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Abstract. We describe a broad new class of exact solutions of the KdV hierarchy. In gen-
eral, these solutions do not vanish at infinity, and are neither periodic nor quasi-periodic.
This class includes algebro-geometric finite-gap solutions as a particular case. The spec-
tra of the corresponding Schrödinger operators have the same structure as those of N -gap
periodic potentials, except that the reflectionless property holds only in the infinite band.
These potentials are given, in a non-unique way, by 2N real positive functions defined on
the allowed bands. In this letter we restrict ourselves to potentials with one allowed band
on the negative semi-axis; however, our results apply in general. We support our results
with numerical calculations.
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1. Introduction

In the 1970s, it became clear that certain nonlinear wave equations that are inte-
grable by the inverse spectral transform (IST), such as the KdV, the NLS, and the
sin-Gordon equations, are universal mathematical models and have wide applica-
tions in diverse areas of physics (see [1]). However, known exact methods for these
equations only work under strong constraints on initial data, which limits their
practical applications. For example, no analytic approach is known for the prob-
lem of integrable turbulence of waves on shallow water, or in optical fibers. In this
letter, we describe a new exact method for the KdV equation, which is applicable
to other equations as well.
We consider the KdV equation in the following form:

ut −6uux +uxxx =0. (1)
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732 DMITRY V. ZAKHAROV ET AL.

The IST, and other methods for integrating KdV, is based on the observation that
it is the consistency condition of the Schrödinger equation

−ψxx +uψ = Eψ (2)

and the evolution equation (see [2])

ψt +4ψxxx +6uψx +3uxψ =0 (3)

on an auxiliary function ψ(x, t), for all values of E .
The spectrum of the Schrödinger operator

L =−∂2x +u(x)

is the set of real values of E for which there exists a bounded solution of (2). The
spectrum does not change if the potential evolves according to (1), hence solutions
of KdV are classified by the structure of their spectra.
The simplest nontrivial potentials are the N -soliton solutions of KdV, whose

spectra consist of the positive semi-axis and N points on the negative axis. These
solutions were already known to Bargmann [3] and are expressed in terms of ele-
mentary functions. Another important class of solutions is the N -gap potentials.
Their spectra consist of a union of N closed intervals and one half-infinite open
interval, and they are explicitly given by the Matveev–Its formula in terms of
Riemann theta functions of real hyperelliptic algebraic curves (see [1]). All these
potentials are reflectionless for all allowed energy values (see [4]).

A generic periodic potential is a limit of N -gap potentials as N →∞ (see [5]),
while N -soliton solutions are obtained from N -gap solutions by degenerating the
spectral curve to a rational nodal curve. In addition, rapidly vanishing perturba-
tions of finite-gap potentials admit a complete analytic description. These pertur-
bations are no longer reflectionless. These methods also allow solving the initial
value problem for KdV in the rapidly vanishing case. Despite the significance of
these results, they do not solve the generic initial value problem, and hence are
insufficient for many physical applications.
A key problem in the theory of nonlinear equations is the statistical description

of solutions of KdV, also known as integrable turbulence [6]. An important case
is the description of a “soliton gas” [7,8]. Suppose that the initial condition of
(1) is a bounded function, which is neither rapidly vanishing nor periodic. What
is its behavior under time evolution? Unfortunately, for a generic bounded poten-
tial little can be said about the spectrum of the corresponding Schrödinger opera-
tor, which can have an arbitrarily complicated structure. There is a known class of
random, statistically homogeneous potentials whose spectra have a Cantor set-like
structure and which display Anderson localization. Therefore, it is natural to pose
the problem of describing the class of bounded potentials of the Schrödinger oper-
ator whose spectra nevertheless have the simple structure of an N -gap potential.
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The simplest example of a finite-gap potential is an elliptic potential with spec-
trum [−k22,−k21]∪[0,∞). By Hochstadt’s theorem, a periodic (more generally, reflec-
tionless, see [4]) potential u(x) with such a spectrum has the form

u(x)=2℘(x + iω′ − x0)+ e3, (4)

where ℘ is the Weierstrass function with periods 2ω, 2iω′, where ω and ω′ are real,
and

k21 = e2 − e3, k22 = e1 − e3, e1 + e2 + e3 =0,

where ei are the values of ℘ on the half-periods of the lattice, and x0 is an arbi-
trary constant. Time evolution according to KdV is given by

x0 → x0 +6e3t,

which gives the well-known cnoidal traveling wave solution of KdV.
In this letter we describe a much wider class of potentials of (2) that have the

same spectrum as (4). These potentials are the initial data of a new class of exact
solutions of KdV. They are parametrized, in a non-unique way, by a pair of posi-
tive functions R1 and R2 defined on the interval [k1, k2]. Functions R1 and R2 that
vanish on subintervals of [k1, k2] describe N -gap potentials. These potentials are
reflectionless for positive values of energy, but not in general for negative values.

2. N-Soliton Potentials Via Dressing Method

We construct new solutions of KdV as limits of N -soliton solutions, which for
fixed moments of time are reflectionless Bargmann potentials [3]. An elegant con-
struction of N -soliton solutions can be carried out via the dressing method, as
described in [9]. This method is local both in x and in t , so to save space we set
t = 0 and consider time evolution only at the end of the letter. We note that the
described method is more flexible than the traditional IST.
Following [9], we consider the following ∂̄-problem on the complex k-plane:

∂χ

∂k̄
= ie2ikx T (k)χ(x,−k), χ →1 as |k|→∞, (5)

where T (k) is a compactly supported distribution called the dressing function of the
∂̄-problem. The solution satisfies the following integral equation:

χ(x, k)=1+ i

π

¨
T (−q)χ(x,q)e−2iqx

k+q
dqdq̄ (6)

where we regularize the integral in the following way:

1
k

= lim
ε→0

k̄

k2 + ε2

∂

∂k̄

1
k

=πδ(k),
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where δ(k) is the two-dimensional δ-function. Suppose that the dressing function
T (k) has the property that equation (6) has a unique solution. Then

χ(x, k)→1+ iχ0(x)

k
+· · · as |k|→∞ (7)

and χ is a solution of the equation:

χxx −2ikχx −u(x)χ =0, u(x)=2
d
dx

χ0(x). (8)

To construct N -soliton potentials, we consider the dressing function

T (k)=π

N∑

n=1

Tnδ(k− iκn), (9)

where Tn and κn are nonzero real numbers satisfying |κn| ∈ [k1, k2] and Tn/κn > 0
for all n. Then χ is a rational function:

χ(x, k)=1+ i
N∑

n=1

χn(x)

k− iκn
, χn(x) real. (10)

The corresponding potential

u=2
d
dx

N∑

n=1

χn(x) (11)

is an N -soliton potential. The function ψ =χe−ikx satisfies (2). The corresponding
potential is rapidly vanishing and has a finite discrete spectrum {−κ2

1 , . . . ,−κ2
N },

and ψn(x)=χn(x)eκn x are the corresponding eigenfunctions.
The ∂̄-problem (5) is equivalent to the following linear system on the eigenfunc-

tions:

ψn +Tn

N∑

m=1

e−(κn+κm )x

κn +κm
ψm =Tne

−κn x . (12)

If Tn/κn >0 the determinant A of system (12) is positive, so it has a unique solu-
tion, and moreover

u(x)=−2
d2

dx2
ln A. (13)

The results of [10] imply that these potentials are strictly negative and satisfy
u(x)≥−2k22, so they are bounded uniformly in N .
In the standard IST, it is always assumed that all Tn and κn are positive, in

which caseˆ ∞

−∞
|ψn|2dx =Tn .

Weakening these assumptions allows us to effectively construct a broader class of
potentials.
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3. Closure of Bargmann Potentials

To describe the closure of the set of N -soliton solutions, we replace the finite dress-
ing function (9) with one supported on two cuts [ik1, ik2] and [−ik2,−ik1] on the
imaginary axis:

T (k)=π

ˆ k2

k1
R1(κ)δ(k− iκ)dκ +π

ˆ k2

k1
R2(κ)δ(k+ iκ)dκ. (14)

Here R1 and R2 are functions on [k1, k2]. Formula (10) for the solution χ trans-
forms into the following representation:

χ(x, k)=1+ i
ˆ k2

k1

f (x, p)

k− i p
dp+ i

ˆ k2

k1

g(x, p)

k+ i p
dp (15)

where f (x, p) and g(x, p) are real-valued functions. The function χ is analytic
away from the cuts. The potential u(x) is given by

u(x)=2
dχ0

dx
, χ0 =

ˆ k2

k1

[ f (x, p)+ g(x, p)] dp (16)

We plan to describe the details of the transition from the discrete to the continu-
ous case in a future paper. The algebraic system (12) transforms into a system of
two integral equations on χ , which is equivalent to the following Riemann–Hilbert
problem:

χ+(x, ik)−χ−(x, ik)= iπR1(k)e
−2kx [

χ+(x,−ik)+χ−(x,−ik)
]
, (17)

χ+(x,−ik)−χ−(x,−ik)=−iπR2(k)e
2kx [

χ+(x, ik)+χ−(x, ik)
]
, (18)

where χ± are the boundary values of χ along the cuts:

χ±(x, k)= lim
ε→0

χ(x, k± iε), k ∈[−ik2,−ik1]∪ [ik1, ik2].

This is a scalar, but non-local, Riemann–Hilbert problem, and it is equivalent to
a local vector Riemann–Hilbert problem. Denote 
(k)=[χ(k) χ(−k)], and let 
+
and 
− be the right and left values of 
 on the cuts. Then Eqs. (17) and (18) are
equivalent to


+(iκ)=M(κ)
−(iκ), 
+(−iκ)=MT (κ)
−(−iκ) (19)

for κ ∈[k1, k2], where the transition matrix is

M(x, κ)= 1
1+ R1R2

[
1− R1R2 2i R1e−2κx

2i R2e2κx 1− R1R2

]
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We show that if R1 and R2 are positive and α-Hölder for a positive α, then
system (17) and (18) has a unique solution. The spectrum of the corresponding
potential u(x) is [−k22,−k21]∪ [0,∞) on the negative axis. The functions

ϕ(x, k)= f (x, k)eikx and ψ(x, k)= g(x, k)e−ikx (20)

are real bounded eigenfunctions of (2) when k= iκ, where k1<κ <k2, so the spec-
tral multiplicity is two. These eigenfunctions form an orthogonal system:

ˆ ∞

−∞
ϕ(x, κ)ϕ(x, κ ′)dκ = R1δ(κ −κ ′), (21)

ˆ ∞

−∞
ψ(x, κ)ψ(x, κ ′)dκ = R2δ(κ −κ ′), (22)

ˆ ∞

−∞
ψ(x, κ)ϕ(x, κ ′)dκ =0. (23)

We prove these nontrivial statements by approximating the integrals in (15) by
finite sums. The one-gap potential is approximated by N -soliton potentials, and
Eqs. (17) and (18) turn into the linear system (12), which we know to be solvable.
We note that R1 = R2 implies that u(x) is even.

A fundamental difference between the ISM and the dressing method is that
in the former, the scattering data can be uniquely restored from the potential,
while in the latter, the same potential can be constructed using a variety of dif-
ferent dressings. For example, in (9) we can change the signs of κn , and make an
appropriate change to Tn , without changing u(x), so each N -soliton solution is
constructed using 2N different dressing functions of the form (9). Hence, a given
bounded potential is not determined by a unique choice of R1 and R2. Below we
describe a class of dressings leading to one-gap periodic potentials.
We have so far assumed R1 and R2 to be positive. If one of the functions van-

ishes along an interval [a,b] contained in [k1, k2], then u(x) is a reflecting poten-
tial, namely u→0 in one of the directions, and the spectral multiplicity on [a,b] is
equal to one. If both functions vanish on [a,b], then this zone is a forbidden gap.
In this way, by requiring R1 and R2 to vanish along N −1 disjoint intervals inside
[k1, k2], we can obtain N -gap potentials. We note that the spectral multiplicity is
always equal to one on the boundary of a gap.
We remark that potentials of the Schrödinger operator defined by a Riemann–

Hilbert problem (17, 18) with R2 = 0 were considered by Krichever [11]. Such
potentials may also be related to solutions of KdV with step-like initial data (see
[12–14]), due to the similar behavior at x →±∞ (see Figure below).
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4. Time Evolution

We now use a potential u(x) constructed above as the initial condition for the
KdV equation (1). The spectrum of u(x) is preserved, while R1 and R2 evolve as
follows:

R1(k)→ R1(k)e
S(k)t , R2(k)→ R2(k)e

−S(k)t , (24)

where S(k)=8k3. Evolution according to one of the higher KdV flows corresponds
to a different odd function S(k). Any choice of an odd function S defines a unitary
transformation of the corresponding Schrödinger operator. Hence, the potentials
that we construct are naturally partitioned into unitarily equivalent classes, with
two potentials being equivalent if they are both solutions of an equation of the
KdV hierarchy for different times.
Define F(k) = ln R1(k) and G(k) = ln R2(k), and assume that F and G extend

analytically to the annulus k1 < |k| < k2. They are then given by convergent Lau-
rent series

F(k)=
∞∑

n=−∞
fnk

n, G(k)=
∞∑

n=−∞
gnk

n .

The above discussion implies that the even coefficients f2n and g2n , as well as the
sums f2n+1 + g2n+1 of the odd coefficients, are invariants of the unitary transfor-
mations. Alternatively, since R1 and R2 are defined for −k1<k<−k2, the following
functions are invariant under the unitary transformations:

S1(k)= R1(k)R1(−k), S2(k)= R2(k)R2(−k), S3 = R1(k)R2(k).

These functions form a system of conserved quantities for the full KdV hierarchy.

5. Periodic One-Gap Potentials

All periodic one-gap potentials are given by formula (4). Applying a transforma-
tion of the form (24) only changes the constant x0. To describe the entire class,
we only need to construct one example and then apply transformation (4) with an
arbitrary odd function s.

We now construct a dressing function of the form (14) that determines a peri-
odic one-gap potential. We put x0 = ω in (4) and map the k-plane to the period
parallelogram as follows:

k2 = e3 −℘(z) z(k)→− i

k
as |k|→∞. (25)

Then (2) becomes the Lamé equation

ϕ′′ − [
2℘(x −ω′ − iω′)+℘(z)

]
ϕ =0 (26)
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which has following solution:

ϕ(x, z)= σ(x −ω− iω+ z)σ (ω+ iω′)
σ (x −ω− iω)σ(ω+ iω′ − z)

exp (−ζ(z)x). (27)

Now define the function:

ξ(x, k)=
√
k− ik1
k− ik2

ϕ(x, z(k))eikx . (28)

This function satisfies the equation:

ξ ′′ −2ikξ ′ −u(x)ξ =0, for ξ →1 as |k|→∞ (29)

The function ξ satisfies the RH problem (17) and (18), where:

R1(q)= 1
π
h(q), R2(q)= 1

πh(q)
, (30)

h(q)=
√

(k2 −q)(q + k1)

(q − k1)(q + k2)
, k1 <q < k2. (31)

Since h(−q)=1/h(q), all three invariant functions coincide:

R1(q)R1(−q)= R2(q)R2(−q)= R1(q)R2(q)= 1
π2

.

Hence, we can also construct the potential u(x) using the constant dressing func-
tions

R1(q)= R2(q)= 1
π

.

We remark that it is already known that Riemann–Hilbert problems with constant
jumps can be used to construct finite-gap potentials of the Schrödinger operator
and other operators appearing in the theory of integrable systems (see [15,16]).

6. Numerical Solution

We solve Eqs. (17), (18) numerically for k1 =2 and k2 =4. Denote p=κ +3, where
−1< p<1. It is convenient to replace φ(x, k) and ψ(x, k) with the following func-
tions:

P(x, p)=
√
1− p2φ(x, p+3),

Q(x, p)=
√
1− p2ψ(x, p+3),
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Figure 1. A potential U (x) that appears as a result of dressing with: a R1 =1/π and R2 =0,
decaying for x →+∞; b R1 = 1

π × 10−3 and R2 = 1
π × 10−6; c R1 = 1

π × 10−3 and R2 = 1
π ×

10−6 at moment of time t =6 under KdV flow

which then satisfy the following integral equations:

P(x, p)+ r1(x, p)

[ˆ 1

−1

P(x,q)e−qx dq

(6+ p+q)
√
1−q2

+
 1

−1

Q(x,q)eqx dq

(p−q)
√
1−q2

]
= r1(x, p),

(32)

Q(x, p)+ r2(x, p)

[ 1

−1

P(x,q)e−qx dq

(p−q)
√
1−q2

+
ˆ 1

−1

Q(x,q)eqx dq

(6+ p+q)
√
1−q2

]
=−r2(x, p),

(33)

where r j (x, p) = √
1− p2R j (p + 3)e(−1) j2(p+3)x for j = 1,2. Discretized at Cheby-

shev nodes qk = cos (2k−1)π
2M with k = 1,2, . . . , M the integrals are evaluated via

Gauss–Chebyshev quadrature that is exact for polynomials of degree less than
2M −1. Note that each equation of the system contains a Cauchy principal value
integral denoted by

ffl
, and that integration in the vicinity the of singularity at

q = p requires a shift from the real axis.
The spatial variable x appears as a parameter in (32) and (33) and the x-

dependence of r1 and r2 becomes a major obstacle, since the condition number of
the discretized system is exponential in x and requires using multiprecision arith-
metics.
A mesh for the spatial parameter x is a Chebyshev grid with M nodes; a high-

order polynomial interpolation by means of Lagrange interpolation is used for
intermediate points. In a typical simulation an interpolating polynomial of degree
200 suffices to have an accurate approximation for |x |<10.
Figure 1 shows the numerical solutions for three cases, the last two being related

by the first KdV flow. Comparing Figure 1b with c, we see that a relatively ordered
potential becomes chaotic under the KdV flow, giving an example of integrable
turbulence, which we can interpret as a dense soliton gas. The local minima cor-
respond to solitons having amplitude close to the limiting one, in this case equal
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to 2k22 =32 (see bound on u(x) in [10]). The next step for the theory would be to
determine the correlation functions and the space-time spectrum of this turbulence,
which can then be compared to experimental data.
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