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Abstract. New estimates for eigenvalues of non-self-adjoint multi-dimensional Schrödinger
operators are obtained in terms of L p-norms of the potentials. The results cover and
improve those known previously, in particular, due to Frank (Bull Lond Math Soc 43(4):
745–750, 2011), Safronov (Proc Am Math Soc 138(6):2107–2112, 2010), Laptev and
Safronov (Commun Math Phys 292(1):29–54, 2009). We mention the estimations of the
eigenvalues situated in the strip around the real axis (in particular, the essential spectrum).
The method applied for this case involves the unitary group generated by the Laplacian.
The results are extended to the more general case of polyharmonic operators. Schrödinger
operators with slowly decaying potentials and belonging to weak Lebesgue’s classes are
also considered.
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1. Introduction

In this paper, we discuss estimates for eigenvalues of Schrödinger operators with
complex-valued potentials. Among existing results on this problem regarding non-
self-adjoint Schrödinger operators, we mention the works [1,9,11,19,24,25], and
also [6] for an overview on certain aspects of spectral analysis of non-self-adjoint
operators mainly needed for problems in quantum mechanics. In [1], it was
observed that for the one-dimensional Schrödinger operator H = −d2/dx2 + q,
where the potential q is a complex-valued function belonging to L1(R) ∩ L2(R),

every its eigenvalue λ which does not lie on the non-negative semi-axis satisfies the
following estimate

|λ|1/2 ≤ 1
2

∞∫

−∞
|q(x)|dx . (1.1)
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For the self-adjoint case, the estimate (1.1) was pointed out previously by Keller
in [16]. In [9], related estimates are found for eigenvalues of Schrödinger opera-
tors on semi-axis with complex-valued potentials. Note that, as is pointed out in
[9], the obtained estimates are in sense sharp for both cases of Dirichlet and Neu-
mann boundary conditions. In [11,24] (see also [19,25]), the problem is consid-
ered for higher dimensions case. In particular, in [11], estimates for eigenvalues of
Schrödinger operators with complex-valued potentials decaying at infinity, in a cer-
tain sense, are obtained in terms of appropriate weighted Lebesgue spaces norms
of potentials.
In this paper, we mainly deal with the evaluation of eigenvalues of multi-

dimensional Schrödinger operators. The methods which we apply allow us to con-
sider the Schrödinger operators acting in one of the Lebesgue space L p(R

n) (1<

p < ∞). We consider the formal differential operator −� + q on R
n, where �

is the n-dimensional Laplacian and q is a complex-valued measurable function.
Under some reasonable conditions, ensuring, in a suitable averaged sense, decay-
ing at infinity of the potential, there exists a closed extension H of −� + q in
the space L p(R

n) such that its essential spectrum σess(H) coincides with the semi-
axis [0,∞), and any other point of the spectrum, i.e., not belonging to σess(H), is
an isolated eigenvalue of finite (algebraic) multiplicity. We take the operator H as
the Schrödinger operator corresponding to −�+q in above sense and we will be
interested to find estimates of eigenvalues of H which lie outside of the essential
spectrum. The problem reduces to estimation of the resolvent of the unperturbed
operator H0, that is defined by −� in L p(R

n) on its domain the Sobolev space
W 2

p(R
n), bordered by some suitable operators of multiplication (cf. reasoning in

Section 2).
We begin with evaluation of perturbed eigenvalues belonging to the left half-

plane Re z < 0. Therewith, bounds of the negative eigenvalues for the self-adjoint
case, mostly important in applications, are established. For this purpose, we make
use the integral representation of the free Green function in the form

g(x − y;λ)= (4π)−n/2

∞∫

0

eλte−|x−y|2/4t t−n/2 dt, Reλ<0.

We assume that the potential q admits a factorization q =ab, where a ∈ Lr (R
n)

and b∈ Ls(R
n) for some r, s,0<r, s≤∞, and prove that under conditions 1< p<

∞, 0< r ≤∞, p≤ s≤∞ and r−1 + s−1 <2n−1, for the eigenvalues λ with Reλ<0
of the Schrödinger operator H , the estimate

|Reλ|1−n/2α
′ ≤C‖a‖r‖b‖s (1.2)

holds true with a positive constant C =C(n, r, s) depending only on n, r and s;α
′

is conjugate exponent to α,α = (1− r−1 − s−1)−1.

The eigenvalues which are situated on the right half-plane behave in particu-
lar due to the presence in this side of the essential spectrum. In connection with
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this, the evaluation of the bordered resolvent of the unperturbed operator H0 is
made by applying a slightly modified approach. It involves somewhat heat kernels
associated to the Laplacian. For it could be used the kernel (4π i t)−n/2exp(−|x −
y|2/4i t),−∞ < t < ∞, representing the operator-group U (t) = exp(−i t H0),−∞ <

t < ∞, and then making use of the formula expressing the resolvent R(λ; H0) as
the Laplace transform of U (t) (see [13]). In this way, we obtain a series of esti-
mates for perturbed eigenvalues. In particular, supposing that q = ab, where a ∈
Lr (R

n), b ∈ Ls(R
n) for r, s satisfying 0< r ≤ ∞, p ≤ s ≤ ∞, r−1 − s−1 = 1− 2p−1,

2−1 − p−1 ≤ r−1 ≤ 1− p−1 and r−1 + s−1 < 2n−1, for any complex eigenvalue λ of
the Schrödinger operator H with Imλ �=0, we have

| Imλ|α ≤ (4π)α−1�(α)‖a‖r‖b‖s, (1.3)

in which α := 1− n(r−1 + s−1)/2 (� denotes the gamma function). An immediate
consequence of this result (letting r = s=2γ +n, γ >0) is the estimate

| Imλ|γ ≤ (4π)−n/2�

(
γ

γ +n/2

)γ+n/2 ∫

Rn

|q(x)|γ+n/2 dx (1.4)

for γ > 0. The estimate (1.4) together with that corresponding to (1.2) (cf. Corol-
lary 3.3) leads to an estimate like

|λ|γ ≤C
∫

Rn

|q(x)|γ+n/2 dx, (1.5)

with an absolute constant C = C(n, γ ) depending only on n and γ . It should
be emphasized that the estimate (1.5) concerns, however, eigenvalues λ lying only
inside the left half-plane. In this context, we cite [19] for a conjecture concerning
related estimate for eigenvalues of the Schrödinger operator considered acting on
Hilbert space L2(R

n).

Estimation of eigenvalues can be made representing a priori the resolvent of H0

in terms of Fourier transform. The method leads, in particular, to the following
result. Let 1< p<∞, and let q = ab with a ∈ Lr (R

n), b∈ Ls(R
n) for 0< r, s ≤∞

satisfying 2−1− p−1≤r−1≤1− p−1, −2−1+ p−1< s−1≤ p−1, and r−1+ s−1<2n−1.
Then, for any eigenvalue λ∈C\[0,∞) of the Schrödinger operator H , there holds

|λ|α−n/2 ≤C‖a‖α
r ‖b‖α

s , (1.6)

where α := (r−1 + s−1)−1, and C being a constant of the potential (it is controlled;
see Theorem 3.13). Notice that for the particular case n=1, p=2 and r =s=2, one
has α = 2 and C = 1/2, and the estimate (1.6) reduces to (1.1). From (1.6), it can
be derived estimates for eigenvalues of Schrödinger operators with decaying poten-
tials. So, for instance, taking a(x)= (1+|x |2)−τ/2 (τ >0), under suitable restrictions
on r and τ , for an eigenvalue λ∈C\[0,∞) there holds

|λ|r−n ≤C
∫

Rn

|(1+|x |2)τ/2|q(x)|r dx . (1.7)
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In connection with (1.7), we note the related results obtained in [11,24] (see also
[7,25]).
Note that estimates of type (1.7) can be obtained by choosing other weight func-

tions, also frequently occurred in concrete situations, as, for instance, eτ |x |, eτ |x |2 ,
|x |σ eτ |x |α , etc.
Further, estimates obtained for Schrödinger operators can be successfully

extended to polyharmonic operators

Hq,m = (−�)m +q,

in which (the potential) q is a complex-valued measurable function, and m is an
arbitrary positive real number. For the eigenvalues λ∈C\[0,∞) of an operator of
this class, it can be proved that

|λ|γ ≤C
∫

Rn

|q(x)|γ+n/2m dx (1.8)

for γ > 0 if n ≥ 2m and γ ≥ 1− n/2m for n < 2m. The estimate (1.8) is in fact a
result analogous to the already mentioned (1.5) for Schrödinger operators.
Finally, it should be remarked that the methods used as the basic tools to carry

our results are available in slightly more general situations where the potentials
are considered belonging to the so-called weak Lebesgue’s spaces. In particular, by
applying the same methods, we prove that if the potential q belongs to the weak
space Lγ+n/2m,w(Rn), where γ > 0 for n > 2m and γ ≥ 1− n/2m for n < 2m, then
any eigenvalue lying outside of essential spectrum of the polyharmonic operator
Hm,q satisfies

|λ|γ ≤C sup
t>0

(tγ+n/2mλq(t))

with a constant C =C(n,m, γ, θ)(θ :=argλ,0<θ <2π).

The paper is organized as follows. Section 2 contains a preliminary material
needed for the further exposition. It is pointed out the setting of the problem and,
in particular, defined the Schrödinger operators in a fashion suitable for main pur-
poses. Section 3 is concerned with Schrödinger operators with Lebesgue power-
summable potentials. This section is divided into four subsections. In the first two
subsections, estimates are obtained for the eigenvalues located on the left half-
plane Reλ<0. In the third one, there are established evaluations for the imaginary
part of the possible eigenvalues. Thereby, the strip around the real axis (in partic-
ular, the essential spectrum) containing possible eigenvalues is determined. In the
fourth subsection, evaluations are obtained via the Fourier transform. In Section 4,
we discus the problem for the general case of polyharmonic operators. In Section
5, we treat the case of potentials belonging to weak Lebesgue’s type spaces.
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2. Preliminaries: Setting of the Problem

Consider, in the space L p(R
n) (1< p<∞), the Schrödinger operator

−�+q(x) (2.1)

with a potential q being in general a complex-valued measurable function on R
n .

We assume that the potential q admits a factorization q = ab with a,b belong-
ing to some Lebesgue type spaces (appropriate spaces will be indicated in relevant
places). We denote by H0 the operator defined by −� in L p(R

n) on its domain the
Sobolev space W 2

p(R
n), and let A, B denote, respectively, the operators of multipli-

cation by a,b defined in L p(R
n) with their maximal domains. Thus, the differential

expression (2.1) defines in the space L p(R
n) an operator expressed as the pertur-

bation of H0 by AB. In order to determine the operator, being a closed extension
of H0 + AB, suitable for our purposes, we need to require certain assumptions on
the potential. For we let a and b be functions of Stummel classes [28] (see also
[14,27]), namely

M
ν,p′ (a)<∞, 0<ν < p′, (2.2)

Mμ,p(b)<∞, 0<μ< p, (2.3)

(p′ is the conjugate exponent to p : p−1 + p′−1 =1), where it is denoted

Mν,p(u)= sup
x

∫

|x−y|<1

|u(y)|p |x − y|ν−n dy

for functions u ∈ L p,loc(R
n). If also the potential q decays at infinity, for instance,

like ∫

|x−y|<1

|q(y)|dy→0 as |x |→∞, (2.4)

then the operator H0 + AB (=−�+ q) admits a closed extension H having the
same essential spectrum as unperturbed operator H0, i.e.,

σess(H)=σess(H0) (=σ (H0)=[0,∞)).

Note that the conditions (2.2) and (2.3) are used to derived boundedness and
also, together with (2.4), compactness domination properties of the perturbation
(reasoning are due to Rejto [23] and Schechter [26], cf. also [27]; Theorem 5.1, p.
116). To be more precise, due to conditions (2.2) and (2.3), the bordered resol-
vent BR(z; H0)A (R(z; H0) := (H0 − z I )−1 denotes the resolvent of H0) for some
(or, equivalently, any) regular point z of H0 represents a densely defined operator
having a (unique) bounded extension, further on we denote it by Q(z). If, in addi-
tion, (2.4), Q(z) is a compact operator and, moreover, it is small with respect to
the operator norm for sufficiently large |z|.
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From now on, we let H denote the Schrödinger operator realized in this way in
L p(R

n) by the differential expression −�+q(x). Notice that constructions related
to that mentioned above are widely known in the perturbation theory. In Hilbert
case space p = 2, H , where the potential q is a real function, represents a self-
adjoint operator presenting mainly interest for spectral and scattering problems.
It turns out that there is a constraint relation between the discrete part of the

spectrum of H and that of Q(z) (recall Q(z) is the bounded extension of the bor-
dered resolvent BR(z; H0)A), namely, a regular point λ of H0 is an eigenvalue
for the extension H , the Schrödinger operator, if and only if −1 is an eigenvalue
of Q(λ). This fact, which will play a fundamental role in our arguments, can be
deduced essentially, by corresponding accommodation to the situation of Banach
space case, using similar arguments as in the proof of Lemma 1 [17]. Consequently,
for an eigenvalue λ of the Schrödinger operator H , λ being a regular point of the
unperturbed operator H0, the operator norm of Q(λ) must be no less than 1, i.e.,
‖Q(λ)‖≥ 1. Namely from this operator norm evaluation, we will derive estimates
for eigenvalues of the Schrödinger operator H .
Throughout the paper, there will be always assumed (tacitly) that the conditions

(2.2), (2.3) and (2.4) are satisfied.

3. Schrödinger Operators

1. Let H denote a Schrödinger operator defined in a space L p(R
n) (1< p< ∞),

as was mentioned before, by −�+ q(x) with a potential q admitting a factoriza-
tion q = ab, where a ∈ Lr (R

n), b ∈ Ls(R
n) (0< r, s ≤ ∞). For the general case of

an arbitrary dimension, the fundamental solution �(x) of the Laplacian −�, and
therefore the kernel of the resolvent R(λ; H0) of H0(=−�), is expressed by Bessel’s
functions (see, for instance [5]). Of course, the asymptotic formula

�(x)= c|x |−(n−1)/2e−μ|x | (1+o(1)), |x |→∞,

c>0 and Reμ>0, will be useful for our purposes, however, we have not use this
fact. Instead of that, we will use the following integral representation of the free
Green function

g(x − y;λ)= (4π)−n/2

∞∫

0

eλte−|x−y|2/4t t−n/2 dt, Reλ<0. (3.1)

In other words we use the fact that the resolvent R(λ; H0) can be represented
as a convolution integral operator with the kernel g(x;λ), that will make useful in
evaluation of the bordered resolvent.
There holds the following result.
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THEOREM 3.1. Let 1< p< ∞ and let q = ab, where a ∈ Lr (R
n),b ∈ Ls(R

n) with
0<r ≤∞, p≤ s≤∞ and r−1+ s−1<2n−1. Then, for any eigenvalue λ with Reλ<0
of the Schrödinger operator H , considered acting in the space L p(R

n), there holds

|Reλ|1−n/2α
′ ≤C(n, r, s)‖a‖r‖b‖s, (3.2)

where C(n, r, s)= (4π)−n/2α
′
α−n/2α�(1−n/2α

′
), α = (1− r−1 − s−1)−1.

Proof. We have to show the boundedness of the operator Q(λ) = BR(λ; H0)A
and evaluate its norm. (A, B denote the operators of multiplications by a,b, respec-
tively). Note that Q(λ) is an integral operator with kernel

g(x − y;λ)a(y)b(x).

To evaluate this integral operator we first observe that, under supposed con-
ditions, the operator of multiplication A is bounded viewed as an operator from
L p(R

n) to Lβ(Rn) with some β ≥1. In fact, since a ∈ Lr (R
n), for any u ∈ L p(R

n),

by Hölder’s inequality, we have

‖au‖β ≤‖a‖r‖u‖p, β−1 = r−1 + p−1. (3.3)

Similarly, one can choose a γ with p≤γ ≤∞, for which

‖bv‖p ≤‖b‖s‖v‖γ , γ −1 + s−1 = p−1, (3.4)

for v ∈ Lγ (Rn), that means that B represents a bounded operator from Lγ (Rn) to
L p(R

n).

Now, we take an α ≥1 such that

α−1 +β−1 =γ −1 +1 (3.5)

and find conditions under which the kernel function g(x;λ) belongs to the space
Lα(Rn). By Minkowski’s inequality, we have

‖g(·;λ)‖α =
⎛
⎝

∫

Rn

∣∣∣∣∣∣(4π)−n/2

∞∫

0

eλte−|x |2/4t t−n/2 dt

∣∣∣∣∣∣
α

dx

⎞
⎠

1/α

≤ (4π)−n/2

∞∫

0

⎛
⎝

∫

Rn

∣∣∣eλte−|x |2/4t t−n/2
∣∣∣α dx

⎞
⎠

1/α

dt

= (4π)−n/2

∞∫

0

⎛
⎝

∫

Rn

e−α|x |2/4t dx

⎞
⎠

1/α

e(Reλ)t t−n/2 dt,

and since∫

Rn

e−α|x |2/4t dx = (4π t/α)n/2,
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it follows

‖g(·;λ)‖α = (4π)−n/2

∞∫

0

(4π t/α)n/2αt−n/2e(Reλ)t dt

= (4π)−n/2α
′
α−n/2α

∞∫

0

t−n/2α
′
e(Reλ)t dt.

If α is chosen so that

− n

2α′ +1>0, i.e., α
′
>

n

2
, (3.6)

it can be applied the formula (see [12]; 3.381.4., p.331)

∞∫

0

xν−1e−μx dx =μ−ν�(ν), Re ν >0, Reμ>0 (3.7)

and we obtain

‖g(·;λ)‖α ≤ (4π)−n/2α
′
α−n/2α|Reλ|−1+n/2α

′
�(1−n/2α

′
).

By Young’s Inequality (see for instance, [4], Theorem 1.2.2, or also [10]; Propo-
sition 8.9a) the operator R(λ; H0), representing an integral operator of convolu-
tion type (with the kernel g(x− y;λ)), is bounded as an operator from Lβ(Rn) into
Lγ (Rn) provided (4.3), and moreover,

‖R(λ; H0)v‖γ ≤‖g(·;λ)‖α ‖v‖β, v ∈ Lβ(Rn). (3.8)

Note that (3.5) indeed follows immediately from the relations between p, q, r
and s given by (3.3) and (3.4):

1−β−1 +γ −1 =1− r−1 − p−1 + p−1 − s−1 =1− r−1 − s−1 =α−1.

The evaluations (3.3), (3.4) and (3.8) made above imply that

‖Q(λ)u‖p =‖BR(λ; H0)Au‖p ≤‖a‖r ‖b‖s ‖g‖α‖u‖p

for each u∈ L p(R
3). Thus, under supposed conditions, we obtain the following esti-

mation

‖Q(λ)‖≤ (4π)−n/2α
′
α−n/2α|Reλ|−1+n/2α

′
�(1−n/2α

′
)‖a‖r ‖b‖s,

and, therefore, for each λ∈C with Reλ<0 such that ‖Q(λ)‖≥1, in particular, for
an eigenvalue of the Schrödinger operator H , the desired estimation (3.2) holds
true, where, as was seen, α = (1− r−1 − s−1)−1, and, due to (3.6), with the restric-
tion r−1 + s−1 <2n−1.
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From the obtained result, it can be derived many particular estimates useful in
applications. We begin with the situation when a,b∈ Lr (R

n) with r >n if 1< p≤n
and p≤ r ≤∞ if p>n. In (3.2), we take s= r, then r−1 + s−1 =2r−1(<2n−1) and
α = r/(r −2). In view of Theorem 3.1, we have the following result.

COROLLARY 3.2. Suppose q = ab, where a ∈ Lr (R
n) with r > n if 1< p ≤ n and

p≤r ≤∞ if p>n. Then every eigenvalue λ with Reλ<0 of the Schrödinger operator
H , considered acting in L p(R

n), satisfies

|Reλ|r−n ≤C(n, r)‖a‖rr‖b‖rr , (3.9)

where C(n, r)= (4π)−n(1−2r−1)n(r−2)/2�(1−nr−1)r .

The following estimate is especially worthy to be mentioned. For related results
see [20] (cf. also the estimate conjectured, but for the case of Hilbert space L2(R

n),
by Laptev and Safronov [19], and the discussion undertaken in this respect in [9];
see Remark 1.6 [9]).

COROLLARY 3.3. Let γ >0 if 1< p≤n and 2γ ≥ p−n if p>n. Suppose

q ∈ Lγ+n/2(R
n).

Then every eigenvalue λ with Reλ<0 of the Schrödinger operator H , considered act-
ing in L p(R

n), satisfies

|Reλ|γ ≤C(n, γ )

∫

Rn

|q(x)|γ+n/2 dx, (3.10)

where

C(n, γ )= 1
(4π)n/2

(
γ +n/2−1

γ +n/2

)n(γ+n/2−1)/2

�

(
γ

γ +n/2

)γ+n/2

.

Proof. It suffices to let r = 2γ + n in (3.9) and take a(x) = |q(x)|1/2, b(x) =
(sgnq(x))|q(x)|1/2, where sgn q(x) = q(x)/|q(x)| if q(x) �= 0 and sgn q(x) = 0 if
q(x)=0.

Frank [11] also obtains a result similar to that already mentioned by Corollary
3.3, but for the case of the Hilbert space L2(R

3) and with restriction 0< r ≤ 3/2.
The proofs in [11] are based on a uniform Sobolev inequality due to Kenig et al.
[18].
Another type of estimates can be obtained directly from (3.9) by involving decay-

ing potentials. So, for instance, if we take a(x) = (1 + |x |2)−τ/2 and b(x) = (1 +
|x |2)τ/2q(x) with τr >n, then a∈ Lr (R

n) and,

‖a‖rr =πn/2� ((τr −n)/2) /� ((τr)/2) .
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In view of Corollary 3.2, the following result holds true.

COROLLARY 3.4. Suppose

(1+|x |2)τ/2q ∈ Lr (R
n),

where τr >n, and r >n if 1< p≤n and p≤r ≤∞ if p>n. Then every eigenvalue λ

with Reλ<0 of the Schrödinger operator H , considered acting in L p(R
n), satisfies

|Reλ|r−n ≤C(n, r, τ )

∫

Rn

|(1+|x |2)τ/2q(x)|r dx, (3.11)

where

C1(n, r, τ )= (16π)−n/2(1−2r−1)n(r−2)/2�(1−nr−1)r�((rτ −n)/2)�(rτ/2).

It stands to reason that estimates of type (3.11) can be given choosing other
(weight) functions, used frequently for diverse proposes, as, for instance, eτ |x |, |x |σ
eτ |x |, eτ |x |2 , etc. We cite [11] (see also [24] and [25] for some related results involv-
ing weight functions as in Corollary 3.4).

Remark 3.5. The estimate (3.2) can be improved up to a factor (AαAβ Aγ
′ )n if in

proving of Theorem 3.1 it would be used the sharp form of Young’s convolution
inequality due to Beckner [3], where Aα, Aβ and A

γ
′ are defined in accordance

with the notation Ap = (p1/p/p
′1/p′

)1/2. If it turns out that AαAβ Aγ
′ < 1 as, for

instance, in case 1< α,β, γ
′
< 2, one has indeed an improvement of (3.2). So, it

happens in the case of a Schrödinger operator considered in the following exam-
ple.

EXAMPLE 3.6. Let p=2, and suppose q ∈ Ln(R
n). Put r = s=2n, and let a(x)=

|q(x)|1/2, b(x) = q(x)/|q(x)|1/2. Then, by (3.9), for eigenvalues λ with Reλ < 0 of
H there holds

|Reλ|≤C‖q‖2n (3.12)

with a constant C depending only on n, namely, C =4−1(1−n−1)n−1. However, in
this case, α=n/(n+1) and β =γ

′ =2n/(n+1), hence the estimate (3.12) also holds
true with the constant C =n(1−n)n−1/(n+1)n+1 provided that

(AαAβ Aγ
′ )n = 2√

n

(
n

n+1

)(n+1)/2

,

as is easily checked. Obviously, AαAβ Aγ
′ <1.
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2. In the previous argument somewhat it was involved the heat kernel associated
to the Laplacian on R

n . In fact, it could be equivalently used the kernel

h(x, y; t)= (4π t)−n/2e−|x−y|2/4t , t >0, (3.13)

representing the (one-parameter) semi-group e−t H0(0≤ t <∞). More exactly, e−t H0

is represented by the integral operator with the kernel (3.13), i.e.,

(e−t H0u)(x)= (4π t)−n/2
∫

Rn

e−|x−y|2/4t u(y)dy, t >0. (3.14)

The arguments similar to those used in proving Theorem 3.1 can be applied to
obtain (under suitable conditions) the estimate

‖Be−t H0 Au‖p ≤ (4π t)−n/2α
′
α−n/2α‖a‖r‖b‖s‖u‖p, u ∈ L p(R

n).

Then, from the formula expressing the resolvent R(λ; H0) as the Laplace trans-
form of the semi-group e−t H0 (see, for instance [13]), i.e.,

R(λ; H0)=
∞∫

0

eλte−t H0 dt, Reλ<0, (3.15)

we can further estimate

‖BR(λ; H0)A‖≤
∞∫

0

e(Reλ)t‖Be−t H0 A‖dt

≤ (4π)−n/2α
′
α−n/2α‖a‖r ‖a‖s

∞∫

0

t−n/2α
′
e(Reλ)t dt

≤ (4π)−n/2α
′
α−n/2α|Reλ|−1+n/2α

′
�(1−n/2α

′
)‖a‖r‖b‖s,

i.e.,

‖BR(λ; H0)A‖≤ (4π)−n/2α
′
α−n/2α|Reλ|−1+n/2α

′
�(1−n/2α

′
)‖a‖r‖b‖s,

and, thus, we come to the same estimate as in (3.2).
3. The next result concerns evaluation of the imaginary part for a complex

eigenvalue λ of H.

THEOREM 3.7. Let 1< p < ∞, and let q = ab, where a ∈ Lr (R
n),b ∈ Ls(R

n) for
r, s satisfying 0<r ≤∞, p≤ s≤∞, r−1 − s−1 =1−2p−1, 2−1 − p−1 ≤ r−1 ≤1−
p−1 and r−1 + s−1 <2n−1. Then, for any complex eigenvalue λ with Imλ �=0 of the
Schrödinger operator H , considered acting in the space L p(R

n), there holds

| Imλ|α ≤ (4π)α−1�(α)‖a‖r‖b‖s, (3.16)

where α =1−n(r−1 + s−1)/2.
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Proof. The proof will depend upon a modification of the argument used in prov-
ing the previous result. Instead of (3.15), it will be used the formula expressing the
resolvent R(λ; H0) as the Laplace transform of the operator-group e−i t H0 (−∞<

t <∞), namely

R(λ; H0)= i

∞∫

0

eiλte−i t H0 dt (3.17)

if, for instance, Imλ> 0. First, we estimate the norm ‖Be−i t H0 A‖ and then using
the formula (3.17) we will derive estimation for Imλ (we preserve notations made
above).
As is known (cf., for instance, [15,22], Ch.IX), for a fixed real t, e−i t H0 represents

an integral operator with the heat kernel (cf. (3.13))

h(x, y; i t)= (4π i t)−n/2e−|x−y|2/4i t .

Writing

(e−i t H0 Au)(x)= (4π i t)−n/2e−|x |2/4i t
∫

Rn

e−i〈x,y〉/2te−|y|2/4i t a(y)u(y)dy, (3.18)

we argue as follows.
We already know that

‖Au‖β ≤‖a‖r‖u‖p, β−1 = r−1 + p−1.

It follows that for any u ∈ L p(R
n) the function v defined by v(y)= e−|y|2/4i t a(y)

u(y) belongs to Lβ(Rn), and

‖v‖β ≤‖a‖r‖u‖p. (3.19)

Further, the integral on the right-hand side in (3.18) represents the function
(2π)n/2v̂(x/2t), where v̂ denotes the Fourier transform of v. According to the
Hausdorff–Young theorem (see, for instance, [4], Theorem 1.2.1), the Fourier trans-
form represents a bounded operator from Lβ(Rn) to L

β
′ (Rn) with 1≤β ≤ 2, and

its norm is bounded by (2π)−n/2+n/β
′
, i.e.,

‖v̂‖
β

′ ≤ (2π)−n/2+n/β
′ ‖v‖β. (3.20)

It follows that v̂ ∈ L
β

′ (Rn) and, since

(e−i t H0 Au)(x)= (4π i t)−n/2e−|x |2/4i t (2π)n/2v̂(x/2t),
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the function e−i t H0 Au belongs to L
β

′ (Rn). Moreover, in view of (3.19) and (3.20),

‖e−i t H0 Au‖
β

′ = (4π t)−n/2(2π)n/2

⎛
⎝

∫

Rn

|v̂(x/2t)|β ′
dx

⎞
⎠

1/β
′

= (4π t)−n/2(2π)n/2(2t)n/β
′ ‖v̂‖

β
′

≤ (4π t)−n/2(2π)n/2(2t)n/β
′
(2π)−n/2+n/β

′ ‖v‖β

≤ (4π t)−n/2+n/β
′ ‖a‖r ‖u‖p,

so that

‖e−i t H0 Au‖
β

′ ≤ (4π t)−n/2+n/β
′ ‖a‖r‖u‖p, u ∈ L p(R

n).

On the other hand, since r−1 − s−1 = 1− 2p−1, and since β−1 = r−1 + p−1, one
has s−1 +β

′−1 = p−1 that guarantees the boundedness of the operator of multipli-
cation B regarded as an operator acting from L

β
′ (Rn) to L p(R

n). Moreover,

‖Bv‖p ≤‖b‖s‖v‖
β

′ , v ∈ L p′ (Rn),

It is seen that for any u∈ L p(R
n) the element Be−i t H0 Au belongs to L p(R

n), and

‖Be−i t H0 Au‖p ≤ (4π t)−n/2+n/β
′ ‖a‖r‖b‖s‖u‖p, u ∈ L p(R

n).

Now, we apply (3.17) and for Imλ>0, we find

‖BR(λ; H0)Au‖p ≤
∞∫

0

e−(Imλ)t‖Be−i t H0 Au‖p dt

≤ (4π)−n/2+n/β
′ ‖a‖r‖b‖s‖u‖p

∞∫

0

t−n/2+n/β
′
e−(Imλ)t dt.

Next, we observe 1− n/2+ n/β
′ =α that was assumed to be positive, and thus

we can apply the formula (3.7), due to which, we have

∞∫

0

t−n/2+n/β
′
e−(Imλ)t dt = (Imλ)−α�(α).

Therefore,

‖BR(λ; H0)A‖≤ (4π)α−1(Imλ)−α�(α)‖a‖r‖b‖s .
For an eigenvalue λ of H , it should be

1≤ (4π)α−1(Imλ)−α�(α)‖a‖r ‖b‖s,
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that is (3.16).
The estimate for the case Imλ<0 is treated similarly coming from the formula

R(λ; H0)=−i

0∫

∞
eiλte−i H0t dt, Imλ<0.

Notice that if r = s in Theorem 3.7, it must be only p= 2 and r > n. For this
case, we have the following result.

COROLLARY 3.8. Let r > n, and suppose q ∈ Lr/2(R
n). Then any complex eigen-

value λ with Imλ �= 0 of the Schrödinger operator H defined in the space L2(R
n)

satisfies

| Imλ|1−n/r ≤ (4π)−n/r�(1−n/r)‖q‖r/2. (3.21)

For the particular case, when r =2γ +n, we have the following result (an anal-
ogous result to that given by Corollary 3.2).

COROLLARY 3.9. Let γ >0 and suppose that q ∈ Lγ+n/2(R
n). Then for any com-

plex eigenvalue λ with Imλ �=0 of the Schrödinger operator defined in L2(R
n) there

holds

| Imλ|γ ≤ (4π)−n/2�

(
2γ

2γ +n

)γ+n/2 ∫

Rn

|q(x)|γ+n/2 dx . (3.22)

Remark 3.10. The estimate given by Theorem 3.7 can be improved upon a con-
stant less than 1. The point is that in proving Theorem 3.7 it can be applied the
sharp form of the Hausdorff–Young theorem which is due to K. I. Babenko [2]
(see also W. Beckner [3] for the general case relevant for our purposes). Accord-
ing to Babenko’s result estimation (3.20), and hence (3.16) as well, can be refined
upon a constant less than 1, namely

‖v̂‖
β

′ ≤ (2π)−n/2+n/β
′
A‖v‖β,

where A= (β1/β/β
′1/β ′

)n/2. It is always A≤1 provided of 1≤β ≤2, and it is strictly
less than 1 if β is chosen such that 1<β < 2. The same concerns estimate (3.21)
and (3.22).

4. The norm evaluation for the operators BR(λ; H0)A for λ ∈ C\[0,∞) can be
carried out representing the resolvent of H0 in terms of the Fourier transform.
Namely, it can use the following equality

BR(λ; H0)A= BF−1 ̂R(λ; H0)FA, (3.23)
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where it is denoted

̂R(λ; H0)= FR(λ; H0)F
−1

(F, F−1 denote the Fourier operators). Clearly, ̂R(λ; H0) represents the multiplica-
tion operator by (|ξ |2 −λ)−1, i.e.,

̂R(λ; H0)û(ξ)= (|ξ |2 −λ)−1û(ξ), ξ ∈R
n .

On L2(R
n), the mentioned relations are obviously true. However, we will use them

for the spaces L p(R
n) with p �=2, as well, preserving the same notations as in the

Hilbert space case p=2.
As before, by assuming that a∈ Lr (R

n) and b∈ Ls(R
n) (0<r, s≤∞), we choose

β >0 and γ >0 such that

‖Au‖β ≤‖a‖r ‖u‖p, β−1 = r−1 + p−1, (3.24)

‖Bv‖p ≤‖b‖s ‖v‖γ , p−1 = s−1 +γ −1. (3.25)

According to the Hausdorff–Young theorem, if 1≤β ≤2, the Fourier transform
F represents a bounded operator from Lβ(Rn) to L

β
′ (Rn) the norm of which is

bounded by (2π)−n/2+n/β
′
, i.e.,

‖F f ‖
β

′ ≤ (2π)−n/2+n/β
′ ‖ f ‖β. (3.26)

The same concerns the inverse Fourier transform F−1 considered as an operator
acting from L

γ
′ (Rn) to Lγ (Rn). If 1≤ γ

′ ≤ 2, that is equivalent to 2≤ γ ≤∞, we
have

‖F−1g‖γ ≤ (2π)−n/2+n/γ ‖g‖
γ

′ . (3.27)

Now, we take α,0<α ≤∞, such that

γ
′−1 =α−1 +β

′−1, (3.28)

equivalently, α−1 = r−1 + s−1, and evaluate the Lα-norm of the function h(·;λ)

defined by

h(ξ ;λ)= (|ξ |2 −λ)−1, ξ ∈R
n .

For α �=∞, we have

‖h(·;λ)‖α
α =

∫

Rn

||ξ |2 −λ|−α dξ =
∞∫

0

∫

Sn−1

ρn−1|ρ2 −λ|−α dρ dω?

=mes(Sn−1)

∞∫

0

ρn−1|ρ2 −λ|−α dρ,
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where mes(Sn−1)=2πn/2/�(n/2) is the surface measure of the unit sphere Sn−1 in
R
n . Therefore,

‖h(·;λ)‖α
α =2πn/2/�(n/2)

∞∫

0

ρn−1|ρ2 −λ|−α dρ. (3.29)

If, we are particularly interesting in estimation of negative eigenvalues, we let
that Reλ < 0 and evaluate the integral in (3.29) as follows. First, we observe
that

|ρ2 −λ|−1 ≤ (ρ2 −Reλ)−1,

and then by setting ρ2 = t , we obtain

‖h(·;λ)‖α
α ≤ πn/2|Reλ|−α

�(n/2)

∞∫

0

tn/2−1

(|Reλ|−1t +1)α
dt.

By supposing α >n/2, the formula ([12], 3.194.3.)

∞∫

0

xμ−1

(1+βx)ν
dx =β−μB(μ, ν −μ), |argβ|<π, Re ν >Reμ>0

(B(x, y) denotes the beta function), can be applied. We get

‖h(·;λ)‖α
α ≤πn/2(�(n/2))−1|Reλ|n/2−αB(n/2, α −n/2),

or, in view of the functional relation between beta and gamma functions,

‖h(·;λ)‖α
α ≤πn/2|Reλ|n/2−α �(α −n/2)/�(α). (3.30)

Thus, for α > n/2, the function h(·;λ) belongs to the space Lα(Rn) and, since
(3.28), it follows that the operator of multiplication ̂R(λ; H0) is bounded as an
operator acting from L

β
′ (Rn) to L

γ
′ (Rn), and, due to of (3.30), there holds

‖ ̂R(λ; H0) f ‖γ
′ ≤πn/2α|Reλ|n/2α−1 (�(α −n/2)/�(α))1/α‖ f ‖

β
′ . (3.31)

In this way, we obtain (cf. (3.24)–(3.27), (3.31))

‖BR(λ; H0)A‖≤ (2π)−n/απn/2α|Reλ|n/2α−1 (�(α −n/2)/�(α))1/α‖a‖r‖b‖s .
Therefore, for an eigenvalue λ of H , it should by fulfilled

1≤ (2π)−n/απn/2α|Reλ|n/2α−1(�(α −n/2)/�(α))1/α‖a‖r‖b‖s,
or, equivalently,

|Reλ|1−n/2α ≤ (4π)−n/2α(�(α −n/2)/�(α))1/α‖a‖r‖b‖s . (3.32)
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In the extremal case α =∞, that is only happen if r = s =∞ (recall that α−1 =
r−1 + s−1), there holds

‖h(·;λ)‖∞ = sup
ξ∈Rn

||ξ |2 −λ|−1 ≤ sup
ρ>0

(ρ2 −Reλ)−1 =|Reλ|−1,

i.e.,

‖h(·;λ)‖∞ ≤|Reλ|−1.

In accordance with this evaluation, one follows

|Reλ|≤‖a‖∞‖b‖∞, (3.33)

a natural estimate for eigenvalues occurred outside of the continuous spectrum of
H0 by bounded perturbations.
Note that, the restriction 1≤ β ≤ 2 is equivalent to 2−1 − p−1 ≤ r−1 ≤ 1− p−1,

while 1≤γ
′ ≤2 to 2−1 + p−1 ≤ s−1 ≤ p−1, and α >n/2 to r−1 + s−1 <2n−1.

We have proved the following result.

THEOREM 3.11. Let 1< p<∞, and let q =ab, where a∈ Lr (R
n), b∈ Ls(R

n) for
r, s satisfying 0< r ≤ ∞, 0< s ≤ ∞, 2−1 − p−1 ≤ r−1 ≤ 1− p−1, −2−1 + p−1 ≤
s−1 ≤ p−1, and r−1 + s−1 < 2n−1. Then, for any eigenvalue λ with Reλ < 0 of the
Schrödinger operator H, considered acting in the space L p(R

n), there holds

|Reλ|α−n/2 ≤C(n, α)‖a‖α
r ‖b‖α

s , (3.34)

where C(n, α)= (4π)−n/2�(α −n/2)/�(α), α = (r−1 + s−1)−1.

For r = s=∞ there holds (3.33).

For the particular case n = 1, p = 2 and r = s = 2, one has α = 1 and C = 1/2,
hence, in view of (3.34), the following estimate

|Reλ|1/2 ≤ 1
2
‖V ‖1

⎛
⎝= 1

2

∞∫

−∞
|V (x)|dx

⎞
⎠ (3.35)

holds true for any eigenvalue λ of H with Reλ<0.
The obtained evaluation (3.35) corresponds to the well-known result of L. Spruch

(mentioned in [16]) concerning negative eigenvalues of the one-dimensional self-
adjoint Schrödinger operator considered in L2(R). For other related results, see
[1,7–9,19,24].

Theorem 3.11 implies more general result (cf. also Corollary 3.3).
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COROLLARY 3.12. Let γ > 0 for n≥ 2 and γ ≥ 1/2 for n= 1. If q ∈ Lγ+n/2(R
n),

then every eigenvalue λ with Reλ < 0 of the Schrödinger operator H defined in
L2(R

n) satisfies

|Reλ|γ ≤ (4π)−n/2 �(γ )

�(γ +n/2)

∫

Rn

|q(x)|γ+n/2 dx . (3.36)

A rigorous evaluation of the integral on the right-hand side of (3.29) leads
to more exact estimates for the perturbed eigenvalues. To this end, we let λ =
|λ|eiθ (0<θ <2π) and put ρ2 =|λ|t. Then

∞∫

0

ρn−1

|ρ2 −λ|α dρ = 1
2
|λ|n/2−α

∞∫

0

tn/2−1

(t2 −2t cos θ +1)α/2
dt.

If n/2<α, it can be applied the formula ([12]; 3.252.10.)
∞∫

0

xμ−1

(x2 +2x cos t +1)ν
dx = (2 sin t)ν−1/2�(ν +1/2)B(μ,2ν −μ)P1/2−ν

μ−ν−1/2(cos t)

(−π < t <π, 0<Reμ<Re 2ν),

where Pν
μ(z)(−1≤ z≤1) denote for the Gegenbauer polynomials ([12]; 8.7–8.8). As

a result we have

‖h(·;λ)‖α =πn/2α|λ|n/2α−1 I (n, α, θ), (3.37)

where

I (n, α, θ)= (2 sin θ)1/2−1/2α
(

�(α/2+1/2)�(α −n/2)
�(α)

P1/2−α/2
n/2−α/2−1/2(− cos θ)

)1/α

,

and hence

‖BR(λ; H0)Au‖p ≤ (4π)−n/2α|λ|n/2α−1 I (n, α, θ)‖a‖r‖b‖s‖u‖p

(note that (−n/2+n/β
′
)+ (−n/2+n/γ )+n/2α =−n/2α).

Therefore, we obtain the following result.

THEOREM 3.13. Under the same assumptions as in Theorem 3.11 for any eigen-
value λ ∈ C\[0,∞) of the Schrödinger operator H , considering acting in the space
L p(R

n), there holds the estimation

|λ|α−n/2 ≤C(n, α, θ)‖a‖α
r ‖b‖α

s , (3.38)

where C(n, α, θ)= (4π)−n/2 I (n, α, θ)α and I (n, α, θ) as in (3.37).

Remark 3.14. The estimate (3.34) and, of course, (3.38) as well can be improved
upon the constant Aβ Aγ

′ (= (β1/βγ
′1/γ ′

/β
′1/β ′

γ 1/γ )n/2) due to the sharp form of
the Hausdorff–Young theorem [2] (cf. Remark 3.10).



ESTIMATES FOR EIGENVALUES OF SCHRÖDINGER OPERATORS 215

4. Polyharmonic Operators

We will extend the estimates established previously to the operators of the form

H = (−�)m +q

in which (the potential) q is a complex-valued function, and m is an arbitrary pos-
itive real number. Unperturbed operator

H0 = (−�)m

can be comprehend, as

(H0u)(x)=
∫

Rn

|ξ |2mû(ξ)e−i〈x,ξ〉 dξ

defined, for instance, in L2(R
n) on its maximal domain consisting of all functions

u ∈ L2(R
n) such that H0u ∈ L2(R

n) (or, what is the same, v̂ determined by v̂(ξ)=
|ξ |2mû(ξ) belongs to L2(R

n)); û denotes the Fourier transform of u. H0 can be
treated upon a unitary equivalence (by the Fourier transform) as the operator of
multiplication by |ξ |2m .
In the space L p(R

n) (1< p < ∞) the operator H can be viewed as an elliptic
operator of order 2m defined on its domain the Sobolev space W 2m

p (Rn). As in
preceding sections, we assume that the potential q admits a factorization q = ab
with a,b for which conditions (2.2), (2.3), but with 0<ν < p

′
κ and 0<μ< p(m−κ)

for some 0 < κ < m, and (2.4) are satisfied. Under these conditions, the opera-
tor (−�)m + q admits a closed extension H , let us denote it by Hm,q , to which
the approach for the evaluation of perturbed eigenvalues proposed in Section 2 is
applied.
Thus, to obtain estimation for the norm of BR(λ; H0)A (the operators A, B are

defined as in previous subsections), we can use the relation (3.23), where

̂R(λ; H0)û(ξ)= (|ξ |2m −λ)−1û(ξ), ξ ∈R
n .

The arguments used in proving Theorems 3.11 and 3.13 can be applied, and as
is seen we have only to evaluate, for appropriate α >0, the Lα-norm of the func-
tion hm(·;λ) defined by

hm(ξ ;λ)= (|ξ |2m −λ)−1, ξ ∈R
n .

For any α,0<α <∞, we have

‖hm(·;λ)‖α
α =

∫

Rn

dξ

||ξ |2m −λ|α = 2πn/2

�(n/2)

∞∫

0

ρn−1

|ρ2m −λ|α dρ.
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Writing λ=|λ|eiθ (0<θ <2π) and making the substitution ρ2m =|λ|t, we obtain

∞∫

0

ρn−1

|ρ2m −λ|α dρ = 1
2m

|λ|n/2m−α

∞∫

0

tn/2m−1

(t2 −2t cos θ +1)α/2
dt.

Assuming n/2m<α, we apply again the formula ([12]; 3.252.10.), and obtain
Hence,

‖hm(·;λ)‖α
α = 2πn/2

�(n/2)
· 1
2m

|λ|n/2m−α Im(n, α, θ), (4.1)

where

Im(n, α, θ)= (2 sin θ)α/2−1/2�(α/2+1/2)B(n/2m, α −n/2m)P1/2−α/2
n/2m−α/2−1/2(− cos θ).

Collecting all evaluations, we obtain the following result.

THEOREM 4.1. Let 1< p<∞,m>0, and let q=ab, where a∈ Lr (R
n), b∈ Ls(R

n)

for r, s satisfying 0< r ≤∞, 0< s≤∞, 2−1 − p−1 ≤ r−1 ≤1− p−1, −2−1 + p−1 ≤
s−1≤ p−1, and r−1+ s−1<2m/n. Then, for any eigenvalue λ∈C\[0,∞) of the oper-
ator Hm,q , considered acting in L p(R

n), there holds

|λ|α−n/2m ≤C(n,m, α, θ)‖a‖α
r ‖b‖α

s , (4.2)

where C(n,m, α, θ)= (4π)−n/2(m�(n/2))−1 Im(n, α, θ), Im(n, α, θ) is determined as
in (4.1), and α = (r−1 + s−1)−1.

As a consequence of Theorem 4.1, we have a result analogous to that given by
Corollary 3.12.

COROLLARY 4.2. Let γ > 0 for n ≥ 2m and γ ≥ 1 − n/2m for n < 2m. If q ∈
Lγ+n/2m(Rn), then every eigenvalue λ ∈ C\[0,∞) of the operator Hm,q defined in
L2(R

n) satisfies

|λ|γ ≤C(n,m, α, θ)

∫

Rn

|q(x)|γ+n/2m dx, (4.3)

where C(n,m, α, θ) is as in (4.2).

Remark 4.3. Similarly, as for estimates (3.34) and (3.38), the estimate (4.2) and
hence (4.3) can be improved upon the constant Aβ Aγ

′ (see Remark 3.14).
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5. Schrödinger Operators with Potentials of Weak Lebesgue’s Classes

The methods used above for the evaluation of perturbed eigenvalues are avail-
able under slightly weakened conditions involving potentials belonging to weak
Lebesgue’s spaces. For we consider a Schrödinger operator H generated by −�+
q(x), written as a product q = ab, however, with a ∈ Lr,w(Rn) and b ∈ Ls,w(Rn)

(we will use Lr,w to denote the so-called weak Lr -spaces). Recall that the weak
Lr,w(Rn) space consists of all measurable almost everywhere finite complex-valued
functions on R

n such that

‖ f ‖r,∞ := sup
t>0

(trλ f (t))
1/r <∞,

where λ f denotes the distribution function of | f |, namely,

λ f (t)=μ({x ∈R
n : | f (x)|> t}), 0< t <∞,

(μ is the standard Lebesgue measure on R
n). The weak Lr -spaces are confined on

the more general so-called Lorentz classes L p,r (R
n)(0< p<∞,0<r ≤∞) (see, e.g.,

[4]) which will be also needed. We define L p,r (R
n) to be the space of all measur-

able functions f on R
n for which

‖ f ‖rp,r :=
∫

Rn

tr (λ f (t))
r/p dt

t
<∞.

Note that Lr,r (R
n)= Lr (R

n), and it will be convenient to let L∞,r (R
n)= L∞(Rn)

(0< r ≤∞).

As before we let A, B to denote the operators of multiplication by a,b, respec-
tively. In view of a ∈ Lr,w(Rn) and b∈ Ls,w(Rn), as was assumed, we can apply a
result of O’Neil [21] due to which there can be chosen β >0 and γ >0 such that
the multiplication A to be bounded from L p,p(R

n)(= L p(R
n)) to Lβ,p(R

n) and,
respectively, B to be bounded from Lγ,p(R

n) to L p,p(R
n) and, moreover,

‖Au‖β,p ≤C‖a‖r,w‖u‖p, β−1 = r−1 + p−1, (5.1)

and

‖Bv‖p ≤C‖b‖s,w‖v‖γ,p, p−1 = s−1 +γ −1. (5.2)

Note that in (5.1) and (5.2), the constants in general are distinct, but depending
only on r, p and s, p, respectively. Further, following notations made in the Sec-
tion 3, for λ∈C\[0,∞) we let

h(ξ ;λ)= (|ξ |2 −λ)−1, ξ ∈R
n .

It was shown that for α > n/2 one has h(·;λ)∈ Lα(Rn), and for its norm there
holds (3.37). Then, by applying the just mentioned result of O’Neil [21] the opera-
tor of multiplication by h(·;λ), that is, ̂R(λ; H0), is acting boundedly from L

β
′
,p(R

n)
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to Lγ,p(R
n) provided that (3.28). Besides, by interpolation, the Fourier operator F

is in turn bounded from Lβ,p(R
n) to L

β
′
,p(R

n) for 1≤β ≤2, and its bound is less

than (2π)−n/2+n/β
′
C, C being a constant depending only on r and p. Similarly,

F−1 is a bounded operator acting L
γ

′
,p(R

n) to Lγ,p(R
n) for 2≤γ ≤∞, its bound

is less than (2π)−n/2+n/γ c, where c is a constant depending only on s and p. Con-
sequently, the resolvent operator R(λ; H0)(= F−1 ̂R(λ; H0)F) represents a bounded
operator from Lβ,p(R

n) to Lγ,p(R
n) and, moreover,

‖R(λ; H0) f ‖γ,p ≤C I (n, α, θ)|λ|n/2α−1,

where I (n, α, θ)(θ :=argλ,0<θ <2π) is as in (3.27) and c being a constant depend-
ing on r, s and p. Therefore, in view of (5.1) and (5.2), we have

‖BR(λ; H0)A‖≤C I (n, α, θ)|λ|n/2α−1‖a‖r,∞‖b‖s,∞,

and, in this way, for any eigenvalue λ∈ C\[0,∞) of the Schrödinger operator H ,
we obtain the following estimate

|λ|1−n/2α ≤C I (n, α, θ)‖a‖r,∞‖b‖s,∞. (5.3)

where C ia a constant depending only on p, r and s.
We have proved the following result.

THEOREM 5.1. Let p, r, s be as in Theorem 3.1, and suppose q = ab, where a ∈
Lr,w(Rn) and b ∈ Ls,w(Rn). Then, any eigenvalue λ ∈ C\[0,∞) of the Schrödinger
operator H , considered acting in the space L p(R

n), satisfies (5.3).

By similar arguments it can be evaluated eigenvalues for the polyharmonic oper-
ator Hm,q discussed in Section 4. For this case there holds the following result.

THEOREM 5.2. Let 1< p<∞,m >0, and let q =ab, where a ∈ Lr,w(Rn) and b∈
Ls,w(Rn) with r and s restricted as in Theorem 4.1. Then, for any eigenvalue λ ∈
C\[0,∞) of the operator Hm,q , considered acting in L p(R

n), there holds

|λ|α−n/2m ≤C Im(n, α, θ)‖a‖α
r,w‖b‖α

s,w, (5.4)

where C is a constant depending on n, p, r and s and Im(n, α, θ) is determined by
(4.1).

The following result is a version of that given by Corollary 3.3 for polyharmonic
operators with weak Lebesgue’s classes potentials.
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COROLLARY 5.3. Let γ > 0 for n ≥ 2m and γ ≥ 1 − n/2m for n < 2m. If q ∈
Lγ+n/2m,w(Rn), then every eigenvalue λ∈C\[0,∞) of the operator Hm,q , considered
acting in L p(R

n), satisfies

|λ|γ ≤C Im(n, α, θ) sup
t>0

(tγ+n/2mλq(t)). (5.5)

Proof. In (5.4), we let r = s=2γ +n/m and take a(x)=|q(x)|1/2,b(x)= (sgnq(x))
|q(x)|1/2. Then, α = r/2=γ +n/2m and also

‖a‖r,w =‖b‖s,w =‖|q|1/2‖r,w,

and since ‖q1/2‖r,w =‖q‖1/2r/2,w, we have

|λ|γ ≤C Im(n, α, θ)‖q‖γ+n/2m
γ+n/2m,w

that is, the desired estimate (5.5).
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Analysis, vol. 214, pp. 39–44. Birkhäuser/Springer Basel AG, Basel (2011); Oper. The-
ory Adv. Appl.

10. Folland, G.B.: Real analysis. In: Pure and Applied Mathematics (New York), 2nd edn.
Wiley, New York (1999)

11. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex poten-
tials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)



220 ALEXANDRA ENBLOM

12. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Else-
vier/Academic Press, Amsterdam (2007)

13. Hille, E., Phillips, R.S.: Functional Analysis and Semi-groups. American Mathematical
Society, Providence (1974)

14. Jörgens, K., Weidmann, J.: Spectral properties of Hamiltonian operators. In: Lecture
Notes in Mathematics, vol. 313. Springer, Berlin (1973)

15. Kato, T.: Perturbation theory for linear operators. In: Classics in Mathematics.
Springer, Berlin (1995). (Reprint of the 1980 edition)

16. Keller, J.B.: Lower bounds and isoperimetric inequalities for eigenvalues of the
Schrödinger equation. J. Math. Phys. 2, 262–266 (1961)

17. Konno, R.S.T. Kuroda: On the finiteness of perturbed eigenvalues. J. Fac. Sci. Univ.
Tokyo Sect. I 13, 55–63 (1966)

18. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique con-
tinuation for second order constant coefficient differential operators. Duke Math.
J. 55(2), 329–347 (1987)

19. Laptev, A., Safronov, O.: Eigenvalue estimates for Schrödinger operators with complex
potentials. Commun. Math. Phys. 292(1), 29–54 (2009)

20. Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the
Schrödinger hamiltonian and their relation to Sobolev inequalities. In: Studies in
Mathematical Physics, pp. 269–303. Princeton University Press, Princeton (1976)

21. O’Neil, R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–
142 (1963)

22. Prosser, R.T.: Convergent perturbation expansions for certain wave operators. J. Math.
Phys. 5, 708–713 (1964)

23. Rejto, P.A.: On partly gentle perturbations. III. J. Math. Anal. Appl. 27, 21–67 (1969)
24. Safronov, O.: Estimates for eigenvalues of the Schrödinger operator with a complex

potential. Bull. Lond. Math. Soc. 42(3), 452–456 (2010)
25. Safronov, O.: On a sum rule for Schrödinger operators with complex potentials. Proc.

Am. Math. Soc. 138(6), 2107–2112 (2010)
26. Schechter, M.: Essential spectra of elliptic partial differential equations. Bull. Am.

Math. Soc. 73, 567–572 (1967)
27. Schechter, M.: Spectra of partial differential operators. In: North-Holland Series in

Applied Mathematics and Mechanics, vol. 14, 2nd edn. North-Holland Publishing Co.,
Amsterdam (1986)
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