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Abstract BRST complexes are differential graded Poisson algebras. They are asso-
ciated with a coisotropic ideal J of a Poisson algebra P and provide a description
of the Poisson algebra (P/J )J as their cohomology in degree zero. Using the notion
of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathemat-
ics 610, Perspectives in representation theory, 2014), we prove that any two BRST
complexes associated with the same coisotropic ideal are quasi-isomorphic in the case
P = R[V ]where V is a finite-dimensional symplectic vector space and the bracket on
P is induced by the symplectic structure on V . As a corollary, the cohomology of the
BRST complexes is canonically associatedwith the coisotropic ideal J in the symplec-
tic case.We do not require any regularity assumptions on the constraints generating the
ideal J . We finally quantize the BRST complex rigorously in the presence of infinitely
many ghost variables and discuss the uniqueness of the quantization procedure.
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1 Introduction

In the quantization of gauge systems, the so-called BRST complex plays a prominent
role [12]. In the Hamiltonian formalism, the theory is called BFV theory and goes
back to Batalin, Fradkin, Fradkina and Vilkovisky [1,2,10,11].
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224 M. Müller-Lennert

In the Hamiltonian formulation of gauge theory, the presence of gauge freedom
yields constraints in the phase space M of the system. The gauge group still acts on
the resulting constraint surface M0 ⊂ M . The physical observables are the functions
on the quotient M̃ of the constraint surface M0 by this action. One wishes to quantize
those observables. In the BRST method, one introduces variables of non-zero degree
to the Poisson algebra P of functions on the original phase space. One then constructs
the so-called BRST differential on the resulting complex and recovers the functions
on the subquotient M̃ as the cohomology of that complex in degree zero. One may
then attempt to quantize the system by quantizing the BRST complex instead of the
algebra of functions on M̃ .

The quantization procedure involves the construction of gauge invariant observables
from the cohomology of the BRST complex [3,19]. Kostant and Sternberg gave a
mathematically rigorous description of the theory [14] in the casewhere the constraints
arise from aHamiltonian group action on phase space. Theymake certain assumptions
that allow the BRST complex to be constructed as a double complex combining a
Koszul resolution of the vanishing ideal J of the constraint surface M0 ⊂ M with
the Lie algebra cohomology of the gauge group. In more general cases, the Koszul
complex does not yield a resolution and one has to use a much bigger Tate resolution.

More recently, Felder and Kazhdan formalized the corresponding construction in
the Lagrangian formulation of the theory [8]. They consider general Tate resolutions.
The aim of this note is to perform a similar formalization in the Hamiltonian setting.
We consider Poisson algebras P as a starting point, which arise in the Hamiltonian
viewpoint as the functions on phase space. We define the notion of a BFV model for
a coisotropic ideal J ⊂ P . In the Hamiltonian theory, J is given as the vanishing
ideal of the constraint surface M0 ⊂ M . We use techniques from [8,17] to prove the
existence of the BFV models and show that they model the Poisson algebra (P/J )J

cohomologically. This latter Poisson algebra is a physically interesting one, since, in
the case where P are the functions on phase space and J is the vanishing ideal of the
constraint surface, it corresponds to the function on the subquotient M̃ , which are the
physical observables of the system. The statements about the existence of what we call
BFV models and their cohomology are known [12]. However, a rigorous treatment
of the question of uniqueness is missing. Under certain local regularity assumptions
on the constraint functions, which for instance imply that the constraint surface M0 is
smooth, a construction for a uniqueness proof for the BRST cohomology was given in
[9]. Stasheff considers the problem from the perspective of homological perturbation
theory [17] and gives further special cases under which such uniqueness theorems
hold. For instance, he considers the case where a proper subset of the constraints
satisfy a regularity condition. Using the notion of stable equivalence from [8], we
show that, for a symplectic polynomial algebra P = R[V ] with bracket induced
from the symplectic structure on a finite-dimensional vector space V , any two BRST
complexes for the same coisotropic ideal J ⊂ P are quasi-isomorphic. Hence, we
rigorously prove the uniqueness of the BRST cohomology for such P . In contrast to
previous treatments of the problem, the assumption on P does not force the constraint
surface to be smooth. Moreover, we do not assume a subset of the constraints to be
regular. Our Tate resolutions are allowed to contain infinitely many generators.
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The BRST complex of homological Poisson reduction 225

Finally, we quantize the BRST complex. Under a cohomological assumption, we
construct a quantumBRST charge and discuss its uniqueness. The obstruction to quan-
tize lies in the second degree of the classical BRST cohomology, while the ambiguity
lies in the first degree. We do this analysis in a rigorous fashion. To the best of our
knowledge, such a rigorous treatment in our setting for general Tate resolutions is new.

In the smooth setting, Schätz has dealt with the problem in [16]. See also [5] for the
case of a Hamiltonian group action with regular moment map. In [4,13], this regularity
assumption is replaced by the weaker assumption that the components of the moment
map generate the vanishing ideal J and that the Koszul complex is acyclic. The authors
construct a BRST complex and quantize it. In [13], the assumptions are weakened to
allow Tate resolutions with finitetly many generators.

2 BFV models

We work over K = R, but any field of characteristic zero will be sufficient. Let P be
a unital, Noetherian Poisson algebra. Let J ⊂ P be a multiplicative ideal satisfying
{J, J } ⊂ J . Such ideals are called coisotropic. Then the Poisson structure on P
induces one on (P/J )J . The purpose of the BRST complex is to model this Poisson
algebra cohomologically.

Let M be a negatively graded real vector space with finite-dimensional homoge-
neous components M j . Denote its component-wise dual by M∗ = ⊕

j>0(M− j )∗.
Define a Poisson bracket on Sym(M⊕M∗) via the natural pairing between M and
M∗. For details of the construction, we refer to Appendix A.

Form the tensor product X0 = P ⊗ Sym(M⊕M∗) of the two Poisson algebras
defined above. LetF p X0 denote the ideal generated by all elements in X0 of degree at
least p. Using the filtration defined by the F p X0, complete the space X0 to a graded
commutative algebra X with homogeneous components

X j = lim←p

X j
0

F p X0 ∩ X j
0

.

Extend the bracket on X0 to X , thus turning X into a graded Poisson algebra. Again,
we refer to Appendix A for details. Denote the bracket on X by {−,−}.

Set I ⊂ X to be the homogeneous ideal with homogeneous components

I j = lim←p

F1 X0 ∩ X j
0

F p+1 X0 ∩ X j
0

⊂ X j .

The powers of ideals are denoted with exponents in parentheses, e.g. I (k) refers to the
k-th power of the ideal I .

An element R ∈ X of odd degree which solves {R, R} = 0 defines a differential
dR = {R,−} on X by the Jacobi identity. If R ∈ X1, the differential dR induces a
differential on X/I since it preserves I .
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226 M. Müller-Lennert

Definition 1 A BFVmodel for P and J is a pair (X, R)where (X, {−,−}) is a graded
Poisson algebra constructed as above and R ∈ X1 is such that the following conditions
hold:

(1) {R, R} = 0.
(2) H j (X/I, dR) = 0 for j 	= 0.
(3) H0(X/I, dR) = P/J .

The first equation is called the classical master equation and the element R is called
a BRST charge.

The aim of this note is to prove

Theorem 2 Let P be a Poisson algebra and J ⊂ P a coisotropic ideal. BFV models
exist and in the case of P = R[V ] with bracket induced from the symplectic structure
on a finite-dimensional vector space V, the complexes of any two BFV models for the
same ideal J are quasi-isomorphic, whence the cohomology H(X, dR) is uniquely
determined by J up to isomorphism.

The existence of the BFV models is known [9,12]. The problem of uniqueness has
been dealt with under certain regularity assumptions [9,12]. These assumptions imply
that the constraint surface is smooth. The novel part is the statement that any twoBRST
complexes are quasi-isomorphic,which gives the uniqueness of theBRSTcohomology
as a corollary. We prove this without assuming that the constraint surface is smooth
and for Tate resolutions with possibly infinitely many generators. The Noetherian
hypothesis ensures that there are only finitely many generators in each degree. This is
necessary for our proofs of our convergence results. For completeness, we also include
proofs of the already known facts in our framework.

Finally, we quantize the BRST charge rigorously and discuss the uniqueness of the
quantization procedure.

3 Existence

3.1 Tate resolutions

To construct BFV models, we first have to construct a suitable commutative graded
algebra X . The odd variables are obtained via Tate resolutions.

Let P be a unital, Noetherian Poisson algebra and J ⊂ P be a coisotropic ideal.
Tate constructed resolutions of Noetherian rings by adding certain odd variables to the
ring [18]. Consider a Tate resolution T = P ⊗Sym(M) of P/J given by a negatively
graded vector space M with finite-dimensional homogeneous components together
with a differential δ on T of degree 1. Define the dual M∗ degree-wise. Extend δ

to X0 := P ⊗ Sym(M⊕M∗) = P ⊗ Sym(M) ⊗ Sym(M∗) by tensoring with
the identity. Endow X0 with the natural extension of the Poisson bracket, define the
filtrationF p X0, and extend the bracket to the completion X as described in Appendix
A. We will frequently refer to statements from that section.
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The BRST complex of homological Poisson reduction 227

3.1.1 The differential δ

Since δ is the identity on Sym(M∗), it preserves the filtration on X0. Hence it extends
to the completion X by Remark 80. Call this extension δ. The extension has degree 1
and preserves the filtration on X . The extension is still an odd derivation, whose square
is zero. Since δ preserves the filtration, it defines a differential on the associated graded
mapping grp Xn into grp Xn+1.

Define B = P⊗Sym(M∗). Then, X0 = B⊗P T . Since, by definition, the extension
of δ to X leaves elements in Sym(M∗) fixed, we have

Remark 3 The natural isomorphism of Lemma 82 identifies the differential δ on the
associated graded with 1 ⊗ δ on B ⊗P T .

3.1.2 Contracting homotopy

From the Tate resolution, construct a contracting homotopy s : T → T of degree −1.
Then there exists a K-linear split P/J → P and a map π : T → T which is defined
as the composition P ⊗ Sym(M) → P → P/J → P → P ⊗ Sym(M) such that

δs + sδ = 1 − π. (1)

Extend δ, s and π to X0 by tensoring with the identity on Sym(M∗). From the
definition of π, we find

Remark 4 π : X0 → X0 is zero on monomials which contain a factor of negative
degree.

The homotopy s does not act on elements in Sym(M∗) and hence preserves the
filtration. For the same reason, π̄ preserves the filtration. Both s and π̄ hence naturally
extend to the extension and Eq. 1 is valid in X too. Moreover,

Remark 5 s preserves I (2).

3.2 Constructing the BRST charge

3.2.1 First approximation

Definition 6 Let Q0 be the differential δ on X/I considered as an element of X .

Hence, the cohomological conditions for Q0 to be a BRST charge are satisfied. How-
ever, Q0 does not in general satisfy the classical master equation. We are going to
prove the existence part of Theorem 2 by adding correction terms to Q0.

An explicit description of Q0 is the following. Let ei be a homogeneous basis ofM,
e∗
i its dual basis. Set di := deg ei = − deg e∗

i ≡ deg e∗
i (mod 2). Assume that i � j

implies di � d j . Define Q0 := ∑
j (−1)1+d j e∗

j δ(e j ). By Lemma 77, this defines an

element of X1. For each p, let L p be an integer with { j ∈ N : −d j � p − 1} =
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228 M. Müller-Lennert

{1, . . . , L p} so that (q0)p := ∑L p
j=1(−1)1+d j e∗

j δ(e j ) defines a representative of the
p-th component of Q0. Of course, the element Q0 is independent of the choice of
basis e j of M.

Lemma 7 We have δ = ∑
j (−1)1+d j δ(e j ){e∗

j ,−} on X where the operator on the
right hand side is well defined.

Proof Set δ′ = ∑
j (−1)1+d j δ(e j ){e∗

j ,−}. This defines a map on X . For x ∈ Xn ,

the elements {e∗
j , x} are in F−d j+n X . Hence, the sum converges by Lemma 77. By

linearity, δ′ is defined on all of X . We claim that δ′ is continuous on each Xn . Let
x j = (x j

p +F p Xn
0 )p ∈ Xn be a sequence converging to zero. Fix p. Then there exists

a K , independent of j , such that a p-th representative of δ′(x j ) is given by

K∑

k=1

(−1)1+dk δ(ek){e∗
k , x

j
s−dk ,n(p)

},

since the bracket is in X−dk+n
0 . Now, let j0 be such that for j � j0 and for all

k ∈ {1, . . . , K } we have x j
s−dk ,n(p)

∈ F s−dk ,n(p) Xn
0 . Then the above representative

vanishes modulo F p Xn+1
0 by Corollary 64. Hence, δ′ is continuous on Xn . The map

δ′ descends to a map on X0, since the sum is then effectively finite because {e∗
j , x}

becomes zero for j large enough, depending on x ∈ X0. This restriction agrees with
δ, which can be checked on generators since both maps are derivations. Hence, δ′ = δ

on each Xn by continuity. Hence, δ = δ′. �

Lemma 8 For L0 := {Q0,−} − δ, we have L0(F p X) ⊂ F p+1 X.

Proof Fix x ∈ F p Xn . Then, by Lemma 74,

{Q0, x} = lim
m→∞

( m∑

j=1

(−1)1+d j δ(e j ){e∗
j , x} +

m∑

j=1

(−1)1+d j e∗
j {δ(e j ), x}

)

.

The first part converges to δ(x) by Lemma 7. The second part converges by Lemma
77 and hence equals L0. Fix j . By Lemma 75, it suffices to prove that e∗

j {δ(e j ), x} ∈
F p+1 X . By the derivation property it suffices to consider x = e∗

l for some l. The term
δ(e j ) is a sum of monomials whose factors have degrees in {d j + 1, . . . , 0}. Hence,
all elementary factors er in δ(e j ) that could possibly kill e∗

l have degree dl and get
compensated by a factor e∗

j with deg(e
∗
j ) > deg(e∗

l ). �

Moreover, we have

Lemma 9 {Q0, Q0} ∈ X2 ∩ I (2) ⊂ F2 X ∩ I (2).
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The BRST complex of homological Poisson reduction 229

Proof We compute deg{Q0, Q0} = 2 deg Q0 = 2 and hence {Q0, Q0} ∈ F2 X . For
the last statement, we need to calculate. By Lemma 74,

{Q0, Q0} = lim
m→∞(−1)d j+dk

m∑

j,k=1

{δ(e j )e∗
j , δ(ek)e

∗
k }

= lim
m→∞

m∑

j,k=1

(

2(−1)1+dk
(
(−1)1+d j δ(e j ){e∗

j , δ(ek)}
)
e∗
k

+ (−1)d j+dk e∗
j {δ(e j ), δ(ek)}e∗

k

)

.

By Lemma 7, the first term is a sum in k with summands that contain factors
δ(δ(ek)) = 0 and hence the first term vanishes. By Lemma 75, {Q0, Q0} =∑

j,k(−1)d j+dk e∗
j {δ(e j ), δ(ek)}e∗

k ∈ I (2). �
Corollary 10 δ{Q0, Q0} ∈ X3 ⊂ F3 X.

3.2.2 Recursive construction

We now inductively construct out of Q0 a sequence of elements Rn ∈ X1 by setting

Rn =
n∑

j=0

Q j , Q0 as defined above, Qn+1 = −1

2
s{Rn, Rn}.

The elements Rn have degree 1, since Q0 has and s is of degree −1. The idea for the
construction is taken from [17]. Also, the proof of the following theorem is adapted
from that paper.

Theorem 11 For all n, {Rn, Rn} ∈ Fn+2 X ∩ I (2) and δ{Rn, Rn} ∈ Fn+3 X.

Proof The base step was done in Lemma 9 and Corollary 10.We assume the statement
is true for 0 � j � n and consider

{Rn+1, Rn+1} = {Rn, Rn} + 2{Rn, Qn+1} + {Qn+1, Qn+1}.

By construction and assumption, Qn+1 = − 1
2 s{Rn, Rn} ∈ Fn+2 X1. Hence, by

Corollary 64,

{Rn+1, Rn+1} ≡ {Rn, Rn} + 2{Rn, Qn+1} (mod Fn+3 X).

Expand {Rn, Qn+1} = ∑n
j=1{Q j , Qn+1}+{Q0, Qn+1}.Wehave, for j ∈ {1, . . . , n+

1} by inductive hypothesis, that Q j = − 1
2 s{R j−1, R j−1} ∈ F j+1 X1 ∩ I (2). Hence,

by Lemma 65,

{Rn+1, Rn+1} ≡ {Rn, Rn} + 2{Q0, Qn+1} (mod Fn+3 X).
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230 M. Müller-Lennert

We split {Q0, Qn+1} = δQn+1 + L0Qn+1 and, by Lemma 8,

{Rn+1, Rn+1} ≡ {Rn, Rn} + 2δQn+1 (mod Fn+3 X).

Commuting δ and s,

2δQn+1 = −δs{Rn, Rn} = sδ{Rn, Rn} − {Rn, Rn} + π{Rn, Rn}.

Since {Rn, Rn} ∈ Fn+2 X2, we have that π{Rn, Rn} = 0 for n > 0 by Remark 4. For
n = 0, we obtain π{R0, R0} = 0 from {Q0, Q0} = ∑

j,k ±e∗
j {δ(e j ), δ(ek)}e∗

k and
the fact that π is zero on {J, J } ⊂ J . Hence,

{Rn+1, Rn+1} ≡ sδ{Rn, Rn} (mod Fn+3, X).

which vanishes modulo Fn+3 X by the assumption on δ{Rn, Rn}.
Next, by the graded Jacobi identity, we have 0 = {Rn+1, {Rn+1, Rn+1}}. From

Lemmas8 and65,wefind that Ln+1 := {Rn+1,−}−δ = L0+∑n+1
j=1{Q j ,−} increases

filtration degree. Hence, Ln+1{Rn+1, Rn+1} ∈ Fn+4 X and thus δ{Rn+1, Rn+1} ∈
Fn+4 X.

Finally, we prove that {Rn+1, Rn+1} = {Rn, Rn}+2{Rn, Qn+1}+{Qn+1, Qn+1} ∈
I (2). By hypothesis, {Rn, Rn} ∈ I (2). Next, {Qn+1, Qn+1} ∈ {I (2), I (2)} ⊂ I (2) by
Lemma 76. Now, by the same lemma, for j ∈ {1, . . . , n}, {Q j , Qn+1} ∈ {I (2), I (2)} ⊂
I (2) and {Q0, Qn+1} ∈ {I, I (2)} ⊂ I (2) which concludes the proof. �

From Qn+1 = − 1
2 s{Rn, Rn} ∈ Fn+2 X1, it follows that the Rn = ∑n

j=0 Q j

converge to an element R ∈ X1 by Lemma 77. From Lemma 74, we obtain
{Rn, Rn} −→ {R, R} as n −→ ∞. We obtain

Corollary 12 {R, R} = 0.

Proof We have {Rn+l , Rn+l} ∈ Fn+2 X2 for all l � 0. Hence, {R, R} ∈ Fn+2 X2 for
all n by Lemma 75. Hence, {R, R} = 0. �

We also remark that R as defined above satisfies R ≡ Q0 (mod I (2)), since for
j > 0 we have Q j ∈ I (2). We are left to consider the cohomology of dR = {R,−}
on X/I .

Lemma 13 The action of dR preserves the filtration and hence defines a differential
on gr X, which is identified with 1 ⊗ δ under the natural isomorphism of Lemma 82.

Proof R ∈ X1 andLemma63 imply thatdR preserves thefiltration andhence descends
to the associated graded. We have {Q0,−} = L0 + δ. Since L0 increases filtration
degree by Lemma 8, we have that {Q0,−} and δ induce the same maps on gr X .
Moreover, K := R − Q0 ∈ I (2) ∩ X1 by the remark above. Hence by Lemma 65,
{K ,−} increases the filtration degree and thus dR = {R,−} and {Q0,−} induce the
same maps on the associated graded. �
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The BRST complex of homological Poisson reduction 231

Corollary 14 H j (X/I, dR) ∼= P/J if j = 0 and zero otherwise.

Proof H j (X/I, dR) = H j (gr0 X, dR) ∼= H j (B0 ⊗P T, 1 ⊗ δ) ∼= H j (T, δ). �

Given a unital, Noetherian Poisson algebra P with a coisotropic ideal J , we thus
have constructed a BFV model for (P, J ).

4 Properties

In this section, we describe the general properties of the BFV models. We postpone
the discussion of their cohomology to Sect. 6.

Let (X, R) be a BFV model of (P, J ) with X being the completion of P ⊗
Sym(M⊕M∗). Since R is of degree one, the differential dR preserves the filtra-
tion and hence descends to gr X . Let π : X → X/I = T = P ⊗ Sym(M)

be the canonical projection. Let j : T → X0 → X be the inclusion given by
t �→ 1 ⊗ t ∈ Sym(M∗) ⊗ T = X0. Define δ = π ◦ dR ◦ j : T → T .

Lemma 15 The map δ : T → T is a derivation and a differential of degree 1.

Proof The derivation property follows immediately. Let a ∈ T . We have ( j ◦ π −
idX )(dR( j (a))) ∈ I and hence dR( j (π(dR( j (a)))) = dR(( j ◦π − idX )(dR( j (a)))) ∈
I is in the kernel of π . The statement about the degree is obvious. �

Lemma 16 Under the identification of Lemma 82, the differential dR induced on gr X
corresponds to the differential 1 ⊗ δ on B ⊗P T .

Proof Let x ∈ grp X and pick a representative a⊗b ∈ B p⊗P T . (It suffices to consider
the case where this is a pure tensor.) Then, dR(ab) = dR(a)b + (−1)padR(b). The
first summand is in F p+1 X and the second is equivalent to 1 ⊗ δ(a ⊗ b) modulo
F p+1 X . �

Let Q0 be the differential δ on X/I as an element of X .

Remark 17 The complex (X/I, dR) = (T, δ) is a Tate resolution of P/J . Hence, the
results from Appendix A and Sects. 3.1 and 3.2.1 apply.

Lemma 18 We have R ≡ Q0 (mod I (2)). Moreover, {R,−} ≡ {Q0,−} (mod I ).

Proof We have {R,−} ≡ {Q0,−} (mod I ) by construction. Expand R − Q0 =∑
j�0 h j with h j ∈ B j ⊗P T 1− j . Such a decomposition exists by Lemma 78. Decom-

pose h j = α j + β j with α j ∈ B j ⊗P T 1− j ∩ I (2)
0 and β j ∈ B j ⊗P T 1− j \ I (2)

0 . Let

{e(l)
k }k be a basis ofM−l with dual basis {e(l)

k

∗}k . By the Leibnitz rule,∑ j {β j , e
(l)
k } =

{R − Q0, e
(l)
k } − ∑

j {α j , e
(l)
k } ∈ I . Expand each β j = ∑

s a j,se
( j)
s

∗
with a j,s ∈ T .

We obtain al,k = (−1)1+l ∑
j {β j , e

(l)
k } ∈ I ; hence all al,k vanish. �
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232 M. Müller-Lennert

5 Uniqueness

Fix a unital, Noetherian Poisson algebra P and a coisotropic ideal J . In a first step,
we prove that two BFV models for (P, J ) related to the same Tate resolutions have
isomorphic cohomologies. This is a known fact [9,12] and is presented in Sects. 5.1–
5.2. The key tool will be the notion of gauge equivalences. In a second step, we prove
that BFV models for (P = R[V ], J ), V a finite-dimensional symplectic vector space,
on different spaces X have isomorphic cohomologies too. We present this result in
Sects. 5.3–5.5. Here, the key tool will be the notion of stable equivalence, introduced
in the corresponding Lagrangian setting in [8]. The novel part is that we do not require
regularity assumptions, which would imply that the constraint surface is smooth.

5.1 Gauge equivalences

Weadapt the language of [8] and call the elements in g = X0∩ I (2) generators of gauge
equivalences. Different BRST charges for the same Tate resolution will be related by
these equivalences.

Lemma 19 The set of generators of gauge equivalences g is a closed subset which
forms a Lie algebra acting nilpotently on X/F p X via the adjoint representation. The
Lie algebra ad(g) exponentiates to a group G acting on X by Poisson automorphisms.

Proof By Lemma 75, the set is closed. By Lemma 76 and the fact that {X0, X0} ⊂
X0, this is a Lie algebra. By Corollary 64, g acts on X/F p X . By Lemma 76, this
action is nilpotent. Hence, ad g exponentiates to a group acting on X by vector space
automorphisms. Since ad g consists of derivations both for the product and the bracket,
those automorphisms are Poisson. �

The elements of G are called gauge equivalences.

Lemma 20 For x ∈ X1 and a gauge equivalence g, we have gx ≡ x (mod I (2)).

Proof Let c ∈ X0 ∩ I (2) be a generator. Then, gx − x = ∑
j>0

1
j ! ad

j
c x ∈ I (2) by

Lemmas 75 and 76. �

5.2 Uniqueness for fixed Tate resolution

In this section, we prove that two solutions R, R′ of the classical master equation in the
same space X which induce the same map on X/I are related by a gauge equivalence.
Since by Lemma 19, gauge equivalences are Poisson automorphisms, this implies that
they have isomorphic cohomologies. We use known techniques, which are adapted
from [8].

Remark 21 If R solves {R, R} = 0 and g ∈ G is a gauge equivalence, then also
{gR, gR} = 0.
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The BRST complex of homological Poisson reduction 233

We now discriminate elements in the associated graded grp Xn according to how
many positive factors they contain at least by defining An

p,q := {v ∈ grp Xn : v

has representative in I (q) }. From the proof of Lemma 82, we see that An
p,q can be

identified with (B p ∩ I (q)
0 ) ⊗P T , where I0 = F1 X0. We now use Remark 3 to see

that A•
p,q is a subcomplex and bound its cohomology:

Lemma 22 Fix p and q. We have H j (A•
p,q , δ) = 0 for j < p.

Proof From Remark 3, we have H j (A•
p,q , δ)

∼= H j ((B p ∩ I (q)
0 ) ⊗P T, 1⊗ δ). Now,

we may factor this space into (B p ∩ I (q)
0 ) ⊗P H j−p(T, δ), since B p ∩ I (q)

0 is a free
P-module. For j < p, the second factor vanishes, since T is a resolution of P/J . �
Lemma 23 Fix p � 2. Let R, R′ ∈ X1 be two solutions of the classical master
equation which induce the samemaps on X/I . Then, for 2 � q � p, we have that R ≡
R′ (mod I (q)∩F p X1+F p+1 X1) implies the existence of a gauge equivalence g with
generator c ∈ F p X0 ∩ I (2) such that gR ≡ R′ (mod I (q+1) ∩ F p X1 + F p+1 X1).
Moreover, the element gR ∈ X1 sill satisfies the classical master equation and induces
the same map on X/I as R and R′.
Proof Let δ be the common differential on X/I and Q0 be the map δ as an element
of X . Hence, R ≡ Q0 ≡ R′ (mod I (2)) by Lemma 18. Define v := R − R′ ∈
I (q) ∩ F p X1 + F p+1 X1 ⊂ F p X1. We have

0 = {R + R′, R − R′} = 2{Q0, v} + {R − Q0, v} + {R′ − Q0, v}
≡ 2{Q0, v} (mod F p+1 X2)

byLemma 65. ByLemma 16, themaps dR and dR′ also induce the samemap on of gr X
which we denote by δ too. Since δv = {Q0, v} − L0v ≡ {Q0, v} (mod F p+1 X2)

by Lemma 8, the above implies δv ≡ 0 (mod F p+1 X2). Hence, v defines a cocycle
v̄ in grp X1. We have p > 1. By Lemma 22, there exists c̄ ∈ grp X0 with δc̄ = v̄ and
a corresponding representative c ∈ F p X0 ∩ I (q), so that δc ≡ v (mod F p+1 X1).
This c will be the generator of the gauge equivalence we seek. Set g := exp adc. We
have

gR − R′ = v +
∞∑

j=1

1

j ! ad
j
c R ≡ δ(c) − dR(c) +

∞∑

j=2

1

j ! ad
j
c R

≡
∞∑

j=2

1

j ! ad
j
c R (mod F p+1 X1).

From Lemma 63, we know that this sum is in F p X1. We are left to show that the
sum is in I (q+1). By Lemma 76, we have adc R ∈ I (q). By Lemma 76, we obtain
ad j

c R ∈ I (q+1) for all j � 2 since q � 2.
By Remark 21, gR still satisfies the classical master equation and gR ≡ Q0

(mod I (2)) by Lemma 20, whence all maps R, R′, gR induce the same map on X/I .
�
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Theorem 24 Let R, R′ ∈ X1 be solutions of the classical master equation with differ-
entials inducing the same maps on X/I . Then there exists a gauge equivalence g ∈ G
with R′ = gR.

Proof First, we inductively construct a sequence of gauge equivalences g2, g3, . . .
such that for all p � 2 we have gp · · · g2R ≡ R′ (mod F p+1 X1 ∩ I (2)). By Lemma
20, it suffices to ensure that gp · · · g2R ≡ R′ (mod F p+1 X1).

For p = 2, note that R − R′ ∈ I (2) ⊂ (I (2) ∩ F2 X1) + F3 X1 by Lemma 18.
Now, apply Lemma 23 with q = p to obtain g2.

Next, assume the g2, . . . , gp have been constructed to fulfill

R′′ := gp · · · g2R ≡ R′ (mod F p+1 X1 ∩ I (2)).

By Remark 21, R′′ solves the classical master equation. Moreover, R′′ ≡ Q0
(mod I (2)) by Lemmas 18 and 20. Hence, the pair (R′′, R′) satisfies the require-
ments of Lemma 23 with q = 2.We obtain a gauge equivalence gp+1,2 with generator
cp+1,2 ∈ F p+1 X0 ∩ I (2) and

gp+1,2R
′′ ≡ R′ (mod I (3) ∩ F p+1 X1 + F p+2 X1).

If we continue to apply the lemma for q = 3, . . . , p+1,we obtain gauge equivalences
gp+1,3, . . . , gp+1,p+1 with generators cp+1,3, . . . , cp+1,p+1 ∈ F p+1 X0 ∩ I (2) such
that

gp+1,p+1 · · · gp+1,2R
′′ ≡ R′ (mod F p+2 X1 ∩ I (2)).

Set gp+1 := gp+1,p+1 · · · gp+1,2. The construction of the sequence is complete.
We claim that limm→∞ gmgm−1 · · · g2 converges pointwise to a gauge equivalence

g. Since all generators cm, j are inFm X0∩ I (2) and this set is closed under the bracket,
the Campbell–Baker–Hausdorff formula implies that the generator cm of gm is also
in Fm X0 ∩ I (2). Now, denote the generator of gm · · · g2 by γm . We have γm ∈ I (2)

by the CBH formula. Moreover, the CBH formula implies that the generator γm+1 of
gm+1gm · · · g2 satisfies

γm+1 = cm+1 + γm + higher terms,

where “higher terms” are those involving commutators of cm+1 and γm where each
contains at least one instance of cm+1 ∈ Fm+1 X0. Since γm ∈ X0, all these terms
are in Fm+1 X0. Hence,

γm+1 ≡ γm (mod Fm+1 X0).

Hence, there existsγ ∈ X0 withγm → γ asm → ∞.We set g := exp adγ . ByLemma
75, this element defines a gauge equivalence.We claim that exp adγm = gm · · · g2 → g
pointwise. Let x ∈ Xn . Then,

exp adγm x − exp adγ x = {γm − γ, x} + 1

2
{γm, {γm, x}} − 1

2
{γ, {γ, x}} + · · · .
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Modulo a fixed Fk X , this sum is finite and the number of terms does not depend on
m, since all γm are at least in I (2). Since γm → γ and the bracket are continuous in
fixed degree by Lemma 74, we obtain the claim.

Finally, exp adγm+l R − R′ ∈ Fm X1 implies gR − R′ ∈ Fm X1 for all m which
shows that gR = R′. �

5.3 Trivial BFV models

The key construction in the proof of uniqueness for different spaces X in Theorem 2
is the notion of stable equivalence. The idea of adding variables that do not change
the cohomology was already present in [12]. It was first explicitly formalized in [8]
in a similar situation in the Lagrangian setting. Roughly speaking, one proves that
different BRST complexes for the same pair (P, J ) are quasi-isomorphic by adding
more variables of non-zero degree. This is formalized by taking productswith so-called
trivial BFV models.

Let P = R with zero bracket and J = 0. Then P is a unital, Noetherian Poisson
algebra and J is a coisotropic ideal. LetN be anegatively gradedvector space andN [1]
the same spacewith degree shifted by−1. Define the differential δ onM = N ⊕N [1]
by δ(a⊕b) = b⊕0. Set T = P⊗Sym(M) and extend δ to an odd, P-linear derivation
on T .

Lemma 25 The complex (T, δ) has trivial cohomology and hence defines a Tate res-
olution of P/J = R.

Proof On M, there is a map s(a ⊕ b) = 0 ⊕ a with sδ + δs = idM. Extend s to an
odd, P-linear derivation on T . Then, sδ + δs is an even derivation on T which is the
identity on M and hence

sδ + δs = k id on P ⊗ Symk(M).

Since both s and δ preserve the k-degree, we have

H j (T, δ) = ⊕k H
j (P ⊗ Symk(M), δ) = H j (P ⊗ Sym0(M), δ)

=
{
P, if j = 0

0, otherwise
.

�

Complete the space Y0 = P ⊗ Sym(M⊕M∗) to the space Y . Let e j be a homo-
geneous basis of M such that δ(e j ) = ek for some k depending on j . Define Q0 =∑

j (−1)1+d j e∗
j δ(e j ) as in Lemma 8. Since {Q0, Q0} = ∑

j,k ±e∗
j {δ(e j ), δ(ek)}e∗

k =
0, the construction of Sect. 3 yields the BRST charge S = Q0. Hence, (Y, S) is a BFV
model for (P, J ) = (R, 0). BFV models arising from this construction are called
trivial.
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Lemma 26 For trivial BFV models, dS equals the induced map of � = δ ⊕ δ∗ :
M⊕M∗ → M⊕M∗ on Y , where the dual differential δ∗ : M∗ → M∗ is given
by δ∗(u) = (−1)deg uu ◦ δ, i.e. δ∗(a ⊕ b) = (−1) j0 ⊕ a on (M∗) j . Conversely, the
map dS induces a differential on Y0 which coincides with the induced map of δ ⊕ δ∗
on Y0.

Proof By acting on the generators e j and e∗
j defined above, one sees that the induced

differential dS on Y0 equals � = δ ⊕ δ∗. Since Y0 is dense in Y and both maps are
continuous, the first claim follows. The second claim follows from the observation
that the sum dS(x) = ∑

j ±{e jδ(e j ), x} is effectively finite if x ∈ Y0. �

Lemma 27 We have H j (Y, dS) = 0 for j 	= 0 and H0(Y, dS) = R. The same
statement holds if we replace Y by Y0.

Proof Since the cohomology of the complex (M⊕M∗,�) is trivial, there is a map
s : M⊕M∗ → M⊕M∗ of degree −1 with �s + s� = id. Its extension to Y0 as
a derivation thus satisfies

s� + �s = j id on Yn, j
0 . (2)

Since both maps � and s preserve form degree, we obtain the statement about
H j (Y0, dS).

Let x ∈ Yn with dSx = 0. By Lemma 84, there are x j ∈ Yn of form degree j with∑
j x j = x . By continuity of the bracket, 0 = ∑

j dSx j . By Lemma 85, dSx j = 0 for
all j , since dS preserves form degree. Lift � and s to Y . Then, Eq. 2 is still valid on
Yn, j . For j > 0, there are y j ∈ Yn−1, j with dS y j = x j . By Lemma 83, the element
y = ∑

j>0 y j is well defined and

x =
∑

j>0

x j + x0 = dS y + x0

with x0 ∈ Yn,0. For n 	= 0, this is the empty set and hence x is exact. For n = 0,
this set is R. We are left to show that two distinct dS-closed elements of R always
define the distinct cohomology classes. This follows from the fact that each summand
in ds y = ∑

j (±δ(e j ){e∗
j , y} ± e∗

j {δ(e j ), y}) is zero or has a factor of nonzero degree
since δ(e j ) = ek for some k depending on j . �

5.4 Stable equivalence

Let P be a unital, Noetherian Poisson algebra and J ⊂ P a coisotropic ideal. Let
(X, R) be a BFV model for (P, J ) and (Y, S) be a trivial BFV model. LetM and N
be the corresponding vector spaces. Define Z as the completion of Z0 := X0 ⊗ Y0 =
P ⊗ Sym(U ⊕U∗), where U = M⊕N and L = R ⊗ 1 + 1 ⊗ S. Both X and
Y naturally sit inside Z as Poisson subalgebras, since the inclusions X0 → Z0 and
Y0 → Z0 preserve the respective filtrations.
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Lemma 28 The pair (Z , L) defines another BFV model for (P, J ).

Proof Since the bracket between elements of X and elements of Y is zero, the element
L solves the master equation. The Künneth formula implies together with Lemma 27
the conditions on the cohomology. �

We call Z the product of X and Y and write Z = X⊗̂Y . Adding the new variables
in N does not change the cohomology of the BRST complex X :

Lemma 29 The natural map X → Z defines a quasi-isomorphism of differential
graded commutative algebras.

Proof We define the maps ι : X0 → Z0 as the natural map and p : Z0 → X0 as
the map taking x ⊗ y to xπ(y), where π : Y0 → Y0 is the projection onto R =
Sym0(M⊕M∗) along the Sym j (M⊕M∗) with j > 0. Both maps extend to the
respective completion. We claim that they define mutual inverses on cohomology.

From Eq. 2, we infer that there exists a map t on Y0 such that dSt + tdS = id−π .
In particular, πdS = dSπ = 0. We have t = 1

j s on form degree j > 0 and t = s on
R. Hence, t preserves the filtration up to degree shift. Hence, id⊗t extends from Z0
to the completion Z . By tensoring the other maps too, we obtain the identity

dR+S(id⊗t) + (id⊗t)dR+S = (id⊗dS)(id⊗t) + (id⊗t)(id⊗dS) = id⊗(id−π)

= id−ι ◦ p

on Z . The first equality is true since t shifts degree by one. We are left to show that
both maps ι and p descend to cohomology. For ι this is trivial. For p note that for
homogeneous x of degree k,

p(dR+S(x ⊗ y)) = p((dRx) ⊗ y + (−1)k x ⊗ dS y)

= π(y)dRx + (−1)k xπdS y = dR(xπy) = dR(p(x ⊗ y)).

�
Now, we are ready to formulate the notion of stable equivalence introduced in [8]:

Definition 30 Let (X, R) and (X ′, R′) be two simple BFVmodels for (P, J ). We say
that (X, R) and (X ′, R′) are stably equivalent if there exist trivial BFV models (Y, S)

and (Y ′, S′) and a Poisson isomorphism X⊗̂Y −→ X ′⊗̂Y ′ taking R + S to R′ + S′.

5.5 Relating Tate resolutions

Now, we want to consider BFV models (R, X) and (R′, X ′) whose Tate resolutions
(X/I, dR) and (X ′/I ′, dR′) are not equal. We have the notion of stable equivalence.
Our aim is to prove that any two such BFVmodels are stably equivalent and that stably
equivalent BFV models are quasi-isomorphic. As a tool, we need the following lifting
statement:
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Lemma 31 Let P = R[V ] with bracket induced by a symplectic structure of a finite-
dimensional vector space V and consider T = P⊗Sym(M) and T ′ = P⊗Sym(M′).
Assume there is an isomorphism φ : T → T ′ of graded commutative algebras which
is the identity in degree zero. Let X be the completion of X0 = P ⊗ Sym(M⊕M∗).
Construct analogously the space X ′. Then, φ lifts to a Poisson isomorphism 
 : X →
X ′.

Proof Since T and T ′ are negatively graded and isomorphic as graded algebras, we
have M ∼= M′ as graded vector spaces. Hence, we may assume M = M′ and thus
T = T ′ and X = X ′.

Pick standard coordinates {x1, . . . , xn, y1, . . . , yn} on the space V for the sym-
plectic structure, so that R[V ] = R[xi , y j ] and {xi , y j } = δi j . Let {e(l)

j } j be a

basis of M−l and {e(l)
j

∗} j be the respective dual bases. Then there are elements

al1...lkj1... jk
( j, l)(xi , yi ) ∈ R[xi , yi ] and invertible matrices a(l)

jk ∈ R[xi , yi ] such that

φ(e(l)
j ) =

∑

k

a(l)
jk (xi , yi )e

(l)
k +

∑
al1...lkj1... jk

( j, l)(xi , yi )e
(l1)
j1

· · · e(lk )
jk

,

where the sum runs over all integers k ≥ 2 and ( j1, l1), . . . ( jk, lk)with l1+· · ·+lk = l

and is thus finite. Consider indeterminatsYi , E
(l)
j

∗ ∈ X0 of degree 0 and l, respectively,
defining

S(xi ,Yi , e
(l)
j , E (l)

j

∗
) =

∑

i

xi Yi +
∑

j,k,l

a(l)
jk (xi ,Yi )E

(l)
j

∗
e(l)
k

+
∑

( j,l)

∑
al1...lkj1... jk

( j, l)(xi ,Yi )E
(l)
j

∗
e(l1)
j1

· · · e(lk )
jk

.

Consider the equations

∂S

∂xi
= yi

∂S

∂Yi
= Xi

∂S

∂e(l)
j

= (−1)l e(l)
j

∗ ∂S

∂E (l)
j

∗ = E (l)
j ,

which read

yi = Yi +
∑

j,k,l

∂a(l)
jk (xi ,Yi )

∂xi
E (l)

j

∗
e(l)
k +

∑

( j,l)

∑ ∂al1...lkj1... jk
( j, l)(xi ,Yi )

∂xi

× E (l)
j

∗
e(l1)
j1

· · · e(lk )
jk

,

Xi = xi +
∑

j,k,l

∂a(l)
jk (xi ,Yi )

∂Yi
E (l)

j

∗
e(l)
k +

∑

( j,l)

∑ ∂al1...lkj1... jk
( j, l)(xi ,Yi )

∂Yi

× E (l)
j

∗
e(l1)
j1

· · · e(lk )
jk

,
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e(l)
j

∗ =
∑

k

a(l)
k j (xi ,Yi )E

(l)
k

∗ +
∑

( j ′,l ′)

∑
al1...lkj1... jk

( j ′, l ′)(xi ,Yi )(−1)l(l
′+1)E (l ′)

j ′
∗

× ∂(e(l1)
j1

· · · e(lk )
jk

)

∂e(l)
j

,

E (l)
j =

∑

k

a(l)
jk (xi ,Yi )e

(l)
k +

∑
al1...lkj1... jk

( j, l)(xi ,Yi )e
(l1)
j1

· · · e(lk )
jk

.

The linear part is invertible. Hence, we can solve the equations for (Xi ,Yi , E
(l)
j , E (l)

j

∗
)

in terms of (xi , yi , e
(l)
j , e(l)

j

∗
) (and vice versa) and hence also for (xi ,Yi , e

(l)
j , E (l)

j

∗
) in

terms of (xi , yi , e
(l)
j , e(l)

j

∗
) (and vice versa) in the completion X . Hence, the function

S generates a Poisson automorphism 
 : X → X by Lemma 86. Let I be the ideal
generated by positive elements as defined previously. We have 
(xi ) = Xi ≡ xi =
φ(xi ) (mod I ) and 
(yi ) = Yi ≡ yi = φ(yi ) (mod I ); thus also 
(e(l)

j ) = E (l)
j ≡

φ(e(l)
j ) (mod I ). Hence, 
 is a lift of φ. �

Theorem 32 Consider P = R[V ] with bracket induced by a symplectic structure
on a finite-dimensional vector space V . Any two BFV models for (P, J ) are stably
equivalent.

Proof Let (X, R) and (X ′, R′) be BFV models with associated Tate resolutions T :=
X/I ∼= P ⊗Sym(M) and T ′ := X ′/I ′ ∼= P ⊗Sym(M′). By [8, Theorem A.2], there
exist negatively graded vector spacesN andN ′ with finite-dimensional homogeneous
components, differentials δN : Sym(N ) → Sym(N ), δN ′ : Sym(N ′) → Sym(N ′)
with cohomology R, and an isomorphism φ of differential graded commutative alge-
bras

P ⊗ Sym(M⊕N ) →P ⊗ Sym(M′ ⊕N ′)

restricting to idP : P → P in degree 0. Let Y and Y ′ be the trivial BFV models
corresponding to N and N ′ with BRST charges S and S′, respectively. Consider the
spaces Z = X⊗̂Y and Z ′ = X ′⊗̂Y ′. Together with the operators L = R + S and
L ′ = R′ + S′, they form BFV models (Z , L) and (Z ′, L ′) for (P, J ) by Lemma 28.

We now construct a Poisson isomorphism 
 : X⊗̂Y → X ′⊗̂Y ′ sending R + S to
R′+S′. By Lemma 31, themapφ lifts to a Poisson isomorphism� : X⊗̂Y → X ′⊗̂Y ′.
Now, L ′′ = �(L) solves {−,−} = 0 in X ′⊗̂Y ′. Moreover, {L ′′,−} induces δ′ on
P⊗Sym(M′ ⊕N ′). By Theorem 24, there exists a Poisson isomorphism χ of X ′⊗̂Y ′
with L ′ = χ(L ′′). Set 
 = χ ◦ �.

We are now in the situation

X X ′

X⊗̂Y



X ′⊗̂Y ′,
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where the vertical arrows represent natural maps which are quasi-isomorphisms by
Lemma 29. �
Lemma 33 The complexes of two stably equivalentBFVmodels are quasi-isomorphic.
In particular, they have cohomologies which are isomorphic as graded commutative
algebras.

Proof Let (X, R) and (X ′, R′) be two stably equivalent BFV models. Hence, we are
in the situation

X X ′

X⊗̂Y X ′⊗̂Y ′,

where the downward arrows are quasi-isomorphisms of differential graded com-
mutative algebras by Lemma 29 and the bottom arrow is a Poisson isomorphism
X⊗̂Y → X ′⊗̂Y ′ sending R + S to R′ + S′. �

From Theorem 32 and Lemma 33, we obtain results analogously to the treatment
of the Lagrangian case in [8]

Corollary 34 Let P = R[V ] with bracket induced by a symplectic structure on a
finite-dimensional vector space V . Any two BRST complexes arising from BFV mod-
els for the same coisotropic ideal J ⊂ P are quasi-isomorphic. Hence, the BRST
cohomology is uniquely determined by (P = R[xi , yi ], J ) up to an isomorphism of
graded commutative algebras.

6 Cohomology

Let P be a unital, Noetherian Poisson algebra and J a coisotropic ideal. Let (X, R) be
a BFV model for J ⊂ P . In this section, we analyse the cohomology of the complex
(X, dR). We follow the strategy from [8].

6.1 Cohomology and filtration

The associated graded of X is defined by grp X = F p X/F p+1 X . The differential
dR induces a map δ on X/I = T = P ⊗ Sym(M) and the results from Sect. 4 apply.

Lemma 35 H j (gr p X, dR) ∼= B p ⊗P P/J for j = p and H j (gr p X, dR) ∼= 0 for
j 	= p.

Proof Fix p. B p is a free P-module. By Lemma 16, we have

H j (F p X/F p+1 X, dR) ∼= H j (B p ⊗P T •−p, 1 ⊗ δ)

∼= B p ⊗P H j−p(T, δ) ∼= B p ⊗P H j−p(X/I, dR).

�
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Next, we want to prove that, to compute the cohomology in a fixed degree, one may
disregard elements of high filtration degree.

Lemma 36 Let j < p be integers with p � 0. Then, H j (F p X, dR) = 0.

Proof Let x ∈ F p X j be a cocycle representing a cohomology class in H j (F p X, dR).
Then, x + F p+1 X j defines a cocycle in H j (F p X/F p+1 X, dR). By Lemma 35,
there is y0 ∈ F p X j−1 with x − dR y0 ∈ F p+1 X j . Hence, this element defines a
cocycle in H j (F p+1 X/F p+2 X, dR) = 0. Hence, there is y1 ∈ F p+1 X j−1 with
x − dR y0 − dR y1 ∈ F p+2 X j . Iterating this procedure, we find a sequence y0, y1, . . .
of elements y j ∈ F p+ j X j−1 with x −dR(y0 +· · ·+ y j ) ∈ F j+1 X j . By Lemma 77,
the element y := y0 +· · · ∈ X j−1 is well defined and y0 +· · ·+ y j → y. Since all y j
are in F p X j−1 and this set is closed by Lemma 75, we have y ∈ F p X j−1. Finally,
for n fixed, and all j ,

dR y0 + · · · + dR yn + · · · + dR yn+ j − x ∈ Fn+1 X j .

Since dR = {R,−} is continuous (Lemma 74), we have dR y − x ∈ Fn+1 X j . Since
n was arbitrary, dR y = x . �
Corollary 37 The cohomology of (X, dR) is concentrated in a non-negative degree.

Corollary 38 The natural map H j (X, dR) → H j (X/F p+1 X, dR) is an isomor-
phism for j < p and injective for j = p.

Proof The short exact sequence 0 → F p+1 X → X → X/F p+1 X → 0 defines the
long exact sequence

· · · → H j (F p+1 X, dR) → H j (X, dR) → H j (X/F p+1 X, dR)

→ H j+1(F p+1 X, dR) → · · · .

For j � p, the first term is zero and for j < p, and both the first and the last terms
are zero by Lemma 36. �

6.2 Spectral sequences

Lemma 39 Let E p,q
r be the spectral sequence corresponding to the filtered complex

F p X p+q with differential dR. We have H•(X, dR) ∼= E•,0
2 as graded commutative

algebras.

Proof Begin with E p,q
0 := F p X p+q/F p+1 X p+q . It is concentrated in degree p �

0, q � 0. By Lemma 35, we have the following isomorphism of differential bi-graded
algebras:

E p,q
1 = Hq(E p,•

0 , dR) = Hq(F p X p+•/F p+1 X p+•, dR)

= H p+q(F p X/F p+1 X, dR) ∼=
{
B p ⊗P P/J, if q = 0

0, if q 	= 0.
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Hence, E p,q
1 is concentrated in degree p � 0 and q = 0. Moreover, d p,q

1 maps E p,q
1

to E p+1,q
1 . Hence, also E p,q

2 is concentrated in p � 0, q = 0. Since d2 maps E p,0
2 to

E p+2,−1
2 , it is zero for degree reasons and hence the spectral sequence degenerates at

E2.
We are left to prove that the spectral sequence converges to the cohomology. By [6,

chapter XV, proposition 4.1], this follows from Lemma 36. �

We could use this lemma to prove H0(X, dR) ∼= (P/J )J as algebras. However, we
want to consider an additional structure on the latter space.

6.3 The Poisson algebra structure on (P/J)J

The following two remarks are well known and easily checked.

Remark 40 The Poisson algebra structure on P induces a Poisson algebra structure
on (P/J )J .

Remark 41 The graded Poisson algebra structure on X induces a Poisson algebra
structure on the cohomology H0(X, dR) in degree zero.

Those two structures are in fact isomorphic. We will explicitly construct a Poisson
isomorphism. By Corollary 38, we have H0(X, dR) ∼= H0(X/F2 X, dR) as vector
spaces.

Lemma 42 Representatives in X0 of cocycles in X0/F2 X0 defining elements in
H0(X/F2 X, dR) may be taken of the form

x = x0 +
∑

i, j∈L
ai j e

∗
i e j ,

where L = {n ∈ N : deg(e∗
j ) = 1}, x0 ∈ P, the {e j } are a homogeneous basis of M,

and the ai j ∈ P are chosen such that

{δ(e j ), x0} =
∑

i∈L
a jiδ(ei ).

Conversely, every such element defines a cohomology class.

Proof We have

X0/F2 X0 = P ⊕ (P ⊗ (M∗)−1 ⊗ M−1)

X−1/F2 X−1 = (P ⊗ M−1) ⊕ (P ⊗ (M∗)1 ⊗ M−2)

⊕ (P ⊗ (M∗)1 ⊗ (M−1 ∧M−1)).
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Hence, an arbitrary cochain may be taken to be of the form

x = x0 +
∑

i, j∈L
ai j e

∗
i e j

for some x0, ai j ∈ P . We compute with the help of Lemma 18,

dRx = {R, x0} +
∑

i, j∈L
({R, ai j }e∗

i e j + {R, e∗
i }e jai j − {R, e j }e∗

i ai j )

≡ {R, x0} −
∑

i, j∈L
{R, ei }e∗

j a ji

≡
∑

j∈L

(

(−1)1+d j {δ(e j ), x0} −
∑

i∈L
a jiδ(ei )

)

e∗
j (mod F2 X1).

�
Theorem 43 H0(X, dR) ∼= (P/J )J are Poisson algebras.

Proof Let π : X → P = X/(I + I−) denote the projection onto all monomials which
contain no factors of nonzero degree. Here, I− ⊂ X denotes the ideal generated
by all elements of negative degree. Define the map 
 : H0(X, dR) → P/J by

([x]) := π(x) + J . This map is well defined: Let x = dR y be exact. Consider
again the differential δ on T = X/I that is induced by dR and its representation as
an element Q0 ∈ X1. Also, pick a homogeneous basis e j of M as done before. By
Lemma 18, we obtain

dR(y) ≡ {Q0, y} ≡
∑

i

{(−1)1+di δ(ei )e
∗
i , y} ≡

∑

i :deg ei=−1

δ(ei ){e∗
i , y} (mod I+I−).

The last sum is finite. Hence,

π(x) = π(dR y) =
∑

i :deg ei=−1

δ(ei )π{e∗
i , y} ∈ J.

By Lemma 38, we have H0(X, dR) ∼= H0(X/F2 X, dR) as vector spaces. Hence,
we have a corresponding linear map X/F2 X → P/J .

The image of either of those maps is J -invariant: Let [x] ∈ H0(X/F2 X, dR).
According to Lemma 42, we may pick a representative x0 = π(x0) + ∑

i, j∈L ai j e∗
i e j

of x, where ai j ∈ P satisfy {δ(e j ), π(x0)} = ∑
i∈L a jiδ(ei ). In particular,

{δ(e j ), π(x0)} ∈ J . Fix b ∈ J . Then there exist b j ∈ P with b = ∑
i∈L biδ(ei )

and thus {b, π(x0)} = ∑
i∈L

(
bi {δ(ei ), π(x0)} + δ(ei ){bi , π(x)}) ∈ J .

Hence, we have two linear maps:

φ : H0(X/F2 X, dR) → (P/J )J ,


 : H0(X, dR) → (P/J )J ,
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given by projection onto the P component followed by modding out J , which corre-
spond to each other under the isomorphism H0(X, dR) ∼= H0(X/F2 X, dR).

The map φ is surjective: Let p ∈ P with {J, p} ⊂ J . By Lemma 42, the element
x = p+∑

i j∈L ai j e∗
i e j is a cocycle if {δ(e j ), p} = ∑

i∈L a jiδ(ei ). But those ai j ∈ P
exist since {δ(e j )} j∈L generate J . Hence, also the map 
 is surjective.

The map 
 is injective: Let x ∈ X0 represent [x] ∈ H0(X, dR) with π(x) ∈ J .
We claim that there exist y j ∈ F j X−1 with x − dR(y0 + · · · + yn) ∈ Fn+1 X0.
By Lemma 35, we know that H j (F p X/F p+1 X, dR) is concentrated in degree zero
with H0(X/F1 X, dR) ∼= P/J via the natural map. Now, x + F1 X0 defines the
zero cohomology class in H0(X/F1 X, dR), since π(x) ∈ J . Hence there exists
y0 ∈ F0 X−1 with x − dR y0 ∈ F1 X0. Again, x − dR y0 + F2 X0 defines the zero
cohomology class in H0(F1 X/F2 X, dR) = 0. Hence, there exists y1 ∈ F1 X−1

with x − dR(y0 + y1) ∈ F2 X0 and so on. Hence, y j exist and their sum converges to
an element y ∈ X−1 by Lemma 77, which satisfies x − dR y = 0 by Lemma 75.

Hence, the map 
 is an isomorphism of vector spaces. This map also respects the
product structure


([x][y]) = 
([xy]) = π(xy) + J = π(x)π(y) + J = (π(x) + J )(π(y) + J )

= 
([x])
([y])

and is hence an isomorphism of algebras. Finally, map 
 respects the bracket:


({[x], [y]}) = 
([{x, y}]) = π({x, y}) + J = π({π(x), y}) + J

= π({π(x), π(y)}) + J = {π(x), π(Y )} + J = {π(x) + J, π(y) + J }
= {
(x),
(y)},

since {π(x) − x, X0} ⊂ {(I + I0) ∩ X0, X0} ⊂ ker π, where ker π = I + I0 ⊂ X is
the ideal generated by all elements of nonzero degree. The last inclusion holds by the
Leibnitz rule since all summands of elements in I + I0 that are of degree zero contain
at least two factors of nonzero degree. �

7 Examples

We present two well-known examples. More interesting examples can be found in
[13].

7.1 Rotations of the Plane

Here, we present an example, where the cohomology in degree zero has a nontrivial
bracket and the cohomology in degree 1 does not vanish. It is obtained by considering
the symplectic lift of the rotations of the plane to the cotangent bundle of the plane.

Consider P = R[x1, x2, y1, y2] with {xi , y j } = δi j . The ideal J ⊂ P generated by
μ = x1y2 − x2y1 is coisotropic. A Tate resolution of J is given by
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0 → P · e → P → P/J → 0

where the differential δ is the P-linear derivation defined by δ(e) = μ. Indeed, this
complex is a Koszul complex which is exact, since μ 	= 0 defines a regular sequence.
Hence, X = (

P · e) ⊕ (
P ⊕ P · e∗e

) ⊕ (
P · e∗). We now apply the construction from

Sect. 3.We obtain Q0 = e∗μ and R = Q0, since {Q0, Q0} = 0. One easily calculates

H0(X, dR) = {a + be∗e : {μ, a} = μb, a, b ∈ P}
{μc + {μ, c}e∗e : c ∈ P} .

Notice that the isomorphism H0(X, dR) → (P/J )J given by projection onto P is
evident here. Moreover, the bracket on this space does not vanish: x21 + x22 and y21 + y22
define cohomology classes, for which {x21 + x22 , y

2
1 + y22 } = 4(x1y1 + x2y2) is not in

J . Furthermore,

H1(X, dR) = {ae∗ : a ∈ P}
{dR(a + be∗e) : a, b ∈ P}

∼= P

{{μ, a} + μb : a, b ∈ P}

does not vanish, since deg0{μ, a} ≥ 1 and deg0(μb) ≥ 2. Here, deg0 denotes the
degree in P = R[xi , yi ].

7.2 Rotations of space

Let X = R
3 and M = T ∗X ∼= X ⊕ X∗. Consider the group G = SO(3) acting

on X via the standard representation ρ0 : G → End X . The symplectic lift is given
by ρ : G → EndM , ρ(A)(x, p) = (Ax, p ◦ A−1). Mapping the standard basis of
X = R

3 to its dual basis, we obtain an isomorphism ι : X → X∗. A possible moment
map is the angular momentum mapping μ : M → R

3, μ(x, p) = x × ιp. Here, ×
refers to the vector product, and we identified g ∼= R

3 using the basis

e1 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , e2 =
⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠ , e3 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ .

We define M0 = μ−1(0) = {(x, p) ∈ X ⊕ X∗ : ιp ‖ x}. This is not a manifold. If
it was one, it had dimension 4. However, all (x, 0), x ∈ R

3 and all (0, p), p ∈ (R3)∗
belong to M0. Hence, they also belong to the tangent space at the origin, provided M0
was a manifold. Since the tangent space at the origin is linear, it would have dimension
6 > 4. Since the constraint surface M0 is not a manifold, results from [9,14] do not
apply.

We take the Tate resolution T of the vanishing ideal J of M0 in P = R[M] =
R[x1, x2, x3, p1, p2, p3] with {xi , p j } = δi j . It exists since P is Noetherian. We
obtain the existence and uniqueness of a BRST charge R as described in the previous
sections.
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8 Quantization

In this section, we discuss quantization. In Sect. 8.1, we define a quantum algebra
quantizing the Poisson algebra X from the previous part of this note. We rigorously
define multiplication via normal ordering in the presence of infinitely many ghost
variables.

In Sect. 8.2, we construct a solution of the quantummaster equation associated with
a given solution of the classical master equation. This means we construct an element
of the quantum algebra that agrees with the quantization of the classical solution up
to an error of order h̄ and squares to zero.

In Sect. 8.3, we discuss the uniqueness of such solutions of the quantum master
equation. We parallel our discussion in the classical case. In Sect. 8.3.1, we define the
notion of a quantum gauge equivalence. In Sect. 8.3.2, we prove that two solutions
of the quantum master equation that agree up to an error of order h̄ are related via
an automorphism of associative algebras. In Sect. 8.3.3, we show that the solutions
of the quantum master equation associated with two BRST models associated with
the same Tate resolution are also related by an automorphism of associative algebras.
In Sect. 5.5, we have shown that any two BRST models associated with the same
coisotropic ideal J are stably equivalent. We would like to find a quantum analogue
of this theorem. We were able to prove in Sect. 8.3.5 that the process of adding extra
variables yields a quasi-isomorphism of differential graded algebras on the quantum
level. However, as discussed in Sect. 8.3.6, we were unable to quantize the general
Poisson isomorphism of Lemma 31.

8.1 Quantum algebra

Assumption 44 Assume that P = R[V ] where V is a finite-dimensional real sym-
plectic vector space and the bracket on P is induced by the symplectic structure.

Pick a decomposition V = L ⊕ L∗ where L is a Lagrangian subspace of V and
{v, λ} = λ(v) for v ∈ L and λ ∈ L∗. Set N := M⊕L so that we may write
X0 = Sym(N ⊕N ∗). We define G0 = G− ⊗ G+ where G− = Sym(N ) and
G+ = Sym(N ) as vector spaces. We introduce a formal parameter h̄ and want to
define a product on G0[h̄] quantizing X0[h̄]. Intuitively, we want to define the product
(x1− ⊗ x1+)(x2− ⊗ x2+) of monomials xi− ⊗ xi+ ∈ G0 ⊂ G0[h̄] by commuting x1+ to
the right of x2− using the canonical commutation relations we obtain from the split
V = L ⊕ L∗. A rigorous definition works as follows:

Let (W [h̄], �) be the deformation quantization [15] of X0 defined by the (graded, see
e.g. [7])Wick-type, or normal ordered-type [20] Moyal product �, defined by the split
V = L⊕ L∗. Since X0 contains only polynomials, theMoyal product of two elements
of W [h̄] is a polynomial in h̄. Since naturally G0[h̄] ∼= X0[h̄] as R[h̄]-modules and,
by construction of the deformation quantization, X0[h̄] ∼= W [h̄] as R[h̄]-modules,
the Moyal product defines a product on G0[h̄] turning G0[h̄] into a unital associative
algebra.

We do the construction involving G0[h̄] instead of X0[h̄], since we want to avoid
convergence issues. For example, the relation

∑
j e

∗
j e j = ∑

j (e j e
∗
j+h̄) is problematic
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in the completion of X0[h̄].Using a suitable completion ofG0[h̄],we avoid expressions
involving infinite sums of terms that are not normally ordered.

Next, we define the completion and extend the product to it. We introduce the
filtration on G0 defined by the subspaces F p G0 = ⊕

q≥p G− ⊗ Gp
+. Set F p Gn

0 =
F p G0 ∩ Gn

0 = ⊕
q≥p G

n−p
− ⊗ Gp

+. We complete G0 to the graded vector space
G = ⊕

n G
n where

Gn = lim←p

Gn
0

F p Gn
0
.

This graded vector space is again filtered by the subspaces F p Gn = lim←q
F p Gn

0
F p+q Gn

0
.

Define the graded vector spaceGh̄ by its homogeneous components Hn
h̄ = Gn[[h̄]].

We have a family of projections p j : Gh̄ → G mapping
∑

k≥0 xk h̄
k �→ x j . The space

G0[h̄] can be considered a graded subspace of Gh̄ . We want to extend the algebra
structure on G0[h̄] to Gh̄ . For this task, we need to analyse the compatibility of the
product on G0[h̄] with the filtration on G0.

Lemma 45 We have for all j, p ≥ 0 and n,m ∈ Z,

(1) p j (Gn
0 · F p Gm

0 ) ⊂ F p Gn+m
0 ,

(2) p j (F p Gn
0 · Gm

0 ) ⊂ F p+m Gn+m
0 .

Proof Consider x = a ⊗ u · b ⊗ v ∈ Gn
0 · Gm

0 where a ∈ Gn−l− , u ∈ Gl+, b ∈ Gm−k−
and v ∈ Gk+ for some l, k ≥ 0. Then,

p j (a ⊗ u · b ⊗ v) =
∑

b′u′
±ab′ ⊗ u′v,

where u′ and b′ arise from u and b by deleting j matching pairs (e, e∗), in which
e ∈ N is a factor in b and e∗ ∈ N ∗ is a factor in u of opposite degree. The sum is
finite.

To prove the first statement, it suffices to note that deg u′ ≥ 0 and k ≥ p. For
the second statement, we note that deg u′ + deg b′ = deg u + deg b and hence we
can estimate deg u′ + deg v ≥ deg u′ + deg b′ + deg v = deg u + deg b + deg v =
l + m − k + k ≥ p + m. �
Lemma 46 The product (and hence also the commutator) extend to the completion
turning (Gh̄, ·) into a graded algebra.

Proof First, we consider x = (xp +F p Gn
0)p ∈ Gn and y = (yp +F p Gm

0 )p ∈ Gm .
By Lemma 45, the limit lim p→∞ xp · yp ∈ Hn+m is well defined and the definition
x · p = lim p→∞ xp · yp does not depend on the choice of representatives xp, yp . The
multiplication extends to Gh̄ by bi-linearity in R[[h̄]]. �
Lemma 47 The product on Gn

h̄ × Gm
h̄ is continuous in each entry.
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Proof Let xr , x ∈ Gn
h̄ with xr → x and y ∈ Gm

h̄ . Write p j (xr ) = (x ( j)
r,p + F p Gn

0)p,

p j (x) = (x ( j)
p + F p Gn

0)p, and p j (y) = (y( j)
p + F p Gm

0 )p. Fix j, p ∈ N0. Take r0
such that for all 0 ≤ k ≤ j and all r ≥ r0,we have x

(k)
r,p−m ≡ x (k)

p−m (mod F p−m Gn
0).

Such r0 exists since xr → x . For r ≥ r0, we have by Lemma 45

p j (xr · y) − p j (x · y) =
( j∑

l=0

pl
( j−l∑

k=0

(x (k)
r,p−m − x (k)

p−m) · y( j−l−k)
p

)
+ F p Gn+m

0

)

p

= 0.

Continuity in the other entry follows analogously. �
Now that we have set up the algebra, we define the quantization mapping. We have

the canonical graded vector space isomorphism q0 : Sym(N ⊕N ∗) → Sym(N ) ⊗
Sym(N ∗). Since this map respects the respective filtrations, we can extend it to

q : X → G ⊂ Gh̄ .

Since the inverse of q0 also respects the filtration and thus extends, themap q : X → G
is an isomorphism of graded vector spaces.

To relate the multiplicative structure on X to the one on Gh̄ , we set A = Gh̄/(h̄)

where (h̄) ⊂ Gh̄ is the two-sided ideal generated by h̄. Hence, A ∼= G act as graded
vector spaces, but not as graded algebras since G is not closed under multiplication.

Remark 48 We have [Gh̄,Gh̄] ⊂ (h̄). Hence, (h̄) is the two-sided ideal generated by
the commutator. Hence, the map 1

h̄ [−,−] : Gh̄ ⊗Gh̄ → Gh̄ is well defined and turns
Gh̄ into a graded noncommutative Poisson algebra. This map descends to A, turning
it into a graded commutative Poisson algebra.

Theorem 49 The graded (commutative) Poisson algebras X and A are isomorphic
via the map φ = π ◦ ι ◦ q : X → G → Gh̄ → A, where π : Gh̄ → A = Gh̄/(h̄)

is the canonical projection and ι : G → Gh̄ is the inclusion. In particular, for all
x, y ∈ X

1

h̄
[q(x), q(y)] ≡ q({x, y}) (mod (h̄)). (3)

Proof We already know that φ is an isomorphism of graded vector spaces. We have to
prove the compatibility with the product and bracket structures. By density of X0 ⊂ X
and continuity of all maps involved, it suffices to consider X0. Without the completion
the statement is standard; see e.g. [20]. �
Corollary 50 If R ∈ X1 solves the classical master equation, then 1

h̄ [q(R), q(R)] ≡
0 (mod (h̄)). Conversely, if r = q(R) + h̄(· · · ) solves the quantum master equation
[r, r ] = 0, then R solves the classical master equation.
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8.2 Solving the quantum master equation

We want to construct a solution r ∈ G1
h̄ of the quantum master equation [r, r ] = 0.

We seek a solution of the form

r = q(R) + h̄q(R1) + h̄2q(R2) + · · ·

for some R j ∈ X1 where R ∈ X1 is a given solution of the classical master equation.

Assumption 51 We assume H2(X, dR) = 0.

8.2.1 A differential on the quantum algebra

Define D = 1
h̄ [q(R),−]. This defines a map Gh̄ → Gh̄ by Remark 48. It preserves

the ideal (h̄) and hence descends to a derivation D0 on A = Gh̄/(h̄). We calculate

D2(x) = 1

h̄2
[q(R), [q(R), x]] = 1

h̄2
[[q(R), q(R)], x] − 1

h̄2
[q(R), [q(R), x]].

Hence by Corollary 50 and Remark 48,

D2(x) = 1

2h̄

[
1

h̄
[q(R), q(R)], x

]

≡ 0 (mod h̄), (4)

so D0 is a differential on A.

Theorem 52 We have D0 ◦ φ = φ ◦ dR. In particular, φ : X → A is an isomorphism
of differential graded commutative algebras and H•(X, dR) ∼= H•(A, D0).

Proof Let x ∈ X . By Theorem 49,

D0(φ(x)) = D0(π(q(x))) = π(D(q(x))) = π

(
1

h̄
[q(R), q(x)]

)

= π(q({R, x})) = π(q(dR(x))) = φ(dR(x)).

�
Corollary 53 Under Assumption 51, H2(A, D0) = 0.

8.2.2 Construction of a solution of the quantum master equation

Theorem 54 Let n ≥ 0 be an integer. For n ≥ 1, assume we have constructed
R1, R2, . . . , Rn ∈ X1 such that rn := q(R) + ∑n

l=1 h̄
lq(Rl) satisfies

1
h̄ [rn, rn] ≡ 0

(mod (h̄n+1)). For n = 0, set rn = q(R) which also satisfies this assumption by
Corollary 50. We claim that there exists Rn+1 ∈ X1 such that

1

h̄
[rn + h̄n+1q(Rn+1), rn + h̄n+1q(Rn+1)] ≡ 0 (mod (h̄n+2)).
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Proof We compute for any Rn+1 ∈ X1, using Corollary 50,

1

h̄
[rn + h̄n+1q(Rn+1), rn + h̄n+1q(Rn+1)]

= 1

h̄
[rn, rn] + 2h̄n+1 1

h̄
[rn, q(Rn+1)] + h̄2n+2 1

h̄
[q(Rn+1), q(Rn+1)]

≡ 1

h̄
[rn, rn] + 2h̄n+1 1

h̄
[q(R), q(Rn+1)] (mod (h̄n+2)).

By the induction assumption, we can write the right hand side as h̄n+1 times

1

h̄n+1

1

h̄
[rn, rn] + 2D(q(Rn+1)) ∈ H

and we want this to be a multiple of h̄. This means we need to show that we can
pick Rn+1 ∈ X1, such that π( 1

h̄n+1
1
h̄ [rn, rn]) + 2D0(φ(Rn+1)) vanishes in A. By

Corollary 53 and the fact that φ is surjective, it suffices to prove that π( 1
h̄n+1

1
h̄ [rn, rn])

is D0-closed. By the Jacobi identity,

0 = 1

h̄2
[rn, [rn, rn]] = D

(
1

h̄
[rn, rn]

)

+
n∑

l=1

h̄l
1

h̄
[q(Rl),

1

h̄
[rn, rn]].

By the induction assumption, we may divide this equation by h̄n+1 to arrive at

D

(
1

h̄n+1

1

h̄
[rn, rn]

)

= −
n∑

l=1

h̄l
1

h̄

[

q(Rl),
1

h̄n+1

1

h̄
[rn, rn]

]

≡ 0 (mod h̄).

�

Hence, we have constructed r = q(R) + h̄q(R1) + · · · with [r, r ] = 0.

8.3 Uniqueness of the solution

In this paragraph, we consider questions of uniqueness of solutions of the quantum
master equation that arise from quantization of a solution of the classical master
equation.

8.3.1 Quantum gauge equivalences

We define the subspace K = {x ∈ G0
h̄ : p0(x) ∈ q(I (2))}.

Lemma 55 K is closed under the commutator.
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Proof Let x, y ∈ K . Theorem 49 allows us to calculate

1

h̄
[x, y] ≡ 1

h̄
[p0(x), p0(y)] ≡ q({q−1(p0(x)), q

−1(p0(x))}) (mod h̄).

By Lemma 76, the claim follows. �
We call elements of K generators of quantum gauge equivalences. Typical elements

of K are quantizations of generators of classical gauge equivalences or any degree
zero multiple of h̄. To exponentiate the Lie algebra K to a group acting on Gh̄ by
isomorphisms of associative algebras, we show that in each degree in h̄ the Lie algebra
L acts pro-nilpotent with respect to the filtration F p Gn .

Lemma 56 Wedefineada b = 1
h̄ [a, b] for a ∈ K andb ∈ Gh̄. TheLie algebraad K ⊂

End(Gh̄) acts pro-nilpotently in each degree of h̄. In particular, it exponentiates to a
group of automorphisms of associative algebras.

Proof Fix integers j ≥ 0 and k ≥ 1. For i = 1, . . . , k, take ui = ui0 + h̄ui1 + · · ·
where ui0 ∈ q(I (2)) and ui j ∈ G0. Let x ∈ Gn . Fix l = l1 + lk with integers li ≥ 0.
Then,

p j (ad
l1
u1 · · · adlkuk x)

= p j

⎛

⎜
⎜
⎝

∑

ji :{1,...,li }→N0
i=1,...,k

h̄
∑k

i=1
∑li

s=1 ji (s) adu1 j1(1) ◦ · · · ◦ adu1 j1(l1)
◦ · · · ◦ aduk jk (1) ◦ · · · ◦ aduk jk (lk )

(x)

⎞

⎟
⎟
⎠

=
∑

ji :{1,...,li }→N0
i=1,...,k

n=∑k
i=1

∑li
s=1 ji (s)≤ j

p j−n(adu1 j1(1) ◦ · · · ◦ adu1 j1(l1)
◦ · · · ◦ aduk jk (1) ◦ · · · ◦ aduk jk (lk )

(x)).

This is a finite sum. We now write out each argument of p j−n as a sum of products of
the u pq ∈ G. Each such product satisfies the following conditions. It contains (l + 1)
factors. The factor x appears once. The number of factors u pq with q ≥ 1 is bounded
above by n. Hence, the number of factors ui0 ∈ q(I (2)) is bounded below by (l − n).
Thus, the number of positive factors before normal ordering is bounded from below
by 2(l − n). After normal ordering and applying p j−n, the number of positive factors
that still remain are bounded from below by 2(l − n) − ( j − n) ≥ 2(l − j). Hence,
p j (ad

l1
u1 · · · adlkuk x) is a finite sum of elements in Gn , which contain at least 2(l − j)

factors of positive degree. This bound is independent of x .
Finally, fix p, j ≥ 0 and let x = ∑

j x j h̄
h ∈ Gn

h̄ . We have

p j (ad
l1
u1 · · · adlkuk x) =

j∑

k=0

p j−k(ad
l1
u1 · · · adlkuk xk).

Pick l0 such that for all m = 0, . . . , j , for all r ≥ 0 and l = l1 + · · · + lk ≥ l0
we have pm(adl1u1 · · · adlkuk xr ) ∈ F p Gn . Then for all l = l1 + · · · + lk ≥ l0, we
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have p j (ad
l1
u1 · · · adlkuk x) ∈ F p Gn . Hence, ad K acts pro-nilpotently with respect to

this filtration and thus ad K exponentiates to a group of vector space automorphisms
{exp adu : Gh̄ → Gh̄, u ∈ K }. These maps preserve the multiplicative structure since
adu is a derivation for the product. �

8.3.2 Ambiguity for a given solution of the classical master equation

Let R ∈ X1 be a solution of the classical master equation. Throughout this paragraph,
we assume

Assumption 57 We have H1(X, dR) = 0. Thus, H1(A, D0) = 0.

Let

r = q(R) + h̄q(R1) + · · · ,

r ′ = q(R) + h̄q(R′
1) + · · ·

be two solutions to the quantum master equation, so that r ≡ r ′ (mod h̄).

Lemma 58 Let n ∈ N0. Assume that for l = 1, . . . , n, we have Rl = R′
l . Then

there exists a generator c ∈ (h̄n+1) ⊂ K of a quantum gauge equivalence such that
exp adc r ≡ r ′ (mod (h̄n+2)).

Proof Let v = q(Rn+1) − q(R′
n+1) ∈ G1. Then, 0 = [r + r ′, r − r ′] since r, r ′ solve

the quantum master equation. Moreover, r − r ′ ≡ h̄n+1v (mod h̄n+2). Hence,

0 = 1

h̄
[r + r ′, v + h̄ · · · ] ≡ 1

h̄
[2q(R), v] ≡ 2Dv (mod h̄).

Thus, D0πv = 0. Hence by Assumption 57, πv = D0πu for some u ∈ G0
h̄ , so

v ≡ Du (mod h̄). Since v ∈ G1 is constant in h̄, we may also assume that u ∈ G0.
Set c = h̄n+1u ∈ K . We check that

exp adc r − r ′ = r − r ′ + 1

h̄
[c, r ] +

+∞∑

l=2

1

l! ad
l
c r

≡ h̄n+1
(

v − 1

h̄
[r, u]

)

≡ h̄n+1(v − Du) ≡ 0 (mod (h̄n+2)).

�
Theorem 59 Under Assumption 57, there is a quantum gauge equivalence mapping
r to r ′.

Proof By Lemma 58, there exists a sequence of generators c j ∈ (h̄ j+1) ⊂ K of
quantum gauge equivalences exp adc j which define a sequence r( j) of solutions of the
quantum master equation via r(0) = r and r( j+1) = exp adc j r( j), so that r( j+1) ≡ r ′
(mod h̄ j+2). We have

r( j+1) = exp adc j exp adc j−1 · · · exp adc0 r = exp adγ j r,
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for some γ j ∈ K . We are left to show that γ j → γ ∈ K and exp adγ r = r ′. By the
Campbell–Baker–Hausdorff formula, we have γ0 = c0 and γ j+1 = γ j + c j+1 + · · · ,
where the terms we have dropped involve sums of nested commutators 1

h̄ [−,−], each
of which contain at least one c j+1 ∈ (h̄ j+2). Hence, γ j+1 ≡ γ j (mod h̄ j+2) and thus
lim γ j = γ ∈ K exists.

Finally, fix k ∈ N0. We will prove that pk(exp adγ r − r ′) = 0. We already know
that pk(exp adγk−1 r − r ′) = 0, since exp adγk−1 r = r(k). Hence, it suffices to prove
that pk(exp adγk−1 r−exp adγ r) = 0.We show by induction in l ∈ N0 that adlγk−1

r ≡
adlγ r (mod h̄k+1). The case l = 0 is trivial. Now, suppose the statement holds for
some l ∈ N0. Then,

adl+1
γk−1

r − adl+1
γ r = adγk−1(ad

l
γk−1

r − adlγ r + adlγ r) − adl+1
γ r

≡ adγk−1 ad
l
γ r − adl+1

γ r = adγk−1−γ adlγ r ≡ 0 (mod h̄k+1),

since γ ≡ γk−1 (mod h̄k+1). �

8.3.3 Ambiguity for two classical solutions corresponding to the same Tate resolution

Let R, R′ be two solutions of the classical master equation associated with the same
Tate resolution. Let

r = q(R) + h̄q(R1) + · · · ,

r ′ = q(R′) + h̄q(R′
1) + · · ·

be two solutions of the quantum master equation.

Theorem 60 If either of the two solutions R, R′ of the classical master equation
satisfy Assumption 57, then there is a quantum gauge equivalence mapping r to r ′.

Proof ByTheorem24, there exists a classical gauge equivalence g = exp adu mapping
R to R′. In particular, Assumption 57 is satisfied for both solutions. We have c =
q(u) ∈ K . Set r ′′ = exp adc r . It is a solution of the quantum master equation. We
first prove that r ′′ ≡ r ′ (mod h̄). We have

r ′′ − r ′ = exp adc r − r ′ ≡ exp adq(u) q(R) − q(R′) (mod h̄).

Now, we prove by induction in l ∈ N0 that adlq(u) q(R) ≡ q(adlu R) (mod h̄). For
l = 0, this is obvious. Suppose it holds for some l ∈ N0. Then, by Eq. 3,

adl+1
q(u) q(R) = adq(u) ad

l
q(u) q(R) ≡ adq(u) q(adlu R) ≡ q(adl+1

u R) (mod h̄).

We now have

L∑

l=0

1

l! ad
l
q(u) q(R) − q(R′) ≡ q

( L∑

l=0

1

l! ad
l
c0 R − R′

)

(mod h̄).
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For L → +∞, the left hand side converges to exp adq(u) q(R) − q(R′), and the
argument of q on the right hand side converges to zero. By continuity of q and (h̄)

being closed, we conclude that r ′′ ≡ r ′ (mod h̄).
We are now in the situation

r = q(R) + h̄q(R1) + · · · ,

r ′ = q(R′) + h̄q(R′
1) + · · · ,

r ′′ = exp adc r = q(R′) + h̄q(R′′
1 ) + · · · .

By Theorem 59, there exists a quantum gauge equivalence exp adv with exp adv r ′′ =
r ′. In particular, r ′ = exp adv exp adc r . �

8.3.4 Quantization of trivial BRST models

Let (Y, S) be a trivial BRST model, so Y = Sym(N ⊕N ∗) for some negatively
graded vector space N with finite-dimensional homogeneous components and S =∑

j e
∗
j δ(e j ) with δ(e j ) = ek for some k depending on j . Let q : Y → G denote the

quantization map. Then, s = q(S) solves the quantum master equation. Moreover,
Ds = 1

h̄ [s,−] maps G0 to G0 and G to G, as can be seen using the Leibnitz rule.
Hence, both q0 : Y0 → G0 and Y → G are isomorphisms of differential graded
vector spaces, in particular, H j (G0, Ds) = 0 for j 	= 0 and H0(G0, Ds) = R by
Lemma 27.

8.3.5 Quantization of products with trivial BRST models

Let (X, R) be a BRSTmodel and (Y, S) a trivial BRSTmodel. Consider quantizations
q : X → F ⊂ Fh̄ and q : Y → G ⊂ Gh̄ with associated solutions of the quantum
master equation s = q(S) and r = q(R)+ h̄ · · · , respectively. Write F0 = Sym(N )⊗
Sym(N ∗) for some non-positively graded vector space N and G0 = Sym(U) ⊗
Sym(U∗) for some negatively graded vector space U . Let Z = X⊗̂Y and q : Z →
H ⊂ Hh̄ be the quantization obtained from the splitting H0 = Sym(N ⊕U) ⊗
Sym(N ∗ ⊕U∗).

Lemma 61 The natural map Fh̄ → Hh̄ is a quasi-isomorphism of graded associative
algebras.

Proof The natural map is a morphism of graded associative algebras, since adding
new variables from U and U∗ does not change the rules defining normal ordering in
Fh̄ .

Consider the isomorphism φ0 : F0 ⊗G0 → H0 of graded vector spaces. It extends
h̄-linearly to an isomorphism

φ : F0[h̄] ⊗R[h̄] G0[h̄] → H0[h̄]

of graded associative algebras. On the left hand side, we may take the tensor product
of algebras, since elements of F0 and G0 commute.
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Using this isomorphism, we construct the h̄-linear maps

ι :F0[h̄] → F0[h̄] ⊗R[h̄] G0[h̄] → H0[h̄],
p :H0[h̄] → F0[h̄] ⊗R[h̄] G0[h̄] → F0[h̄],

where the last arrow takes f ⊗ g ∈ F0 ⊗ G0 to f π(g). Here, π : G0 → G0 is the
projection onto R along elements of nonzero form degree.

The quantization map q : Y0 → G0 is compatible with the decompositions Y0 =
R⊕ ⊕

j>0 Sym
j (U ⊕U∗) andG0 = R⊕ ⊕

p+q>0 Sym
p(U)⊗Symq(U). Moreover,

it intertwines the differentials dS on Y0 and Ds onG0. Hence, the situation of the proof
of Lemma 29 is established in the quantum version as well. We conclude that ι and p
extend h̄-linearly to the respective completions, descend to cohomology, and induce
mutual inverses on cohomology. �

8.3.6 Relating arbitrary BRST models

To relate the quantizations of two BRST charges defining BRST models for the same
ideal, we need to quantize general automorphisms of the space X that are the identity
on P = R[V ] modulo I (see Lemma 31). Since the quantization procedure is not
functorial, we do not directly obtain an isomorphism of differential graded algebras
on the quantum level. We were unable to rigorously define a quantum analog to such
an isomorphism.
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Appendix A: Graded Poisson algebras

Let (P, [−,−]0) be a unital Poisson algebra over K = R. Let M be a negatively
graded vector space with finite-dimensional homogeneous components. Let M∗ be
the positively graded vector space with homogeneous components (M∗)i = (M−i )∗.
Define the graded algebra X0 = P ⊗ Sym(M⊕M∗).

Lemma 62 The bracket {−,−}0 on P naturally extends to a skew-symmetric, bilinear
map {−,−} on X0 via the natural pairing of M and M∗. This map has degree zero.
Moreover, it is a derivation for the product on X0 and satisfies the Jacobi identity.
Thus, it turns X0 into a graded Poisson algebra.

Proof First, we define a bracket on Sym(M⊕M∗). For x ∈ M and α ∈ M∗, we
set

{x, x}1 = 0, {α, α}1 = 0, {x, α}1 = α(x), {α, x}1 = −(−1)degα deg xα(x)

and extend this definition as a bi-derivation to all of Sym(M⊕M∗). It is then a
bilinear, skew-symmetric map {−,−}1 : Sym(M⊕M∗) × Sym(M⊕M∗) →
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Sym(M⊕M∗) of degree zero which is by definition a derivation for the product.
The expression

ζ(a, b, c) := (−1)deg a deg c{a, {b, c}} + cyclic permutations

satisfies ζ(a1a2, b, c) = (−1)deg a1 deg ca1ζ(a2, b, c)+(−1)deg a2 deg bζ(a1, b, c)a2 and
similar derivation-like statements for the other entries. Let {e j } be a homogeneous
basis of M and {e∗

j } its dual basis. Then the bracket of any two of those generators
is a scalar, whence ζ is zero on generators. By the above derivation-type property, ζ
vanishes identically, proving the graded Jacobi identity.

Now, set {−,−} = {−,−}0 + {−,−}1 on X0. �
The grading on M induces a grading on X0. We obtain a descending filtration

indexed by nonnegative integers n: Fn X0 is defined to be the ideal generated by
elements of X0 of degree at least n. Note that F0 X0 = X0 is the whole algebra. We
set Fn Xm

0 = Fn X0 ∩ Xm
0 . We also define I0 := F1 X0 and I (n)

0 := I0 · · · I0 to be
the n-fold product ideal.

A.1: Compatibility of filtration and bracket on X0

We use the derivation properties of the bracket on X0 to derive the compatibility
relations between the filtration and the bracket.

Lemma 63 For m, n ∈ Z and p, q ∈ N0, we have {F p Xn
0 ,Fq Xm

0 } ⊂
Frn,m (p,q) Xm+n

0 where

rn,m(p, q) = max{m + n,min{max{p, q + n},max{q, p + m}}}. (5)

Proof Let a, b, u, v ∈ X0 be homogeneous elements with deg a+deg u = n, deg b+
deg v = m, deg u = p, and deg v = q. Suppose without loss of generality that p � n
and q � m. Using the Leibnitz rule we see that {au, bv} is in Fr X0, where r =
min{p+ q,max{p, q + n},max{q, p+m}} = min{max{p, q + n},max{q, p+m}}.

�
Corollary 64 We obtain for p, q ∈ N0 and m, n ∈ Z,

(1) {F p X1
0,Fq X1

0} ⊂ F l(p,q) X0, where l(p, q) =
{
max{p, q}, i f p 	= q

p + 1, i f p = q
.

(2) {F p X0, Xm
0 } ⊂ F p X0 provided m � 0.

(3) {F p Xn
0 , X

m
0 } ∪ {Xn

0 ,F p Xm
0 } ⊂ F tn,m (p) Xn+m

0 , where tn,m(p) = p −
max{|n|, |m|}.

Lemma 65 We have {X1
0 ∩ I (2)

0 ,Fm X0} ⊂ Fm+1 X0.

Proof Let a, u1, u2 ∈ X0 with deg(a) = 1 − n, deg(u1) + deg(u2) = n, and
deg(u1), deg(u2) > 0. Let b, v ∈ X0 with deg(v) = m. Expand {au1u2, bv} using
the Leibnitz rule. �
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Lemma 66 The ideal I0 is closed under the bracket.

Proof Let a, u, b, v ∈ X0 with deg(u) = deg(v) = 1. Expand {au, bv} using the
Leibnitz rule. �

A.2: Completion

For each j , we use the filtration on X j
0 to complete this space to the space

X j = lim←p

X j
0

F p X0 ∩ X j
0

.

The sum and scalar multiplication on X j
0 extend to this space, turning X = ⊕

j X
j

into a graded vector space. The product of two elements (xp + F p X j
0)p ∈ X j and

(yp + F p Xk
0)p ∈ Xk is defined to be (xp yp + F p X j+k

0 )p ∈ X j+k . This definition
does not depend on the choice of representatives, since the product is compatible
with the filtration. Moreover, it defines an element of X j+k since for p � q we have
xp yp ≡ xq yq (mod F p X j+k

0 ), and we may shift the representatives of x and y. The
multiplication is compatible with the addition turning X into a graded commutative
algebra.

Endow X j
0/F p X j

0 with the discrete topology and
∏

p X
j
0/F p X j

0 with the product

topology. Equip lim← X j
0/F p X j

0 ⊂ ∏
p X

j
0/F p X j

0 with the subspace topology.

Finally, equip X = ⊕
j X

j with the product topology. Hence, a sequence {xl}l ⊂ X j ,

with xl = (xl,p + F p X j
0)p, converges to an element x = (xp + F p X j

0)p ∈ X j if
and only if for all p ∈ N0 there exists a l0 such that for all l � l0 we have xp,l ≡ xp
(mod F p X j

0). A sequence {xl}l ⊂ X converges to an element x ∈ X if and only
if all homogeneous components converge. Since X is first-countable, continuity is
characterized by the convergence of sequences. We immediately obtain:

Lemma 67 The sum X × X → X is continuous.

For the product, only a weaker statement holds in general:

Lemma 68 The product X → X is continuous in each entry. For each pair ( j, k) ∈
Z
2, the product X j × Xk → X j+k is continuous.

Proof Consider a sequence {xi }i in X converging to x ∈ X and fix y ∈ X . Denote
the homogeneous components of xi by x j

i = (x j
i,p + F p X j

0)p and similarly for x
and y. Fix l ∈ Z and p ∈ N0. The l-th homogeneous component of xi y has a p-th
component with representative

∑
j∈C xl− j

i,p y j
p where the C ⊂ Z is the finite set for

which y j 	= 0. It does not depend on i . (Such a finite set which is independent of i
only exists in general when one entry of the product remains fixed.) We have

∑

j∈C
xl− j
i,p y j

p =
∑

j∈C

(
(xl− j

i,p − xl− j
p )y j

p + xl− j
p y j

p

)
.
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For each j ∈ C, pick a number i0, j such that for i j � i0, j we have xl− j
i j ,p

≡
xl− j
p (mod F p Xl− j

0 ) and let i0 be their maximum. Now, for i � i0, we have
∑

j∈C xl− j
i,p y j

p ≡ ∑
j∈C xl− j

p y j
p (mod F p Xl

0). The second statement follows simi-
larly. �

Next, we approximate elements in X by elements in X0.

Lemma 69 The map ι : Xn
0 −→ Xn sending x ∈ Xn

0 to (x + F p Xn
0 )p is injective.

Proof Since ι is linear, the claim follows from
⋂

p F p Xn
0 = 0. �

Lemma 70 For x = (xp + F p Xn
0 )p ∈ Xn

0 , we have limm→∞ ι(xm) = x.

Proof Fix p. For m � p, we have that the p-th component of ι(xm) − x is xm − xp ∈
F p Xn

0 . �
Corollary 71 X0 can be considered a dense subset of X.

Now, we turn to the extension of the bracket to the completion. Let x = (xp +
F p X j

0)p ∈ X j and y = (yp + F p Xk
0)p ∈ Xk . We define {x, y} ∈ X j+k to be the

element

({xs j,k(p), ys j,k (p)} + F p X j+k
0 )p,

where s j,k(p) := p+max{| j |, |k|}. This definition does not depend on the representa-
tives of x and y by Corollary 64, since t j,k(s j,k(p)) = s j,k(t j,k(p)) = p. Moreover, it
defines an element of X j+k : for p � q we have {xs j,k(p), ys j,k (p)} ≡ {xs j,k(q), ys j,k (q)}
(mod F s j,k(p)), since we may shift the representatives of x and y. We extend this
bracket as a bilinear map to X × X .

Lemma 72 The extension of the bracket on X0 is a skew-symmetric, bilinear degree
zero map on X that satisfies the graded Jacobi identity (i.e. the bracket is an odd
derivation for itself).

Proof It is trivial that the extended bracket is a skew-symmetric, bilinear degree zero
map. These properties follow directly from the definitions.

We prove the graded Jacobi identity. Consider elements

x = (xp + F p X j
0)p ∈ X j y = (yp + F p Xk

0)p ∈ Xk z = (z p + F p Xl
0)p ∈ Xl .

The p-th element of {y, z} has representative {ysk,l (p), zsk,l (p)}. Hence, the p-th ele-
ment of {x, {y, z}} has representative {xs j,k+l (p), {ysk,l (s j,k+l (p)), zsk,l (s j,k+l (p))}. We now
want to bound the indices from above by a term which is invariant under cyclic per-
mutations of ( j, k, l). The function r j,k,l(p) := p + 2(| j | + |k| + |l|) does the job.
So, (−1) jl{x, {y, z}} + (−1)k j {y, {z, x}} + (−1)lk{z, {x, y}} has representative

(−1) jl{xr j,k,l (p), {yr j,k,l (p), zr j,k,l (p)}} + cyclic permutations

which vanishes by the graded Jacobi identity on X0. �
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Lemma 73 The bracket on X is a derivation for the product.

Proof Let

x = (xp + F p X j
0)p ∈ X j y = (yp + F p Xk

0)p ∈ Xk z = (z p + F p Xl
0)p ∈ Xl .

The p-th element of {xy, z} − (x{y, z} + (−1) jk y{x, z}) has representative

{xs j+k,l (p)ys j+k,l (p), zs j+k,l (p)} −
(

xp{ysk,l (p), zsk,l (p)} + (−1) jk yp{xs j,l (p), zs j,l (p)}
)

≡ {xq yq , zq} − (xq{yq , zq} + (−1) jk yq{xq , zq}) (mod F p X j+k+l
0 ),

where q := p + |m| + |n| + |k| is a common upper bound of all indices appear-
ing in the formula. The last line vanishes by the derivation property of the bracket
on X0. �

Lemma 74 For each pair ( j, k) ∈ Z
2, the map {−,−} : X j ×Xk → X is continuous.

The map {−,−} : X × X → X is continuous in each entry.

Proof Let xn = (xn,p + F p X j
0)p ∈ X j and yn = (yn,p + F p Xk

0)p ∈ Xk define

two sequences converging to the respective elements x = (xp + F p X j
0)p ∈ X j and

y = (yp + F p Xk
0) ∈ Xk . Fix p, set s = s j,k(p), and pick n0 such that for n � n0,

xn,s ≡ xs (mod F s X j
0) ym,s ≡ ys (mod F s Xk

0).

Let n � n0. The p-th element of {xn, yn}− {x, y} has the representative {xn,s, yn,s}−
{xs, ys} ∈ F t j,k(s) ⊂ F p X j+k

0 by Corollary 64.
Now, consider a sequence {xi }i in X converging to x ∈ X and fix y ∈ X . Denote

the homogeneous components of xi by x
j
i = (x j

i,p +F p X j
0)p and similarly for x and

y. Fix l ∈ Z and p ∈ N0. Set C = { j ∈ Z : y j 	= 0}. This is a finite set. The l-th
homogeneous component of {xi , y} has a p-th component with representative

∑

j∈C
{xl− j

i,sl− j, j (p)
, y j

sl− j, j (p)
}.

Set s = max{sl− j, j (p) : j ∈ C} and pick n0 such that for n � n0 and all j ∈ C, we

have xl− j
n,s ≡ xl− j

s (mod F s Xl− j
0 ). For such n,

∑

j∈C
{xl− j

n,sl− j, j (p)
, y j

sl− j, j (p)
} ≡

∑

j∈C
{xl− j

n,s , y j
s } ≡

∑

j∈C
{xl− j

s , y j
s } (mod F p Xl

0).

�
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A.3: The filtration and the bracket on the completion

The filtration on X0 induces a descending filtration on the completion with homoge-
neous components

F p Xn := lim←q

F p Xn
0

F p+q Xn
0

= {(xq + Fq Xn
0 )q�p ∈ Xn : xq ∈ F p Xn

0 }.

This defines a homogeneous idealF p X = ⊕
n F p Xn in X . Here, p is a nonnegative

integer and again F0 X = X . We set I = F1 X and

I (n) =
⊕

m

lim←p

Xm
0 ∩ I (n)

0

F p Xm
0 ∩ I (n)

0

.

Those are homogeneous ideals in X .

Lemma 75 For each j ∈ Z, the sets F p X j and I (2) ∩ X j are closed.

Proof Consider the first statement. Since X is first-countable, it suffices to consider
sequences xn = (xn,q + Fq X j

0)q converging to an x = (xq + Fq X j
0)q in X with

xn,q ∈ F p X j
0 and show that x ∈ F p X j . So, fix q � p. Let n be an integer with

xn,q ≡ xq (mod Fq X j
0). Then, xq ≡ xn,q ≡ 0 (mod F p X j

0).

Now, let xn = (xn,p +F p X j
0)p be a sequence converging to x = (xp +F p X j

0)p

in X with xn,p ∈ I (2)
0 . Fix p. For n large enough, we may replace xp by xn,p ∈ I (2)

0 . �
Lemma 76 Fix p ∈ N0.

(1) {I (2), I (2)} ⊂ I (2).
(2) {I (2), I (p)} ⊂ I (p+1) ⊂ F p+1 X.

(3) {I (p), X1} ⊂ I (p).

Proof The first statement: Consider elements u = (u p + F p X j
0)p and v = (vp +

F p Xk
0)p of X with u p, vp ∈ I (2)

0 . Then the p-th element of {u, v} has the represen-
tative {us j,k(p), vs j,k (p)} ∈ {I (2)

0 , I (2)
0 } ⊂ I (2)

0 by the Leibnitz rule.
Now, the second statement: First consider p = 0. Then by the Leibnitz rule,

{I (2)
0 , X0} ⊂ I0{I0, X0} ⊂ I0. Now consider p > 0. By repeated use of the Leib-

nitz rule,

{I (2)
0 , I (p)

0 } ⊂ {I (2)
0 , I0}I (p−1)

0 ⊂ I0{I0, I0}I (p−1)
0 ⊂ I (p+1)

0

by Lemma 66. The statement generalizes to the completion, as in the case above.
The third statement follows analogously by picking representatives. �

Lemma 77 Let l �→ q(l) define an unbounded non-decreasing function N → N. Let
xl = (xl,p +F p Xn

0 )p ∈ Fq(l) Xn define a sequence of elements in Xn. Then,
∑∞

l=0 xl
converges to an element x ∈ Xn.
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Proof Wemay supposeq(l) = l. Define xp := ∑p−1
l=0 xl,p. Then, x := (xp+F p Xn

0 )p
defines an element of Xn since, for p � q, we have

xq − xp =
q−1∑

l=0

xl,q −
p−1∑

l=0

xl,p =
p−1∑

l=0

(xl,q − xl,p) +
q−1∑

l=p

xl,q ∈ F p Xn
0 .

We claim that
∑k

l=0 xl converges to x as k → ∞. Fix p. Let k � k0 := p. Then the p-
th element of

∑k
l=0 xl − x has representative

∑k
l=0 xl,p − xp = ∑k

l=p xl,p ∈ F p Xn
0 .�

Lemma 78 Each H ∈ Xn can be expanded as H = ∑
p≥0 h p with h p ∈ B p ⊗P

T n−p.

Proof Write H = (xp + F p Xn
0 )p with x0 = 0. Pick a homogeneous basis ei of the

underlying graded vector space. Redefine xp such that xp does not contain amonomial
in F p Xn

0 . Set h p = xp+1 − xp ∈ F p Xn
0 . It cannot contain a monomial of degree

(p+1)or higher.Hence, h p ∈ B p⊗P T n−p. Then byLemmas 70 and77,
∑

p h p = H .
�

Lemma 79 All statements from Sect. A.1 in Appendix are valid for X0 replaced by X.

Proof The bracket on X is defined by acting on representatives with the bracket of X0
where the statements hold.

A.4: Extension of maps

Next, we consider the problem of extending maps on X0 to X .

Remark 80 A linear map on X0 of a fixed degree preserving the filtration up to a fixed
shift naturally extends to a linear map on X preserving the filtration up to the same
shift. This extension is continuous.

A.5: The associated graded

The associated graded gr X of X is defined as the graded algebra with homogeneous
components grp X = F p X

/F p+1 X . We have gr0 X = X/I .

Lemma 81 X/I is naturally identified with P ⊗ Sym(M).

Proof Let x = (xp + F p Xn
0 )p ∈ Xn . Let u p ∈ I0 and z p ∈ Xn

0 such that xp =
u p + z p and z p does not contain a summand in I0 (or is zero), i.e. z p ∈ SymP (M).
Then, z p − z1 = xp − x1 − (u p − u1) ∈ I0. Hence, z p = z1 for all p. Therefore,
z := (z1 +F p Xn

0 )p ∈ Xn and x define the same equivalence class in X/I . It is clear
that different values of z1 yield different equivalence classes. �
Lemma 82 There is a natural isomorphism gr• X ∼= B• ⊗P T of graded algebras.
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Proof The inclusions B p ↪→ F p X induce a P-linear map B −→ gr X . From this,
we obtain a map B ⊗P T → gr X via B p ⊗P T � b ⊗ t �→ bt ∈ grp X . The
claim follows since the monomials in B p span the free T -module grp X : The image of
linearly independent monomials in B p under the above map is obviously T -linearly
independent. Now for a given x ∈ F p X, decompose it into homogeneous elements
xn = (xn,q + Fq Xn

0 )q ∈ F p Xn . Split xn,q = bn,q + yn,q with yn,q ∈ F p+1 Xn
0

and bn,q ∈ F p Xn
0 does not contain a summand in F p+1 Xn

0 . Then bn,q − bn,p+1 ∈
F p+1 Xn

0 for q > p, and hence this difference vanishes. Set bn = (bn,p+1+Fq Xn
0 )q .

We have that bn and xn define the same equivalence class in grp Xn and hence b =∑
n b

n and x define the same equivalence class in grp X . Each bn is in the image of
B p ⊗P T → grp X . �

A.6: Form degree

We can filter the algebra X by form degree. For n ∈ Z and j ∈ N0, we set X
n, j
0 = P⊗

Sym j (M⊕M∗)∩ Xn
0 and define the homogeneous components of X ( j) = ⊕

n X
n, j

to be

Xn, j = lim←p

Xn, j
0

F p Xn
0 ∩ Xn, j

0

.

We have

Lemma 83 If x j ∈ Xn have form degree j, then
∑

j x j converges in X.

Proof Fix n. Let g denote the ghost degree and a the anti-ghost degree. This means
that g = deg on (homogeneous elements in) P ⊗ Sym(M∗) and g = 0 on Sym(M).
Similarly, a = deg on P ⊗ Sym(M) and a = 0 on Sym(M∗). Hence g � 0, a � 0
and a + g = deg. We decompose a summand s ∈ Xn, j

0 of a representative of x j as

s = a j ⊗x j,1 . . . x j, j ∈ Xn, j
0 according to form degree. Let l j be the number of factors

of positive degree in this decomposition. Then, g(x j ) � l j and a(x j ) � −( j − l j ).
Hence,

g(x j ) = a(x j ) + (g(x j ) − a(x j )) � a(x j ) + (l j + ( j − l j )) = a(x j ) + j

= n + j − g(x j ).

So, g(x j ) � 1
2 (n+ j). Set p( j) = max{k ∈ Z : k � j+n

2 }. We obtain x j ∈ F p( j) Xn .
Now apply Lemma 77. �
Lemma 84 If x ∈ Xn, then there are x j ∈ Xn of form degree j with x = ∑

j x j .

Proof Write x = ∑
l x

l with xl ∈ F l Xn
0 . Expand each xl = ∑

j x
l
j where the sum

is finite with xlj being of form degree j . By Lemma 77, x j = ∑
l x

l
j converges to an

element of Xn of form degree j . By Lemma 83, the sum
∑

j x j converges. We have

x = ∑
l
∑

j x
l
j = ∑

j
∑

l x
l
j , which can be verified evaluating both sides modulo F p

for general p. �
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Lemma 85 For ξ j ∈ Xn of form degree j with
∑

j ξ j = 0, we have ξ j = 0.

Proof Write ξ j = (ξ j,p +F p Xn
0 )p with ξ j,p ∈ Xn, j

0 . The p-th component of
∑

j ξ j
has representative

∑
j ξ j,p ∈ F p Xn

0 , where this sum is effectively finite by the proof
of Lemma 83. We see that ξ j,p ∈ F p Xn

0 by expanding in a P-basis of X0 consisting
of monomials in basis elements of the underlying vector space M⊕M∗. �

A.7: Symplectic case

Consider the graded commutative algebra X0 = R[xi , yi , e(l)
j , e(l)

j

∗] where xi , yi are
of degree zero and e(l)

j and e(l)
j

∗
are of degree −l and l, respectively, and there are

only finitely many generators of a given degree. Define a Poisson structure by setting
{xi , yi } = δi j , {e(l)

j , e(n)
m } = δ jmδln and setting all other brackets between generators

to zero. We complete the space X0 to the space X as described above. The partial
derivatives

∂

∂xi
= −{yi ,−} ∂

∂yi
= {xi ,−} ∂

∂e(l)
j

= (−1)l+1{e(l)
j

∗
,−} ∂

∂e(l)
j

∗ = {e(l)
j ,−}

are defined via the bracket and hence are all well defined on X .

Lemma 86 Let Xi , Yi , E
(l)
j , E (l)

j

∗
be elements of X such that the assignments

(xi , yi , e
(l)
j , e(l)

j

∗
) �→ (xi ,Yi , e

(l)
j , E (l)

j

∗
)

(xi , yi , e
(l)
j , e(l)

j

∗
) �→ (Xi ,Yi , E

(l)
j , E (l)

j

∗
)

both define automorphisms X → X of graded commutative algebras. Then the latter

map is a Poisson automorphism if there exists an element S(xi ,Yi , e
(l)
j , E (l)

j

∗
) ∈ X

such that

∂S

∂xi
= yi

∂S

∂Yi
= Xi

∂S

∂e(l)
j

= (−1)l e(l)
j

∗ ∂S

∂E (l)
j

∗ = E (l)
j .

Here, the partial derivatives with respect to the new variables are defined via the chain
rule.

Proof Set ξ (0)
i = xi and ξ

(l)
j = e(l)

j for l > 0 and similarly η
(0)
i = yi and η

(l)
j = e(l)

j

∗
.

We use capital Greek letters � and H for the corresponding transformed variables.
We express the bracket as

{ f, g} =
∑

l

(−1)l deg f
∑

j

(

(−1)l
∂ f

∂ξ
(l)
j

∂g

∂η
(l)
j

− ∂ f

∂η
(l)
j

∂g

∂ξ
(l)
j

)

,
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since both sides define derivations which agree on generators. The sums converge by
Lemma 77. We have

∂S

∂ξ
(l)
j

= (−1)lη(l)
j and

∂S

∂H (l)
j

= �
(l)
j so also

∂η
(q)
p

∂ξ
(l)
j

= ∂η
(l)
j

∂ξ
(q)
p

(−1)q+l+ql .

There are functions f j,l(ξ, η) = �
(l)
j and g j,l(ξ, η) = H (l)

j realizing the change of
coordinates so that

f j,l(ξ, η(ξ, H)) = ∂S

∂H (l)
j

g j,l(ξ, η(ξ, H)) = H (l)
j .

We obtain in the variables (ξ
(l)
j , H (l)

j ),

∂ fm,n

∂ξ
(l)
j

+
∑

p,q

∂η
(q)
p

∂ξ
(l)
j

∂ fm,n

∂η
(q)
p

= ∂2S

∂ξ
(l)
j ∂H (n)

m

,

∂gm′,n′

∂ξ
(l)
j

+
∑

pq

∂η
(q)
p

∂ξ
(l)
j

∂gm′,n′

∂η
(q)
p

= 0
∑

pq

∂η
(q)
p

∂H (n)
m

∂gm′,n′

∂η
(q)
p

= δmm′δnn′ .

These expressions make sense in the completion by Lemma 77 since ( j, l, n,m) are
fixed and the η

(q)
p derivatives are of non-decreasing and unbounded degree. Using

those equalities, we calculate in the variables (ξ
(l)
j , H (l)

j ) the bracket { fm,n, gm′,n′ } as

∑

l

(−1)ln
∑

j

((−1)l
∂ fm,n

∂ξ
(l)
j

∂gm′,n′

∂η
(l)
j

− ∂ fm,n

∂η
(l)
j

∂gm′,n′

∂ξ
(l)
j

)

=
∑

jl

(−1)l(n+1) ∂2S

∂ξ
(l)
j ∂H (n)

m

∂gm′,n′

∂η
(l)
j

−
∑

jl

(−1)ln
(∑

pq

(−1)l
∂η

(q)
p

∂ξ
(l)
j

∂ fm,n

∂η
(q)
p

∂gm′,n′

∂η
(l)
j

+ ∂ fm,n

∂η
(l)
j

∂gm′,n′

∂ξ
(l)
j

)

=
∑

jl

(−1)l
∂2S

∂H (n)
m ∂ξ

(l)
j

∂gm′,n′

∂η
(l)
j

−
∑

jl

(−1)ln
∑

pq

(

(−1)l
∂η

(q)
p

∂ξ
(l)
j

∂ fm,n

∂η
(q)
p

∂gm′,n′

∂η
(l)
j

− ∂ fm,n

∂η
(l)
j

∂η
(q)
p

∂ξ
(l)
j

∂gm′,n′

∂η
(q)
p

)

=
∑

jl

∂η
(l)
j

∂H (n)
m

∂gm′,n′

∂η
(l)
j
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−
∑

jlpq

(

(−1)ln+l ∂η
(q)
p

∂ξ
(l)
j

∂ fm,n

∂η
(q)
p

∂gm′,n′

∂η
(l)
j

− (−1)ql+qn+l ∂η
(q)
p

∂ξ
(l)
j

∂ fm,n

∂η
(l)
j

∂gm′,n′

∂η
(q)
p

)

= δmm′δnn′

−
∑

jlpq

(

(−1)ln+l ∂η
(q)
p

∂ξ
(l)
j

∂ fm,n

∂η
(q)
p

∂gm′,n′

∂η
(l)
j

− (−1)qn+q
∂η

(l)
j

∂ξ
(q)
p

∂ fm,n

∂η
(l)
j

∂gm′,n′

∂η
(q)
p

)

= δmm′δnn′ .

�
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