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3Università di Genova, Genoa, Italy. e-mail: martinetti@dima.unige.it

Received: 13 January 2016 / Revised: 8 August 2016 / Accepted: 9 August 2016
Published online: 22 August 2016 – © Springer Science+Business Media Dordrecht 2016

Abstract. We systematically investigate ways to twist a real spectral triple via an algebra
automorphism and in particular, we naturally define a twisted partner for any real graded
spectral triple. Among other things, we investigate consequences of the twisting on the fluc-
tuations of the metric and possible applications to the spectral approach to the Standard
Model of particle physics.

Mathematics Subject Classification. Primary 58B34; Secondary 81775, 47L87.

Keywords. noncommutative geometry, σ -spectral triples, twisted real spectral triples,
twisted metric fluctuations, standard model of elementary particles.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
2 Real Twisted Spectral Triple Structure . . . . . . . . . . . . . . . . . . . . . . . . . 1500

2.1 REALLY TWISTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501
2.2 TWISTED-FLUCTUATION OF THE METRIC . . . . . . . . . . . . . . . 1503

3 Minimal Twisting for Graded Spectral Triples . . . . . . . . . . . . . . . . . . . . 1506
3.1 MINIMAL TWISTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506
3.2 TWIST BY GRADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1511

4 Unicity of the Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515
4.1 EVEN-DIMENSIONAL MANIFOLD . . . . . . . . . . . . . . . . . . . . . 1515
4.2 ALMOST COMMUTATIVE GEOMETRIES . . . . . . . . . . . . . . . . . 1517

5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1523
5.1 TWISTED FLUCTUATIONS OF THE FREE DIRAC OPERATOR . . . 1523
5.2 ON TWISTING THE SPECTRAL STANDARD MODEL . . . . . . . . . 1527

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529

This work was partially supported by the Italian Project “Prin 2010-11—Operator Algebras, Noncom-
mutative Geometry and Applications”.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-016-0880-4&domain=pdf


1500 GIOVANNI LANDI AND PIERRE MARTINETTI

1. Introduction

We investigate in a systematic way how to twist a spectral triple, and in particular
the consequences of the twisting on the fluctuations of the metric. Twisted spectral
triples have been defined by Connes and Moscovici in [8]. They consist in replacing
in the definition of a spectral triple (A,H, D) the condition that [D,a] be bounded
for any a∈A by the following: there exists an automorphism ρ of A such that the
operator which is bounded, for any a∈A, is rather the twisted commutator

[D,a]ρ := Da−ρ(a)D. (1.1)

The original motivation of [8] was to deal with type III operator algebras, for
which there is no non-trivial trace. The examples there were spectral triples per-
turbed by a conformal transformation and spectral triples associated to codimen-
sion 1 foliations. Twisted spectral triples are relevant for quantum groups (and
related spaces) where twisting of the algebra is a natural phenomenon [16,13]; see
[14] for a twisted spectral triple for the quantum group SU (2). They also appear in
C∗-dynamical systems [12]. Recently, twisted spectral triples have also occurred in
the description of the Standard Model of elementary particles [10]. Here twisting
allows one to build models beyond the (spectral approach to the) Standard Model
without modifying the fermionic content of the theory [9,5]. This is obtained by
twisting the spectral triple of the Standard Model of [3] while keeping the Hilbert
space and the Dirac operator untouched.
In the following, we generalize this construction to arbitrary spectral triples.

We first show in Section 2 how to incorporate the real structure in the twisted
framework (Definition 2.1), in a way compatible with the fluctuation of the met-
ric (Proposition 2.6). In Section 3 we formalize the idea of minimal twist, that is
twisting a spectral triple without touching the Hilbert space and Dirac operators
(Definition 3.2). A procedure to minimally twist any graded spectral triple is pre-
sented in Proposition 3.7, extended to the real case in Proposition 3.8. Next, Sec-
tion 4 deals with commutative and almost commutative geometries with a twisting
by grading that is essentially unique. Finally, Section 5 is devoted to some applica-
tions, notably to study twisted-fluctuations of a free Dirac operator and touches on
possible uses in the spectral action approach to the Standard Model with a more
thorough analysis of these reported elsewhere.

2. Real Twisted Spectral Triple Structure

We first extend the twisting of spectral triples to include the real structure and
then introduce twisted-fluctuations of the metric. Proposition 2.6 shows that the
picture is coherent: a twisted-fluctuated real spectral triple is a real twisted spectral
triple.
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2.1. REALLY TWISTING

Recall [6] that a spectral triple (A,H, D) consists in an involutive algebra A acting
faithfully1 by bounded operators on a Hilbert space H together with a self-adjoint
operator D with compact resolvent such that [D,a] is bounded for any a ∈A. It
is graded (or even) when there exists a grading of H, that is a self-adjoint opera-
tor � of square I, that commutes with A and anticommutes with D. Furthermore
[7], a real spectral triple of KO-dimension k ∈{0,1, . . . ,7} modulo 8, is a (graded)
spectral triple together with an antilinear isometry operator J on H such that

J 2 = ε(k), J D= ε′(k)DJ, and J� = ε′′(k)� J, (2.1)

where ε, ε′, ε′′ take value in {−1,+1} as a function of k (the explicit table of these
signs is not needed in the present paper). Furthermore, the conjugate action of J ,

b �→ Jb∗ J−1 ∀b∈A (2.2)

implements an action of the opposite algebra A◦, which is required to commute
with the algebra,

[a, Jb∗ J−1]=0 ∀a,b∈A, (zero-order condition) (2.3)

as well as to commute with the commutator of D with A,

[[D,a], Jb∗ J−1]=0 ∀a,b∈A, (first-order condition). (2.4)

To avoid ambiguity, it may be wise occasionally to reintroduce the representation
symbol. Thus, if π is the representation of A on H, then one gets a representation
of A◦ on H by

π◦(b) := Jπ(b∗)J−1 (2.5)

and (2.3) is the statement that the operator algebras π(A) and π◦(A◦) commute.
On the other hand, dropping the representation symbols, we shall write the above
as b◦ = Jb∗ J−1.
Twisted and graded twisted spectral triples were defined in [8] by replacing the

boundedness of the commutator [D,a] with the requirement that the twisted com-
mutator

[D,a]ρ := Da−ρ(a)D, (2.6)

for an automorphism ρ ∈ Aut(A), be bounded for any a ∈ A. Furthermore, the
automorphism ρ is not taken to be a ∗-automorphism, but rather to satisfy

ρ(a∗)= (ρ−1(a))∗. (2.7)

1When possible we omit the representation symbol and identify a ∈A with its representation
π(a)∈L(H).
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Such an automorphism was named regular in [16]. The requirement (2.7) has ori-
gin in the additional assumption (coming from considerations in index theory in
[8]) that the algebra A has a 1-parameter group of automorphisms {ρt }t∈R and that
ρ coincides with the value at t = i of the analytic extension of {ρt }t∈R. In typical
examples (for instance the spectral triples associated to codimension 1 foliations)
the 1-parameter group of automorphisms is the modular automorphism group of
a twisted trace. Such twisted traces appear naturally with twisted spectral triples.
Indeed, if (A,H, D) is a ρ-twisted spectral triple with D−1 ∈Ln,∞, the Dixmier
ideal, from [8, Prop. 3.3] the functional

A
a �→ϕ(a)=
∫
−aD−n :=Trω(aD−n), (2.8)

with Trω the Dixmier trace, is a ρ−n-trace, that is ϕ(ab)=ϕ(bρ−n(a)) for all a,b∈
A.
The algebras A and A◦ have isomorphic automorphism groups. An isomorphism

is:

Aut(A)
ρ →ρ◦ ∈Aut(A◦), ρ◦(b◦) := (ρ−1(b))◦, ∀b◦ ∈A◦. (2.9)

The use of ρ−1 instead of ρ is to parallel condition (2.7). In a sense, the above
means

ρ◦(Jb∗ J−1)= J (ρ−1(b))∗ J−1 = Jρ(b∗)J−1, (2.10)

and the second equality is due to condition (2.7). We are then led to the following.

DEFINITION 2.1. A real twisted spectral triple of KO-dimension k is the datum
of a twisted spectral triple (A,H, D; ρ) together with an antilinear isometry oper-
ator J satisfying the rule of signs (2.1), the zero-order condition (2.3), and the
twisted first-order condition

[[D,a]ρ, Jb∗ J−1]ρ◦ =0, ∀a,b∈A. (2.11)

By inserting the representation symbols and with condition (2.7), the above
reads as

(
Dπ(a)−π(ρ(a))D

)
Jπ(b∗)J−1 − Jπ(ρ(b∗))J−1(Dπ(a)−π(ρ(a))D

)=0,

∀a,b∈A. (2.12)

We notice that the condition (2.11) is symmetric in A and A◦. Indeed, a use of the
zero-order conditions [a, Jb∗ J−1] = 0 and [ρ(a), J (ρ−1(b))∗ J−1] = 0, transforms
(2.11) into

[[D, Jb∗ J−1]ρ◦,a]ρ =0, ∀a,b∈A, (2.13)
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or, for all a,b∈A,
(
DJπ(b∗)J−1 − Jπ(ρ(b∗))J−1D

)
π(a)

−π(ρ(a))
(
DJπ(b∗)J−1 − Jπ(ρ(b∗))J−1D

)=0. (2.14)

Remark 2.2. One could consider twisting also the zero-order condition (2.3), and
examples from quantum groups (see for instance [11]) – for which the zero-order
condition is valid only modulo infinitesimals of arbitrary high order – seems to
suggest this possibility. However, from the point of view of the present paper this
would introduce unnecessary complication: after all the twist seems to be relevant
when the commutator with the operator D is involved. A further, a posteriori
justification comes from the fluctuation of the metric, as explained below after
Lemma 2.3.

2.2. TWISTED-FLUCTUATION OF THE METRIC

Fluctuations of the metric [7] easily adapt to the twisted case. Given a twisted
spectral triple (A,H, D;ρ), one defines

	1
D :=

{∑
j
a j [D,b j ]ρ , a j ,b j ∈A

}
(2.15)

the set of twisted 1-forms. Noticing that

[D,ab]ρ =[D,a]ρb+ρ(a)[D,b]ρ, (2.16)

one has [8, Prop. 3.4] that [D, ·]ρ is a derivation of A in 	1
D as soon as the latter

is viewed as a A-bimodule with twisted action on the left:

a · ξ ·b=ρ(a) ξ b ∀a,b∈A, ξ ∈	1
D. (2.17)

LEMMA 2.3. For any Aρ ∈	1
D and any a,b∈A, it holds that

[Aρ, Jb∗ J−1]ρ◦ =0 and [J Aρ J
−1,a]ρ =0. (2.18)

Proof. If Aρ =∑
j a j [D, c j ]ρ , for a j , c j ∈A, by linearity, one needs to show that

a j [D, c j ]ρ Jb∗ J−1 − Jρ(b∗)J−1 a j [D, c j ]ρ =0.

The zero-order condition (2.3) yields Jρ(b∗)J−1a j = a j Jρ(b∗)J−1 and the l.h.s.
becomes

a j ( [D, c j ]ρ Jb∗ J−1 − Jρ(b∗)J−1 [D, c j ]ρ )

whose vanishing follows from the twisted first-order condition (2.11). Next, by
expanding and inserting J 2 and J−2 (and using ε2 = 1 from the signs (2.1)) one
computes,
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0= Aρ Jb
∗ J−1 − Jρ(b∗)J−1Aρ = J 2Aρ J

−2 Jb∗ J−1 − Jρ(b∗)J−1 J 2Aρ J
−2

= J (J Aρ J
−1b∗ −ρ(b∗)J Aρ J

−1)J−1 = J ([J Aρ J
−1,b∗]ρ)J−1

and renaming b∗ =a we get the second equation above.

Remark 2.4. We see from the above proof that a twisted first-order condition goes
well with a zero-order condition which is not twisted. It is also worth pointing out
that, as one would expect, a twisted and an untwisted zero-order condition cannot
co-exist. By requiring that

[a, Jb∗ J−1]=0=[a, Jb∗ J−1]ρ0 (2.19)

for any a,b∈A, a direct computation yields J (b∗ −ρ(b∗))J−1=0, that is, ρ has to
be the identity. On the other hand, as shown by examples below, for finite matrix
geometries a twisted and an untwisted first-order condition are not mutually exclu-
sive.

DEFINITION 2.5. Let (A,H, D;ρ), J be a real twisted spectral triple. A twisted-
fluctuation of D by A is any self-adjoint operator of the kind

DAρ := D+ Aρ + ε′ J Aρ J
−1 (2.20)

where Aρ ∈	1
D and the sign ε′ is given as in (2.1).

Notice that we ask DAρ to be self-adjoint, but this is not necessarily the case
for Aρ .

PROPOSITION 2.6. Any twisted-fluctuation DAρ of a real twisted spectral triple
(A,H, D;ρ) yields a real twisted spectral triple

(A,H, DAρ ;ρ) (2.21)

with the same real structure and KO-dimension, and same grading � (if any).

Proof. For any a∈A, one has

[DAρ ,a]ρ =[D,a]ρ +[Aρ,a]ρ + ε′[J Aρ J
−1,a]ρ. (2.22)

The first term in the r.h.s. is bounded since (A,H, D;ρ) is a twisted spectral triple.
For the same reason, Aρ is bounded, being the finite sum of products of bounded
operators. Thus the second term in the r.h.s. of (2.22) is bounded as well, being
the twisted commutator of bounded operators. From Lemma 2.3 the last term in
(2.22) vanishes. Hence (2.21) is a twisted spectral triple. It is graded with the same
grading � as (A,H, D;ρ) if the latter is graded: one easily checks that � anticom-
mutes with Aρ and J Aρ J−1, hence with DAρ .
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To show that the real structure J of (A,H, D;ρ) is a real structure for (2.21)
with the same KO-dimension, we first check that

J DAρ = ε′DAρ J (2.23)

for the same sign ε′ as in J D= ε′DJ . This follows from definition (2.20):

J DAρ J
−1 = J DJ−1 + J Aρ J

−1 + ε′ J 2Aρ J
−2,

= ε′D+ J Aρ J
−1 + ε′Aρ,

= ε′(D+ ε′ J Aρ J
−1 + Aρ)= ε′DAρ (2.24)

where we used ε′2 =1, J 2 = εI and J−2 = ε−1
I.

Finally we must prove the twisted first-order condition

[[DAρ ,a]ρ, Jb∗ J−1]ρ0 =0 ∀a,b∈A. (2.25)

Writing b◦ = Jb∗ J−1, the l.h.s. of the equation above is

[[D,a]ρ,b◦]ρ◦ + [[Aρ,a]ρ,b◦]ρ◦ + ε′[[J Aρ J
−1,a]ρ,b◦]ρ◦ . (2.26)

The first term vanishes by the twisted first-order condition for (A,H, D;ρ). Next,
if Aρ ∈	1

D , it follows that A′
ρ := Aρa−ρ(a)Aρ is in 	1

D as well (recall the bimodule
structure (2.17)). Then, Lemma 2.3 yields

[[Aρ,a]ρ,b◦]ρ◦ = [Aρa−ρ(a)Aρ,b◦]ρ◦ = [A′
ρ,b◦]ρ◦ =0, (2.27)

that is, the second term of (2.26) vanishes. For the third term, again from Lemma
2.3 we know that in fact [J Aρ J−1,a]ρ =0 and the third term of the r.h.s. of (2.26)
is zero as well.

As in the non-twisted case there is a composition law, that is a twisted fluctua-
tion of a twisted fluctuation is a twisted fluctuation of the initial spectral triple.

PROPOSITION 2.7. Let

Dρ = D+ Aρ + ε′ J Aρ J
−1 with Aρ ∈	1

D (2.28)

be a twisted fluctuation of a real twisted spectral triple (A,H, D;ρ), and

D′
ρ = Dρ + A′

ρ + ε′ J A′
ρ J

−1 with A′
ρ ∈	1

Dρ
(2.29)

be a fluctuation of (A,H, Dρ;ρ). Then

D′
ρ = Dρ + A′′

ρ + ε′ J A′′
ρ J

−1 with A′′
ρ = Aρ + A′

ρ ∈	1
D . (2.30)

Proof. We wish to show that D′
ρ = Dρ + A′

ρ + ε′ J A′
ρ J

−1 = D + A′′
ρ + ε′ J A′′

ρ J
−1,

with A′′
ρ ∈	1

D . Let Aρ =∑
j ak[D,bk]ρ , and A′

ρ =∑
j a

′
k[Dρ,b′

k]ρ with ak,bk,a′
k,b

′
k ∈

A. Omitting the summation indices and symbol, one has
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A′
ρ =a′[D+ Aρ + ε′ J Aρ J

−1,b′]ρ,

=a′[D,b′]ρ +a′[Aρ,b′]ρ + ε′a′[J Aρ J
−1,b′]ρ. (2.31)

The first term is in 	1
D . The second as well from the bimodule structure (2.17).

The last term vanishes by Lemma 2.3. Hence A′
ρ is in 	1

D , and so is A′′
ρ = Aρ + A′

ρ .

In other terms, in contrast with the fluctuations without first-order condition
developed in [4], twists do not alter the group structure of the fluctuations of the
metric.

3. Minimal Twisting for Graded Spectral Triples

In this section, we work out a general procedure to twist a (real) graded spec-
tral triple while keeping the Dirac operator and the Hilbert space unchanged. The
twisting uses the grading.

3.1. MINIMAL TWISTING

On a manifold there is no room for a twisting; by this we mean the following.
Start with the canonical spectral triple of a closed spin manifold M,

(C∞(M), L2(M, S), /∂ :=−iγ μ∇μ), (3.1)

where C∞(M) acts on the Hilbert space L2(M, S) of square integrable spinors by
multiplication,

(πM( f )ψ)(x) := f (x)ψ(x), (3.2)

and /∂ is the Dirac operator, with ∇μ =∂μ +ωμ the covariant derivative in the spin
bundle. Then any twisted commutator would be of the form

[/∂, f ]ρ =−iγ μ(∂μ f )+ ( f −ρ( f )) /∂ (3.3)

and it would be bounded for any f ∈C∞(M) if and only if

f −ρ( f )=0, (3.4)

for any function f , which just means that ρ is the identity.
Equation (3.4) follows from the following more general result.

LEMMA 3.1. Let (A,H, D) be a spectral triple, and ρ is an automorphism of A
such that (A,H, D;ρ) is a twisted spectral triple. Then π(a)−π(ρ(a)) is a compact
operator for any a∈A.
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Proof. By simple algebraic manipulations one gets

[D, π(a)]ρ = Dπ(a)−π(ρ(a))D=[D, π(a)]−π(ρ(a)−a)D. (3.5)

Denote K := π(ρ(a) − a); being the representation of ρ(a) − a ∈ A, this is a
bounded operator. By definition of a spectral triple, the commutator [D, π(a)]
is bounded, thus the boundedness of [D, π(a)]ρ implies that K D = [D, π(a)] −
[D, π(a)]ρ is bounded. Hence for any λ∈C the operator

Tλ := K D−λK = K (D−λI) (3.6)

is bounded. Again by definition D has a compact resolvent. Since compact oper-
ators on a Hilbert space form an ideal in the algebra of bounded operators, one
concludes that for any λ in the resolvent set of D, the operator

Tλ(D−λI)−1 = K (3.7)

is compact.

When A=C∞(M), Lemma 3.1 implies (3.4). Indeed there is no non-zero func-
tion f ∈A that acts as a compact operator: the spectrum of a compact operator is
discrete, while the spectrum of πM( f ) is the range of f , which is discrete only if f
is constant. But then πM( f ) is a multiple of the identity, which is not a compact
operator.
A way to modify the canonical spectral triple of a manifold in (3.1) to allow

for non-trivial twistings consists in modifying the Dirac operator, for instance by
lifting a conformal transformation as done in [8]. Having in mind applications to
the Standard Model of elementary particles, we aim however at keeping the Dirac
operator and the Hilbert space unchanged, since they encode the fermionic content
of the theory that one does not wish to change. Then, the only elements we are
allowed to play with are the algebra and/or its representation. Modifying only the
latter does not help: if instead of the multiplicative representation (3.2) one lets f
act as ( f ψ)(x)= f (x)p(x)ψ(x) with p an operator-valued function – for instance
p could be the constant projection on a subspace H of L2(M, S), for a reducible
representation – then, the extra term in the twisted commutator as in (3.3) that
needs to vanish for any f is ( f −ρ( f ))p /∂, and the conclusion does not change.
Therefore, in order to twist the spectral triple (3.1) in a minimal way, that is

keeping both H and D unchanged, one needs to modify the algebra.

DEFINITION 3.2. Let B be a unital involutive algebra. A minimal twisting of a
spectral triple (A,H, D) is a twisted spectral triple (A⊗B,H, D; ρ) where ρ an
automorphism of A⊗B. In addition, the representation of A⊗ IB coincides with
the initial representation of A, that is

π(a⊗ IB)=π0(a) ∀a∈A, (3.8)

where π0 and π are the representations for (A,H, D) and (A⊗B,H, D; ρ).
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Let us comment on the condition (3.8). From the representation π of A⊗B, one
inherits two representations of A and B on H,

πA(a) :=π(a⊗ IB), πB(b) :=π(IA ⊗b). (3.9)

To make meaningful that (A⊗B,H, D;ρ) is actually a twist of (A,H, D) and not
simply a twisted spectral triple with the same Hilbert space and Dirac operator, it
is natural to impose a relation between πA and π0. The most obvious one is (3.8),
that is

πA =π0. (3.10)

Without any such requirement, Definition 3.2 would not be very helpful: one could
call “twist of (A,H, D)” any twisted spectral triple (B,H, D;ρ) with representa-
tion π̃ , by posing π(a⊗b) := π̃(b). In that case, instead of (3.10) one would have

πA(a)= I ∀a∈A. (3.11)

One could imagine some alternative to Definition 3.2 by imposing a condition less
constraining than (3.10) while more significant than (3.11). We shall not explore
these possibilities here, also because the requirement (3.10) has the following (easy
to establish) consequence that will be of use later on for the Standard Model
twisted spectral triple.

LEMMA 3.3. A grading � of the twisted spectral triple (A⊗B,H, D;ρ) is a grad-
ing of the spectral triple (A,H, D). On the other hand, a grading � of (A,H, D) is
a grading of (A⊗B,H, D;ρ) if and only if

[�,π(IA ⊗b)]=0 ∀b∈B. (3.12)

Proof. Since the condition that � anticommutes with D is not touched, it is only
a matter of checking the commuting of � with the relevant representation. If � is
a grading of (A⊗B,H, D;ρ), by definition it commutes with π , that is

[�,π(A)]=0 ∀A∈A⊗B. (3.13)

For A=a⊗ IB, this yields

[�,π0(a)]=0 ∀a∈A, (3.14)

meaning that � is also a grading of (A,H, D). On the other hand, for a grading
� of (A,H, D) to be a grading of (A⊗B,H, D;ρ) one needs [�,π(A)]=0 for any
A=∑

j a j ⊗b j ∈A. Expanding the commutator, one gets

[�,π(A)]=
∑

j
[�,π(a j ⊗ IB) π(IA ⊗b j )]

=
∑

j
(π0(a j )[�,π(IA ⊗b j )]+ [�,π0(a j )]π(IA ⊗b j )). (3.15)
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The second term vanishes being � a grading of (A,H, D). The vanishing of
(3.15) thus implies (3.12) (take a j = IA). Conversely, (3.12) implies the vanishing
of (3.15). Hence the result.

In addition to the previous result, the requirement (3.10) leads to a necessary
condition for a twisted spectral triple (A⊗B,H, D;ρ) to be a minimal twist of a
spectral triple (A,H, D).

LEMMA 3.4. Let (A⊗B,H, D;ρ) be a minimal twist of a spectral triple (A,H, D).
Then

π(a⊗ IB −ρ(a⊗ IB))D (3.16)

is a bounded operator for any a ∈A, implying that π(a⊗ IB −ρ(a⊗ IB)) is a com-
pact operator.

Proof. Equation (3.5) for b= IB gives

[D, π(a⊗ IB)]ρ =[D, π(a⊗ IB)]−π(ρ(a⊗ IB)−a⊗ IB) D. (3.17)

The twisted commutator on the l.h.s. is bounded by hypothesis. From (3.10) and
(3.9), the commutator on the r.h.s. is [D, π0(a)], which is also bounded by hypoth-
esis. Hence the first claim of the lemma. The second claim is proven as in Lemma
3.1.

Remark 3.5. A similar conclusion for IA ⊗b, namely

π(IA ⊗b−ρ(IA ⊗b))D ∈ L(H) ∀b∈B, (3.18)

would follow if [D, π(IA⊗b)] were bounded for any b in B. But this is not implied
by Definition 3.2, as illustrated by the twisting of graded spectral triples presented
in Section 3.2: in (3.38) the commutator [D, π(IA ⊗b)] is unbounded. This means
that the representation πB in (3.9) cannot serve to build a spectral triple (B,H, D)

whose twist by A would be (A⊗B,H, D;ρ).

We shall say that a minimal twist is trivial whenever πB(B)=C or – assuming
πB is faithful – when B=C. Condition (3.10) then puts a constraint on the type
of spectral triples that admit interesting minimal twists: the starting representation
π0 of A on H should be reducible. This comes from the following proposition.

PROPOSITION 3.6. Let (A,H, D) be a spectral triple with representation π0.
Assume A is a (pre−) C∗-algebra. If π0 is irreducible, then any minimal twist is
trivial.

Proof. Let (A ⊗ B,H, D;ρ) with representation π , be a minimal twist of
(A,H, D). From
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π(a⊗b)=π(a⊗ IB)π(IA ⊗b)=π(IA ⊗b)π(a⊗ IB). (3.19)

one has, denoting with ′ the commutant in H,

πB(B)⊂πA(A)′. (3.20)

If π0 is irreducible then π0(A)′ =CI [1, Prop. II.6.1.8]. Hence the result.

A minimal twist is not the tensor product of (A,H, D) by a spectral triple for B.
A way to see this is to notice that the twisted commutator [D,a⊗b]ρ is not anti-
symmetric in the exchange of its arguments, and so cannot be written as a usual
commutator of a ⊗ b with some operator D′. Nevertheless one may argue that a
minimal twist is somehow a product of spectral triples where the commutator is
then twisted. We shall not elaborate much on this here, but only stress that for this
to happen, one needs that the representation π of A⊗B on H factorizes as the
tensor product

π = π̃A ⊗ π̃B (3.21)

of two representations π̃A, π̃B of A,B on Hilbert spaces HA,HB such that HA ⊗
HB =H. On the other hand, from (3.19) the representation π is required to be the
product

π =πA πB =πB πA (3.22)

of two commuting representations of A,B on H defined in (3.9). There is no rea-
son for (3.21) and (3.22) to be both true at the same time.
An example where one gets from a representation π0 of A on H a representation

π of A⊗B on the same H such that (3.21) and (3.22) both hold, is when

π0 = π̃A ⊗ IN (3.23)

is the direct sum of N copies of an irreducible representation π̃A of A on an
Hilbert space H̃, and B=MN (C). Indeed, in this case H decomposes as H̃⊗C

N

so that, denoting π̃B the irreducible representation of MN (C) on C
N , the represen-

tation of A⊗B on H

π(a⊗b) := π̃A(a)⊗ π̃B(b) (3.24)

factorizes as in (3.21). Equation (3.22) holds since

πA(a) :=π(a⊗ IB)= π̃A(a)⊗ IN and πB(b)=π(IA ⊗b)= IH̃ ⊗ π̃B(b).

(3.25)
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3.2. TWIST BY GRADING

It is not difficult to minimally twist a spectral triple (A,H, D) in the sense of
Definition 3.2 as soon as the latter is graded. One simply splits the Hilbert space
according to the eigenspaces of �,

H=H+ ⊕H−, (3.26)

and consider the representation of A⊗C
2 
 (a,a′) given by

π(a,a′) := p+π0(a)+ p−π0(a
′)=

(
π+(a) 0

0 π−(a′)

)
(3.27)

where

p+ := 1
2 (I+�), p− := 1

2 (I−�) (3.28)

are projection on the eigenspaces of �, while

π+(a) := p+π0(a)|H+ , π−(a) := p−π0(a)|H− (3.29)

are the restrictions on H± of the representation of A on H.

PROPOSITION 3.7. Let (A,H, D),� be a graded spectral triple. Then

(A ⊗ C
2,H, D ; ρ) (3.30)

with representation (3.27) and automorphism

ρ(a,a′) := (a′,a), ∀(a,a′)∈A⊗C
2 (3.31)

is a minimal twist of (A,H, D) with grading �.

Proof. In agreement with (3.8), one retrieves the initial representation of A on
H as

π(a,a)= p+π0(a)+ p−π0(a)=
(

π+(a) 0
0 π−(a)

)
. (3.32)

Since D anticommutes with �, on H+ ⊕H− it is of the form

D=
(

0 D
D† 0

)
(3.33)

where D is the restriction of D to H−, with image in H+. Thus by (3.27)

[D, π(a,a′)]ρ =
(

0 Dπ−(a′)−π+(a′)D
D†π+(a)−π−(a)D† 0

)
. (3.34)
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The lower-left term in (3.34) is the restriction to H+ of the usual commutator

[D, π(a,a)]=
(

0 Dπ−(a)−π+(a)D
D†π+(a)−π−(a)D† 0

)
, (3.35)

which is bounded since (A,H, D) is a spectral triple. Similarly, the upper-right
term in (3.34) is bounded, being the restriction of [D, π(a′,a′)] to H−. Hence
(3.34) is bounded and thus (3.30) is a twisted spectral triple.
Since [�,π(a,a′)]= 0, and {�, D}= 0 by hypothesis, the spectral triple (3.30) is

�-graded.

It is easy to see that the flip automorphism (3.31) is implemented on the Hilbert
space by exchanging the components ψ± ∈H±, that is, for all α ∈A⊗C

2,

π(ρ(α))=Uρπ(ρ(α))U∗
ρ , with Uρ

(
ψ+
ψ−

)
=

(
ψ−
ψ+

)
. (3.36)

Notice that we do not need to assume that dimH+ =dimH−. To stress the role of
ρ, compare the expression of [D, π(a,a′)]ρ in (3.34) with the usual commutator

[D, π(a,a′)]=
(

0 Dπ−(a′)−π+(a)D
D†π+(a)−π−(a′)D† 0

)
. (3.37)

While the boundedness of the twisted commutator [D, π(a,a′)]ρ follows from the
boundedness of [D, π(a,a)] and [D, π(a′,a′)], there is no reason for the commu-
tator [D, π(a,a′)] to be bounded. This is also true for the commutator of D with
the representation πB in (3.9), as pointed out in Remark 3.5. For b= (z1, z2)∈C

2,
one has

[D, πB(b)]= [D, π(IA ⊗b)]=
(
z1I 0
0 z2I

) (
0 D
D† 0

)

=
(

0 (z1 − z2)D
(z2 − z1)D† 0

)
, (3.38)

which is bounded if and only if z2 = z1.
The twist-by-grading of Proposition 3.7 passes to the real structure.

PROPOSITION 3.8. Let (A,H, D) be a graded real spectral triple, with grading �

and real structure J . Then the twisted spectral (A⊗C
2,H, D; ρ) of Proposition 3.7

is a graded real twisted spectral triple with the same real structure J and the same
KO-dimension.

Proof. The operators �, D and J are unchanged by the twisting, so the KO-
dimension is not modified by passing from (A,H, D) to (A⊗C

2,H, D; ρ). One
simply needs to check the zero-order and the twisted first-order condition (2.11),
for both possibilities that J commutes or anticommutes with �, depending on the
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KO-dimension. Notice that the explicit value of the KO-dimension and the addi-
tional relations implied by this value do not play any role in the proof.
Since the automorphism ρ in (3.31) is just the flip, one has ρ2 = id and ρ coin-

cides with its inverse. Assume first that J commutes with �. On H=H+ ⊕H− one
has

J =
(
J+ 0
0 J−

)
. (3.39)

For any (a, α), (b, β) in A⊗C
2 we write A=π(a, α), B=π(b, β), that is

A=
(
a+ 0
0 α−

)
, ρ(A)=

(
α+ 0
0 a−

)
, J B∗ J−1 =

(
b◦+ 0
0 β◦−

)
,

Jρ(B∗)J−1 =
(

β◦+ 0
0 b◦−,

)

where

a± :=π±(a), b◦± := J±π±(b∗)J−1± (3.40)

and similarly for α and β. The zero-order condition amounts to

[a+,b◦+]=[α−, β◦−]=0, (3.41)

which follows from the zero-order condition for (A,H, D), namely

[(a,a), (b◦,b◦)]= [(α,α), (β◦, β◦)]=0. (3.42)

For the twisted first-order condition, one uses (3.34) to get

[D, A]ρ J B∗ J−1 =
(

0 (Dα− −α+D)β◦−
(D†a+ −a−D†)b◦+ 0

)

(3.43)

Jρ(B∗)J−1[D, A]ρ =
(

0 β◦+(Dα− −α+D)

b◦−(D†a+ −a−D†) 0

)
.

The lower-left component of

[[D, A]ρ, J B∗ J−1]ρ◦ = [D, A]ρ J B∗ J−1 − Jρ(B∗)J−1[D, A]ρ (3.44)

using (3.35) is the lower-left component of:

[[D, (a,a)], (b◦,b◦)]
=

(
0 (Da− −a+D)b◦− −b◦+(Da− −a+D)

(D†a+ −a−D†)b◦+ −b◦−(D†a+ −a−D†) 0

)

which vanishes since (A,H, D) satisfies the first-order condition. Similarly the
upper-right component of (3.44) vanishes, being the upper right component of[[D, (α,α)

]
, (β◦, β◦)]. Hence the twisted first-order condition is satisfied.
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When J anticommutes with �, one has

J =
(

0 J
εJ −1 0

)
, (3.45)

so that, writing now b◦+ :=J −1π+(b∗)J , and β◦− :=J π−(β∗)J −1,

J B∗ J−1 =
(

β◦− 0
0 b◦+

)
, Jρ(B∗)J−1 =

(
b◦− 0
0 β◦+

)
. (3.46)

The proof is then similar to the previous case.

Propositions 3.7 and 3.8 give a way to minimally twist a (real) graded spec-
tral triple using its grading. This need not be the only possibility, although this
happens to be the case for an even-dimensional manifold, as showed in Propo-
sition 4.2. In particular, while it is important for the construction that the grad-
ing � commutes with the algebra (otherwise, there would be no guarantee that the
restrictions p±A of A to H± are algebra representations, unless the p± themselves
are elements of the algebra), the condition that � anticommutes with the Dirac
operator may be slightly relaxed, as illustrated later on in Section 4.2. More pre-
cisely, given a minimal twist (A⊗C

2,H, D;ρ) of a spectral triple T := (A,H, D),
the extended representation π can always be written as in (3.27) with a suitable
unique grading of the Hilbert space H. Indeed, by defining

�̃ :=π(IA ⊗ (1,−1))=π(IA,−IA), (3.47)

a direct computation leads to

π(a,a′)= 1
2 (I+ �̃) π0(a)+ 1

2 (I− �̃) π0(a
′) ∀(a,a′)∈A⊗C

2. (3.48)

Clearly, the operator �̃ defined in (3.47) is a grading of H, that is �̃∗ = �̃ and �̃2=
I. It trivially commutes with the representation πB in (3.9), in fact the latter can
be written as

πB(z1, z2)= 1
2 (z1 + z2)I+ 1

2 (z1 − z2)�̃ ∀(z1, z2)∈C
2. (3.49)

It also commutes with the representation π0, since

[�̃, π0(a)]= [π(IA ⊗ (1,−1)), π(a⊗ IB)]=0. (3.50)

Thus from (3.22) it also commutes with π =π0πB. However, �̃ need not be a grad-
ing of the spectral triple, for �̃ may fail to anticommute with D. If it does, the
twisted spectral triple (A⊗C

2,H, D;ρ) is the “twist by grading” of the starting
spectral triple (A,H, D), obtained by applying Proposition 3.7 with � = �̃. Oth-
erwise, the minimal twist does not come from the construction of Proposition 3.7.
We come back to this point for the case of almost commutative geometry later on.
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Remark 3.9. There is in fact a constraint on the anticommutator of �̃ with D
coming from the boundedness of [D,a]ρ . From (3.31) one notices that ρ(IA ⊗
(1,−1))=−IA ⊗ (1,−1), so that

[D, π(IA,0)]ρ = 1
2 [D, I+ �̃]ρ = 1

2 (D π (IA ⊗ (1,−1))+π (IA ⊗ (1,−1)) D)

= 1
2 (D �̃ + �̃ D). (3.51)

Hence, in any minimal twist (A⊗C
2,H, D;ρ) with ρ as in (3.31), the anticommu-

tator {D, �̃} is a bounded operator.

4. Unicity of the Twist

We show in Section 4.1 that twisting by grading as described in Section 3.2 is the
only way to minimally twist an even-dimensional spin manifold. With some condi-
tions of irreducibility, the same is true for almost commutative geometries as soon
as one uses the real structure, as shown in Section 4.2.

4.1. EVEN-DIMENSIONAL MANIFOLD

Let M be a closed spin manifold of even dimension n=2m, m�1. The Euclidean
Dirac matrices γ[2m] in the chiral basis are the p :=2m dimensional square matrices
defined recursively by

γ 1
[2] =σ1 γ 2

[2] =σ2 γ(2) =−iγ 1
[2] γ

2
[2] =σ3 (4.1)

where

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(4.2)

are the Pauli matrices, and

γ k
[2m+2] =

(
02m γ k

[2m]
γ k
[2m] 02m

)
for k=1, ...,2m

γ 2m+1
[2m+2] =

(
02m γ(2m)

γ(2m) 02m

)
, γ 2m+2

[2m+2] =
(
02m −i I2m
i I2m 02m

)
(4.3)

where γ(2m) is the grading operator

γ(2m) := (−i)m γ 1
[2m] γ

2
[2m] · · ·γ 2m

[2m] =
(
I2m 02m
02m −I2m

)
. (4.4)

LEMMA 4.1. Let A, B ∈M2m+1(C), be such that

γ
μ

[2m+2] A= B γ
μ

[2m+2] ∀μ=1, . . . ,m+2. (4.5)
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Then, there exist λ,λ′ ∈C such that

A=
(

λ I2m 02m
02m λ′

I2m

)
, B=

(
λ′
I2m 02m

02m λ I2m

)
. (4.6)

Proof. Let

A=
(
a b
c d

)
, B=

(
a′ b′
c′ d ′

)
, (4.7)

be non-zero matrices whose entries are 2m-square matrices. For μ=2m+2 requir-
ing (4.5) implies

b′ =−c, c′ =−b, and a′ =d, d ′ =a. (4.8)

Then, for k=1, . . . ,2m+1, one obtains

γ k
[2m]a=aγ k

[2m], γ k
[2m]d =dγ k

[2m] and γ k
[2m]c=−cγ k

[2m],
γ k
[2m]b=−bγ k

[2m] (4.9)

and similar relations with γ(2m). Thus b and c should anticommute with all the
γ k
[2m] as well as with their product γ(2m), which is not possible, unless b = c = 0.

Meanwhile a and d should commute with all the γ k
[2m], which is possible only if a

and d are multiple of the identity. Hence the result.

The twist by grading of Section 3.2 turns out to be the only way to minimally
twist the spectral triple of a manifold (3.1) by a finite-dimensional algebra, pro-
vided the latter acts faithfully.

PROPOSITION 4.2. Let M be a closed manifold of dimension 2m; B be a finite-
dimensional C∗-algebra and ρ a non-trivial automorphism of C∞(M)⊗B such that

(C∞(M)⊗B, L2(M, S), /∂ ; ρ) (4.10)

is a minimal twist of the canonical triple (C∞(M), L2(M, S), /∂), with πB as defined
in (3.9) taken to be faithful. Then B=C

2 and

ρ( f, g)= (g, f ) ∀( f, g)∈C∞(M)⊗C
2. (4.11)

Moreover, the representation π of C∞(M)⊗B on L2(M, S) is given by (3.27)–(3.29)
with � =γ(2m) the grading of the canonical spectral triple of M in (3.1).

Proof. Let IM denote the identity of C∞(M). Any element IM ⊗ b acts on H
as a constant matrix

B :=π(IM ⊗b)=πB(b) (4.12)
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of dimension at most 2m . Thus πB(B) is a subalgebra of M2m (C), and since πB is
faithful the same is true for the algebra B. For any b∈B, one finds for the twisted
commutator

[/∂, B]ρ =−iγ μ[ωμ, B]− i[γ μ, B]ρ∇μ, (4.13)

using /∂=−iγ μ∇μ =−iγ μ(∂μ +ωμ). By a similar argument as below Lemma 3.1,
this is bounded if and only if

γ μB−ρ(B)γ μ =0, ∀μ=1, . . . ,2m. (4.14)

Then by Lemma 4.1, the algebra B is isomorphic either to the algebra of block-
diagonal matrices

diag (λ I2m , λ′
I2m ), (4.15)

with ρ the permutation of the two-blocks, or to a subalgebra of it. The first case
yields B�C

2 resulting into an automorphism of C∞(M)⊗B ρ as given in (4.11).
The second case means B=C with ρ the trivial identity automorphism, excluded
by hypothesis.
To establish the last point of the proposition, it suffices to show that the oper-

ator �̃ defined in (3.50) coincides with the grading γ(2m), possibly up to an irrele-
vant global sign. From (4.15) and (4.12) one indeed gets

πB(λ1, λ2)=±diag (λ1, λ2)⊗ I2m ∀(λ1, λ2)∈C
2, (4.16)

hence �̃ =±γ(2m) as stated.

4.2. ALMOST COMMUTATIVE GEOMETRIES

For M a closed spin manifold of even dimension 2m, the product of the canon-
ical spectral triple (3.1), with grading γ(2m) and real structure J , by a finite-
dimensional unital spectral triple (AF,HF, DF) is the spectral triple

A=C∞(M)⊗AF, H= L2(M, S)⊗HF, D=/∂⊗ IF +γ(2m) ⊗ DF (4.17)

where IF is the identity on HF, and the representation

π0 =πM ⊗πF (4.18)

of A on H is the tensor product of the multiplicative representations (3.2) of
C∞(M) on spinors, by the representation πF of AF on HF. In addition, when
(AF,HF, DF) has grading �F and real structure JF, then the product (A,H, D) is
graded and real with

� =γ(2m) ⊗�F, J =J ⊗ JF. (4.19)
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As for the canonical spectral triple for a manifold, there is no room for twisting
the product spectral triple (4.17) while keeping A, H and D unchanged. Indeed, if
such a twist ρ exists then by Lemma 3.1 one has that fρ :=π0( f ⊗m−ρ( f ⊗m))

is compact for any f ∈C∞(M) and m ∈Mn(C). The same is true for

f̃ := (I⊗ e11) fρ (I⊗ e11)=: g⊗ e11, (4.20)

where e11 = diag(1,0, . . . ,0) ∈Mn(C) and g = 〈I⊗ e11, fρ(I⊗ e11)〉 ∈C∞(M). The
spectrum of f̃ is the range of g, and f̃ is never compact for the reasons explained
below Lemma 3.1.
From now on we assume that AF is a C∗-algebra, which is the case in all the

models of almost-commutative geometries applied to physics. The possibilities to
minimally twist an almost commutative geometry are a bit larger than the ones for
manifolds, due to possible degeneracies of the representation of AF on HF. Before
proving this, let us begin with a lemma showing that the (minimal) twisting auto-
morphism ρ actually acts only on the extra algebra B.

LEMMA 4.3. Let (A⊗B,H, D ; ρ) be a non-trivial minimal twist of the spectral
triple (4.17) by a finite-dimensional C∗-algebra B. Then there exists ρ′ ∈Aut(AF⊗B)

such that

ρ( f ⊗T )= f ⊗ρ′(T ) ∀ f ∈C∞(M), T ∈AF ⊗B. (4.21)

Proof. By Lemma 3.4, one has that

π(a⊗ IB −ρ(a⊗ IB)) (/∂⊗ IF +γ 5 ⊗ DF)

=π(a⊗ IB −ρ(a⊗ IB))(/∂⊗ IF)+π(a⊗ IB −ρ(a⊗ IB))(γ 5 ⊗ DF)

is bounded for any a. The second term in the r.h.s. is always bounded. On the
other hand, the image of the faithful representation π is made of finite matrices
of multiplicative operators. Thus, the first term is bounded if and only if π(a ⊗
IB −ρ(a⊗ IB))=0, that is

ρ(a⊗ IB)=a⊗ IB ∀a∈A. (4.22)

Therefore ρ preserve the center C∞(M) of A⊗B and by [15] is a function from
M to inner automorphisms of the finite part algebra AF ⊗B. We next show that
for our case this function has to be a constant one. Let k :=dimHF. For any T ∈
AF ⊗B, the element IM ⊗T acts on H as a constant 2mk×2mk matrix

M :=π (IM ⊗T )={
Mjl

}
j,l=1,...,k, (4.23)

where each block Mjl is in M2m (C). On the other hand, if we write

ρ(IA ⊗T )=
∑

j
f j ⊗Tj (4.24)
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for some f j ∈C∞(M) and Tj ∈AF⊗B, its representation π(ρ(IA ⊗T )) is a matrix
M̃ :={

M̃ jl
}
where each block M̃ jl is a priori a function on M, that is an element

in C∞(M, M2m (C)). The operator /∂⊗ IF acts as diag (/∂, /∂, . . . , /∂), so that

(/∂⊗ IF)π(IM ⊗T )−π(ρ(IM ⊗T )(/∂⊗ IF)={
(/∂Mjl)+(γ μMjl − M̃ jlγ

μ)∂μ

}
(4.25)

is bounded in and only if

γ μMjl = M̃ jlγ
μ ∀ j, l ∈[1, k]. (4.26)

This means that all the M̃ jls are constant or, given the nature of the representation
π , that all f j s in (4.24) are constant Therefore (4.24) reads

ρ(IM ⊗T )= IM ⊗ρ′(T ) (4.27)

where the automorphism ρ′ ∈Aut (AF ⊗B) is defined by

ρ′(T ) :=
∑

j
f j Tj . (4.28)

Using (4.22) it is straightforward that ρ( f ⊗ T ) = ρ( f ⊗ IAF⊗B) ρ(IM ⊗ T ) = f ⊗
ρ′(T ), for all f ∈C∞(M), T ∈AF ⊗B, which proves the statement of the lemma.

Since AF is a C∗-algebra, it is a sum of matrix algebras,

AF =
q⊕

i=1

Mn j (C) n j ∈N
∗. (4.29)

The representation πF is faithful, and we assume that each of the Mn j (C) acts
faithfully on HF as the direct sum of d j copies of the fundamental representation.
The dimension k of HF is k=∑

j n j d j and we denote

d :=min
{
d1,d2, . . . ,dq

}
. (4.30)

PROPOSITION 4.4. Let (A ⊗ B,H, D ; ρ) be a non-trivial minimal twist of the
almost commutative spectral triple (4.17) with AF as above, and B a finite-
dimensional C∗-algebra such that πB in (3.9) is faithful. Then

B=C
l ⊗C

2 for some l ∈[1,d], (4.31)

with d defined in (4.30) and, for all (a1, . . . ,b1, . . .)∈A⊗C
2 ⊗C

l the automorphism
is

ρ(a1,a2, . . . ,al ,b1,b2, . . . ,bl)= (b1,b2, . . . ,bl ,a1,a2, . . . ,al) (4.32)
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Proof. The notations are those of Lemma 4.3. By Lemma 4.1, Equation (4.26)
implies that the matrices Mjl and M̃ jl are of the form

Mjl =
(

α jl 0
0 β jl

)
⊗ I2m−1 , M̃ jl =

(
β jl 0
0 α jl

)
⊗ I2m−1 , with α jl , β jl ∈C.

(4.33)

Let

A�Mk(C)⊗C
2 (4.34)

be the C∗-algebra generated by all the matrices as in (4.23), with blocks satisfying
(4.33). Since π is faithful, AF ⊗B� IM ⊗ (AF ⊗B) is isomorphic to a subalgebra
of A.
If AF is a single matrix algebra, then AF=Mk(C) since πF is faithful. By (4.34),

one obtains B=C
2 with ρ given by (4.32) and l = 1. This is the statement (4.31)

where l =d1 =1 and all the other d j s vanishing.
Otherwise, with M (r)

j denoting the r th copy in πF(AF) of the fundamental rep-
resentation of the matrix algebra Mn j (C), one has

π0(IM ⊗AF)=diag
(
M (1)

1 , . . . , M (d1)
1 , M (1)

2 , . . . , M
(dq )
q

)
⊗ I2m . (4.35)

For any b ∈ B, the operator π(IA ⊗ b) commutes with the operator π(A ⊗ IB)

hence, by (3.25), with π(IM ⊗AF ⊗ IB)=π0(IM ⊗AF). This means

π(IA ⊗b)=diag
(
λ

(1)
1 In1 , . . . , λ

(d1)
1 In1 , λ

(1)
2 In2 , . . . , λ

(dq )
q Inq

)
⊗T (4.36)

for
{
λ

(t)
j

} ∈ C
d ′
, with d ′ := ∑

j d j , and T an arbitrary matrix in M2m (C). But
π(IA ⊗b) belonging to A forces T to be of the form

T =
(

α 0
0 β

)
⊗ I2m−1 (4.37)

for some α,β ∈C. Hence B is isomorphic to a subalgebra of the algebra

B=C
d ′ ⊗C

2 (4.38)

generated by all elements (4.36) with (4.37). The automorphism ρ is defined as in
Lemma 4.1 by the permutation of α jl and β jl in (4.33). Thus it acts only on the
C
2 factor of B. Since ρ is non-trivial by hypothesis, this forbids considering any

subalgebra C
l ⊗C of (4.38). Hence

B�C
l ⊗C

2 for some l ≤d ′. (4.39)

Next, for any b∈B, and S∈Mn1(C) viewed as an element of AF, Equations (4.35)–
(4.37) lead to

π(IM ⊗ S⊗b)=π0(IM ⊗ S)π(IA ⊗b)

=diag
((

M1 0
0 N1

)
, . . . ,

(
Md1 0
0 Nd1

)
,0, . . . ,0

)
. (4.40)
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Thus π(IM ⊗ AF ⊗ B) contains at most 2d1 independent representations of
Mn1(C). So if l > d1, the representation π of IM ⊗AF ⊗ (Cl ⊗C

2) is not faithful,
which is excluded by hypothesis. Therefore

l ≤d1. (4.41)

The same is true for all the d j s, hence the result that d =min
{
d1,d2, . . . ,dq

}
.

Unlike the case of the canonical triple of a manifold, a minimal twist of an
almost commutative geometry is not necessarily by C

2. However, although the
algebra B=C

l ⊗C
2 may be bigger than C

2, the twisting automorphism ρ always
results in permuting the two components of spinors like in (3.36). Thus ρ is an
automorphism of the C

2 factor of B, which forms the “irreducible” part of the
twist, in contrast with the C

l factor which reflects the reducibility of the represen-
tation πF of the finite-dimensional algebra. By adding a condition of irreducibility
for the finite part representation πF, Proposition 4.4 yields the same unicity result
as for manifolds.

COROLLARY 4.5. Let (A,H, D) be an almost commutative geometry as in Propo-
sition 4.4, such that the representation πF of AF is irreducible. Then any non-
trivial minimal twist (A⊗B,H, D ; ρ) is by B=C

2 with automorphism ρ(a,a′)=
(a′,a) for any a,a′ ∈A⊗C

2.

Proof. This is Proposition 4.4 with all the di s equal to 1, so that l =1 and B=
C
2 ⊗C=C

2.

Nevertheless, there is still a degree of freedom in the representation πB of the
auxiliary algebra C

2, and thus in the grading operator �̃ as defined in (3.47). This
freedom could lead to twisting of almost commutative geometries which are not
of the ‘the twist by grading’ type, in contrast to what happens for manifolds as
shown in Proposition 4.2. Restricting to the irreducible case where all the d j s are
equal to 1, from (4.36) one has:

�̃ :=π(IA ⊗ (1,−1))=
q⊕
j=1

Tj , (4.42)

where each Tj is one of the two possible representations of (1,−1) on L2(M, S)

allowed by (3.29), that is Tj =γ(2m) or −γ(2m). In other terms, one has

�̃ =γ(2m) ⊗ �̃F, (4.43)

where �̃F is a diagonal matrix with entries ±1. As stressed at the end of Sec-
tion 3.2, the point is whether the operator �̃ is a grading of the twisted almost
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commutative geometry or not. If yes, the only minimal twist of any such a geom-
etry by C

2 would be by grading as in Section 3.2; otherwise, there would be alter-
native ways to minimally twist an almost commutative geometry by C

2, even in the
irreducible case.

Remark 4.6. When q=1, that is when AF=Mn(C), the operator �̃ is either γ(2m) ⊗
IF or −γ(2m) ⊗ IF. This it is not a grading of the almost commutative geometry
since it does not anticommutes with γ(2m) ⊗ DF. This reflects the fact that there is
no grading for AF = Mn(C) acting irreducibly on HF, for the only operator that
commutes with πF(AF) is the identity.

So far, we are able to answer this question in the real case, adding the assumption
that �̃ behaves well with respect to the real structure J , that is

�̃ J = ε̃ J� for some ε̃ =1 or −1. (4.44)

PROPOSITION 4.7. Let (A⊗C
2,H, D;ρ) with ρ as in (3.31) be a minimal twist of

an almost commutative geometry (A,H, D) with AF as in (4.29). Assume in addition
that the twisted spectral triple is real, with real structure J . If (4.44) holds true, then

�̃ D+ D �̃ =0, (4.45)

meaning that �̃ is a grading of both the starting and the twisted spectral triples.

Proof. We only sketch the proof that goes along the lines of the proofs of Propo-
sitions 3.8 and 3.8 since in a sense the present proposition goes in the inverse
direction of those. The key is to decompose H= H̃+ ⊕ H̃− into the eigenbasis of
�̃ and then all operators accordingly.
Firstly, the boundedness of the twisted commutator [D, π(a, α)]ρ for any (a, α)∈

A⊗C
2, restricts to requiring only the boundedness of

[−iγ μ∂μ ⊗ IF, π(a, α)]ρ (4.46)

since, the twisted commutators of π(a, α) with γ(2m) ⊗ DF and −iγ μωμ ⊗ IF are
trivially bounded. That the twisted commutator in (4.46) be bounded leads, with
a direct computation to

(γ μ ⊗ IF) �̃ + �̃(γ μ ⊗ IF)=0 ∀μ=1, . . . ,2m. (4.47)

This shows that �̃ anticommutes with γ μ∂μ ⊗ IF, as well as with γ μωμ ⊗ IF, as
can be seen using the local form of the spin connection ωμ = 1

4�
νρ
μ γργν . Hence:

(/∂⊗ IF) �̃ + �̃ (/∂⊗ IF)=0. (4.48)

On the other hand, the condition on the finite part γ(2m) ⊗ DF, that is

(γ(2m) ⊗ DF) �̃ + �̃(γ(2m) ⊗ DF)=0, (4.49)
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follows from the zero-order and the twisted first-order conditions. For this one uses
again a decomposition of the operator J on the eigenbasis of �̃; this being possible
once requiring (4.44).

Remark 4.8. Usually the notion “almost commutative geometry” is intended for
the product of the algebra of functions on a manifold by a finite-dimensional non-
commutative algebra. More generally, it could be used for any spectral triple where
the algebra A has an infinite-dimensional center Z(A), while A/Z(A) is finite-
dimensional. A well-known example which goes beyond the product of a manifold
by matrices is the noncommutative torus (Aθ ,Hθ , Dθ ) spectral triple for a ratio-
nal deformation parameter. In this case the algebra Aθ is the algebra of endomor-
phisms of a bundle over a commutative torus and the center of Aθ can be identi-
fied with the algebra of functions on this (usual) torus. Many of the results of the
previous section extend to this more general cases, thus leading to other interesting
examples. Details shall be reported elsewhere.

5. Applications

A twisted spectral triple for the Standard Model of elementary particles has been
proposed in [10], whose twisted fluctuations yield the extra-scalar field σ required
to stabilize the electroweak vacuum as pointed out in [2], together with an unex-
pected additional vector field Xμ. It has been shown in [17] that for M a four-
dimensional manifold, the appearance of Xμ is not due to the peculiar structure
of the Standard Model, but is a consequence of the twist on the commutative
part of the almost commutative geometry. We generalize this result to any even-
dimensional manifold in Section 5.1 below. Then we study in Section 5.2 to what
extent the twisted spectral triple of [10] enters in the framework of minimal twist-
ing introduced in the present paper.

5.1. TWISTED FLUCTUATIONS OF THE FREE DIRAC OPERATOR

Let us consider the minimal twist of an even-dimensional closed Riemannian man-
ifold M as described in Proposition 4.2, that is

(C∞(M)⊗C
2, L2(M, S), /∂;ρ) where ρ( f, g)= (g, f ) ∀ f, g∈C∞(M),

(5.1)

with grading γ(2m) and real structure J (the ‘charge conjugation’ operator).
For the algebra C∞(M), the representation of the opposite algebra induced by

J is just the representation πM composed with the involution, that is
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JπM( f )J−1 =πM( f̄ ). (5.2)

A similar result holds for the minimal twist (5.1), but depends on the KO-
dimension.

LEMMA 5.1.

Jπ(a)J−1 =
⎧⎨
⎩

π(a∗) if KO-dim=0,4

π(ρ(a∗)) if KO-dim=2,6
. (5.3)

Proof. The twisting automorphism in (5.1) is such that ρ2 = id. Equation (2.7)
then implies

ρ(a∗)= (ρ(a))∗. (5.4)

For any a= ( f, g)∈C∞(M)⊗C
2, Proposition 4.2 yields

Jπ(a)J−1 = J p+π0( f ) p+ J−1 + J p−π0(g) p− J−1, (5.5)

where π0 =πM is the usual representation of C∞(M) on spinors and p± = 1
2 (I±

γ(2m)).
If the KO-dimension is 0 or 4, the operator J commutes with γ(2m), hence with

p+ and p−. Thus, using (5.2),

Jπ(a)J−1 = p+ Jπ0( f )J
−1 p+ + p− Jπ0(g)J

−1 p−
= p+π0( f̄ )+ p−π0(ḡ)=π( f̄ , ḡ)=π(a∗). (5.6)

In KO-dimension 2 or 6, the operator J anticommutes with γ(2m), meaning that
J p+ = p− J and J p− = p+ J . Hence, using now (5.4),

Jπ(a)J−1 = p− Jπ0( f )J
−1 p− + p+ Jπ0(g)J

−1 p+
= p−π0( f̄ )+ p+π0(ḡ)=π(ḡ, f̄ )=π(ρ(a∗)). (5.7)

Thus the statement (5.3).

Now, if dimM=2m, any a= ( f, g)∈C∞(M)⊗C
2, one has

π(a)=
(

f I2m−1 0
0 gI2m−1

)
, π(ρ(a))=

(
gI2m−1 0

0 f I2m−1

)
. (5.8)

Using the fact that the spin connection commutes with the representation (and
omitting the symbol of representation) a direct computation leads to

[/∂,a]ρ =−iγ μ[∂μ,a]+ (γ μ a−ρ(a) γ μ) /∂

=−iγ μ(∂μa), (5.9)
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since from Lemma 4.1 for the particular automorphism ρ in (5.8) one has

γ μa=ρ(a) γ μ. (5.10)

Using this again, any twisted 1-form as defined in (2.15) can thus be written as

Aρ =−i
∑

j
a j γ

μ(∂μb j )=:−iγ μ
∑

j
ρ(a j )(∂μb j ) for

a j ,b j ∈C∞(M)⊗C
2. (5.11)

LEMMA 5.2. For the minimal twisted spectral triple in (5.1) one has

J Aρ J
−1 =

⎧⎨
⎩

−ρ(A∗
ρ) if KO-dim=0,4

−A∗
ρ if KO-dim=2,6

. (5.12)

Proof. In even dimensions the real structure J commutes with the Dirac opera-
tor, J D=DJ so that from the signs in (2.1) one has ε′ =1. J being antilinear this
means that

Jγ μ =−γ μ J (5.13)

since usual gamma matrice algebra yields that J commutes with the covariant spin
derivatives ∇μ. By Lemma 5.1, since J is antilinear, it commutes with ∂μ and ρ is
a ∗-automorphism from (5.4), direct computations yield

J Aρ J
−1 =

⎧⎪⎨
⎪⎩

−iγ μ
∑

j ρ(a∗
j )(∂μb∗

j ) if KO-dim=0,4

−iγ μ
∑

j a
∗
j (∂μρ(b∗

j )) if KO-dim=2,6
. (5.14)

On the other hand, using (5.4) and (5.10), one computes:

A∗
ρ = i

∑
j
(∂μb

∗
j )ρ(a∗

j ) γ μ = iγ μ
∑

j
(∂μρ(b∗

j ))a
∗
j = iγ μ

∑
j
a∗
j (∂μρ(b∗

j )),

(5.15)

since (∂μρ(b∗
j )) ∈ C∞(M) commutes with a∗

j ∈ C∞(M). With a slight abuse of
notation due to the omission of the symbol of representation, we denote the first
line of the r.h.s. of (5.14) as ρ(A∗

ρ). The results in (5.12) follows by comparison.

PROPOSITION 5.3. There are no twisted fluctuations of the Dirac operator /∂ if the
KO-dimension is 2 or 6. On the other hand, for KO-dimension 0 or 4, the twisted
fluctuations are of the form

/∂ρ =/∂− iγ μ fμγ(2m), (5.16)

where fμ = ( f1, . . . , f2m) are arbitrary real functions in C∞(M).
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Proof. From Lemma 5.2 one has

/∂ρ =/∂+ Aρ + J Aρ J
−1 =/∂+ Aρ −

⎧⎨
⎩

ρ(A∗
ρ) if KO-dim=0,4

A∗
ρ if KO-dim=2,6

. (5.17)

By requiring that /∂ρ be self-adjoint one sees that for the KO-dimension 2 or 6, the
additional term Aρ − A∗

ρ equals its opposite, hence it vanishes. For KO-dimension
0 or 4, let us write

Yμ :=
∑

j
ρ(a j ) (∂μb j ), ρ(Yμ) :=

∑
j
a j (∂μρ(b j )) (5.18)

so that (5.11) and (5.15) yields

Aρ =−iγ μYμ, A∗
ρ = iγ μY ∗

μ. (5.19)

Therefore /∂ is self-adjoint if and only if

Aρ −ρ(A∗
ρ)=−iγ μ(Yμ +Y ∗

μ) (5.20)

is self-adjoint. By (5.10) this is equivalent to

γ μ
(
ρ(Yμ +Y ∗

μ)+Yμ +Y ∗
μ

)=0. (5.21)

With a j = ( f j , g j ) and b j = ( f ′
j , g

′
j ) in C∞(M)⊗C

2, one has

Yμ :=diag
(
fμ I2m−1 , gμ I2m−1

)
, ρ(Yμ) :=diag

(
gμ I2m−1 , fμ I2m−1

)
, (5.22)

where fμ :=∑
j g j ∂μ f ′

j and gμ :=∑
j f j ∂μg′

j . Both Yμ +Y ∗
μ and ρ(Yμ +Y ∗

μ) are
block-diagonal matrices with block C∞(M)-proportional to I2m−1 , so the l.h.s.
of (5.21) is block off-diagonal, with blocks C∞(M)-linear combinations of Pauli
matrices. Hence (5.22) is equivalent to

Yμ +Y ∗
μ =−ρ(Yμ +Y ∗

μ). (5.23)

This means

gμ + g∗
μ =−( fμ + f ∗

μ) (5.24)

which is the same as

Yμ +Y ∗
μ =2(Re fμ) γ(2m). (5.25)

The latter is of the form in (5.16). This concludes the proof.

In the non-twisted case, that is when ρ the identity automorphism, then (5.17)
shows that the fluctuations of /∂ also vanish in KO-dimension 0,4. This can also
be read in (5.23), which for ρ = Id implies that Yμ +Y ∗

μ equals its opposite, hence
is zero. One retrieves the well-known result that (non-twisted) fluctuations of the
Dirac operator in the commutative case always vanish.
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5.2. ON TWISTING THE SPECTRAL STANDARD MODEL

We investigate how the twisted spectral triple for the Standard Model of elemen-
tary particles proposed in [10] fits the framework of the present paper.
The (non-twisted) spectral triple of the Standard Model [3] is the almost com-

mutative geometry

A=C∞(M)⊗Asm, H= L2(M, S)⊗HF, D=/∂⊗ IF +γ(2m) ⊗ DF (5.26)

where

Asm :=C⊕H⊕M3(C) (5.27)

acts on the finite-dimensional space HF whose dimension is the number of elemen-
tary fermions. Then DF is a matrix acting on HF whose coefficients encode the
masses of these fermions. As in [10] we work with one generation only, so that
HF �C

32 splits as

HF =HL ⊕HR ⊕Ha
L ⊕Ha

R (5.28)

with each of the summands isomorphic to C
8 (8 is for one pair of colored quarks

and one pair electron/neutrino). The index L/R is for left/right particles, and the
exponent a is for anti-particles. The (real) algebra of quaternion acts only on HL,
the algebra M3(C) only on Ha

L ⊕Ha
R and C on HR ⊕Ha

L ⊕Ha
R, namely for c ∈

C,q ∈H and m ∈M3(C) one has

πF(c,q,m)=πL(q)⊕πR(c)⊕πa
L(c,m)⊕πa

R(c,m). (5.29)

Explicitly, identifying a quaternion q with its usual representation as 2×2 complex
matrix, one has

πL(q) :=q ⊗ I4, πR(c) :=diag(c, c̄)⊗ I4,

πc
L(c,m)=πc

R(c,m) := I2 ⊗diag(c,m). (5.30)

The identity I4 in the particle sector means that C and H preserve the color, and
do not mix leptons with quarks. The identity I2 in the antiparticle sector means
that C and M3(C) preserves the flavor: c acts by multiplication on antileptons
while M3(C) mixes the color of the antiquarks. The representation of A on H is
thus

π0( f ⊗aF)=πM( f )⊗πF(aF) ∀ f ∈C∞(M), aF ∈Asm. (5.31)

A twisted spectral triple (Ã,H, D;ρ) of the Standard Model has been obtained
in [10] following an idea introduced in [9]. One lets the algebra C⊕H act indepen-
dently on the left/right components of spinors, only in the particle sector HL⊕HR,
that is C⊕H is doubled but M3(C) is not. Explicitly one takes Ã=C∞(M)⊗ Ãsm

where

Ãsm :=C⊕C⊕H⊕H⊕M3(C), (5.32)
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This partial doubling can be easily dealt with by extending our Definition 3.2 of
a minimal twist.

DEFINITION 5.4. Let (A,H, D) be a spectral triple whose algebra

A=A′ ⊕A′′ (5.33)

is the direct sum of two (pre-) C∗ algebras A′ and A′′. A generalized minimal twist
of (A,H, D) by the algebra B is a twisted spectral triple

((A′ ⊗B)⊕A′′,H, D;ρ) (5.34)

such that the initial representation π0 of A′ ⊕A′′ on H is retrieved from the rep-
resentation π of the algebra (A′ ⊗B)⊕A′′ as

π0(a
′ ⊕a′′)=π

(
(a′ ⊗ IB)⊕a′′) ∀a′ ∈A′, a′′ ∈A′′, b∈B. (5.35)

We could have taken from the very beginning this more general definition rather
than the one in Definition 3.2. We have decided not to do so, since this would
have only made the paper rather cumbersome and heavier to read while not adding
much to its scientific content.
In the case of the twisted spectral triple for the Standard Model, by setting A′ =

C∞(M)⊗C⊕H and A′′ =C∞(M)⊗M3(C) so that

C∞(M)⊗Asm =A′ ⊕A′′, (5.36)

one gets as expected

C∞(M)⊗ Ãsm = (A′ ⊗B)⊕A′′ (5.37)

with twisting algebra B=R
2 – one cannot consider B=C

2, for H is not a complex
algebra. The representations π of C∞(M)⊗Ãsm that, together with the initial rep-
resentation π0 in (5.31) satisfies (5.35), is given by

π( f ⊗ A) := (p+πM( f ))⊗ (πL(qr )+πR(cr )) + (p−πM( f ))⊗ (πL(ql)+πR(cl))

+πM ( f )⊗ (πa
L(cr ,m)+πa

R(cr ,m)). (5.38)

Here p± := 1
2 (IM ±γ(2m)) and the generic element of the algebra Ãsm in (5.32) is

A= (cr , cl ,qr ,ql ,m) with (cr , cl)∈C
2, (qr ,ql)∈H

2, m ∈M3(C). (5.39)

In contrast with the construction of the present paper, the automorphism ρ

of the twisted spectral triple of [10] is an automorphism of the represented alge-
bra π(Ãsm) rather than Ãsm itself. With the notation (5.39), this automorphism
exchanges (ql , cl) with (qr , cr ) in the particle sector, while leaving unchanged the
cr in the anti-particle sector. Explicitly,

ρ (π( f ⊗ A))= (p+πM( f ))⊗ (πL(ql)+πR(cl))+ p−πM( f )⊗(πL(qr )+πR(cr ))

+πM ( f )⊗ (πa
L(cr ,m)+πa

R(cr ,m)). (5.40)
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Additional investigation on this point will be reported elsewhere. One option is
to generalize the results of the present paper to automorphisms that do not com-
mute with the representation, so as to fit the twisted spectral triple of [10] in the
scheme. A second possibility is to minimally twist the Standard Model in the sense
of Definition 3.2 or Definition 5.4, and see whether twisted fluctuations still gen-
erate the extra-scalar field σ needed for the model, or even more general fields.

That the twisted spectral triple of [10] does not completely fit our main defini-
tion is a sign that there could be more general models for twisted spectral triples
for the Standard Model of particle physics, leading hopefully to richer phenomeno-
logical consequences.
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