψ‖2

(7.6)

for arbitrary ε > 0. By assumption E
2 is not small, hence we have n̄ ≤
cq2/5(E
2)3/5, as remarked after Proposition 5.4.

It remains to estimate the ratio K−/K+. We distinguish the contribution to the sum
coming from d jk < r

√
3
 and d jk ≥ r

√
3
, respectively, for some large integer r to

be chosen below. We have

K+ − K− =
∑

1≤ j<k≤M
djk>0

n jnk
d jk

2
√
3


d jk + 2
√
3


≤ n̄
∑

1≤ j<k≤M
0<d jk<r

√
3


n j

d jk

2
√
3


d jk + 2
√
3


+
(
1 + r

2

)−1 ∑
1≤ j<k≤M
djk≥r

√
3


n jnk
d jk

≤ c
n̄r N



+
(
1 + r

2

)−1
K+ (7.7)
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By optimizing over r as well as ε and using that n̄ ≤ cq2/5(E
2)3/5, we arrive at the
desired result. ��

In combination with (5.12), Proposition 7.1 yields the lower bound

E

g(ψ)

‖ψ‖2g
≥ E
(ψ)

‖ψ‖2 (1 − δ) (7.8)

for ψ ∈ AN ,

q (�n) in the low energy sector E


g(ψ) < E . This allows us to compare
our model directly with non-interacting particles. Note that the eigenfunctions of the
operator corresponding to the quadratic form on the right side are tensor products
over different boxes and, in particular, the eigenvalues are simply sums over the corre-
sponding eigenvalues of free fermions in each box. The bound (7.8) does not directly
give us lower bounds on the eigenvalues of Hg , except for the lowest one, however.
To complete the proof, we have to estimate the difference between the inner product
〈 · | · 〉g and the standard inner product on L2, denoted by 〈 · | · 〉 in the following.

We define the multiplication operator

G =
(
K− + V

4
√
3


)−1

g(�x) (7.9)

which is larger or equal to 1 by (5.10). The bound (5.12) thus reads

E

g(ψ)

‖ψ‖2g
≥ E
(ψ)

‖Gψ‖2 = 〈φ|G−1HG−1|φ〉
‖φ‖2 (7.10)

where we introduced φ = Gψ and denoted by H the Hamiltonian for non-interacting
particles, i.e., the Laplacian on B(�n) with Neumann boundary conditions. Note that
the orthogonality condition 〈ψ j |ψk〉g = 0 is equivalent to 〈φ j |φk〉 = 0. Given some
E0 > 0, we define the cutoff Hamiltonian

Hc = H θ(E0 − H) , (7.11)

with θ denoting the Heaviside step function. This is clearly a bounded operator with
‖Hc‖ ≤ E0. Obviously

〈φ|G−1HG−1|φ〉 ≥ ‖H1/2
c G−1φ‖2 (7.12)

which we further bound as:

‖H1/2
c G−1φ‖2 ≥

(
‖H1/2

c φ‖ − ‖H1/2
c (1 − G−1)φ‖

)2

≥ ‖H1/2
c φ‖2 − 2‖H1/2

c φ‖‖H1/2
c ‖‖(1 − G−1)φ‖

≥ ‖H1/2
c φ‖2 − 2E0‖(1 − G−1)φ‖‖φ‖ (7.13)
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Now

‖(1 − G−1)φ‖ ≤ ‖(1 − G−2)1/2φ‖ ≤ δ1/2‖φ‖ (7.14)

where we used G ≥ 1 in the first and Proposition 7.1 in the second step. We conclude
that

E

g(ψ)

‖ψ‖2g
≥ 〈φ|Hc − 2E0δ

1/2|φ〉
‖φ‖2 (7.15)

under the conditions stated in Proposition 7.1.

8 Convergence of the free energy

We now have all the necessary tools to complete the proof of Theorem 2.1. Proposi-
tion 6.2 implies that if we choose Ē = cηβ

−1N ln N for a suitable constant cη > 0,
then

Fg(β, N , L) ≥ −T ln

⎛
⎜⎜⎝2 e− 1

2β Ē + sup
{ψk∈AN

q }
〈ψi |ψ j 〉g=δi j

Ng(Ē)∑
k=1

e−βEg(ψk )

⎞
⎟⎟⎠ (8.1)

Here, Ng(Ē) denotes the number of states with energy below Ē , which was estimated
in (6.13). We can write, alternatively,

sup
{ψk }〈ψi |ψ j 〉g=δi j

Ng(Ē)∑
k=1

e−βEg(ψk ) = sup
{ψk },Eg(ψk )<Ē
〈ψi |ψ j 〉g=δi j

∑
k

e−βEg(ψk ) (8.2)

By localizing into small boxes of side length 
 with Neumann boundary conditions,
as detailed in Sect. 4, we further have by the min–max principle

(8.2) ≤
∑

�n
sup

{ψ∈AN ,

q (�n)},E


g (ψ)≤Ē
〈ψi |ψ j 〉g=δi j

∑
k

e−βE

g (ψk ) (8.3)

If we choose Ē
2 � 1, we can apply the bound (7.15) from the previous subsection.
It implies

(8.3) ≤ e2βE0δ
1/2∑

�n
sup

{φ∈GAN ,

q (�n)}, 〈φk |Hc|φk 〉≤Ē+2E0δ

1/2

〈φi |φ j 〉=δi j

∑
k

e−β〈φk |Hc|φk 〉 (8.4)
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with δ defined in Proposition 7.1. If we choose E0 such that Ē + 2E0δ
1/2 ≤ E0,

which is possible for δ < 1/4, we can drop the cutoff in Hc and replace Hc by H ,
the Laplacian on (

⋃
j B j )

N with Neumann boundary conditions. To obtain an upper
bound on (8.4), we can then further neglect the bound on 〈φk |H |φk〉, and sum over all
eigenvalues. We obtain

(8.4) ≤ e2βE0δ
1/2
e−βF(β,N ,L ,
) (8.5)

where F(β, N , L , 
) denotes the free energy of non-interacting fermions in
⋃

j B j

(with Neumann boundary conditions on the boundaries of the Bj ). In particular, in
combination (8.1)–(8.5) imply

Fg(β, N , L) ≥ F(β, N , L , 
) − 2E0δ
1/2 − T ln

(
1 + 2 e− 1

2 β Ē e−2βE0δ
1/2
eβF(β,N ,L ,
)

)

(8.6)

We will choose 
 � 1, in which case F(β, N , L , 
) ∼ N and hence the last term in
(8.6) is, in fact, exponentially small in N , since Ē ∼ N ln N . To complete the proof,
it suffices to observe that

F(β, N , L , 
) ≥ F(β, N , L) − cη

Nρ1/3



(8.7)

which is an easy exercise. To minimize the total error, we shall choose


 ∼ ρ−1/3N 1/63 (ln N )−23/21 (8.8)

to obtain

Fg(β, N , L) ≥ F(β, N , L) − cηρ
2/3N 62/63 (ln N )23/21 (8.9)

This completes the proof of Theorem 2.1.
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