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Abstract. We analyze perturbations of the harmonic oscillator type operators in a Hilbert
space H, i.e. of the self-adjoint operator with simple positive eigenvalues μk satisfying
μk+1 − μk ≥ � > 0. Perturbations are considered in the sense of quadratic forms. Under
a local subordination assumption, the eigenvalues of the perturbed operator become even-
tually simple and the root system contains a Riesz basis.
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1. Introduction

This paper deals with the spectrum and eigensystem of perturbations of a self-
adjoint operator A in a Hilbert space H. The operator A is of the one-dimensional
harmonic oscillator type, i.e. its eigenvalues are simple, positive and satisfy

Aψn =μnψn, ‖ψn‖=1, μ1 >0, ∃�>0, ∀n∈N, μn+1 −μn ≥�; (1)

see also Remark 1. The perturbations are not assumed to be symmetric; therefore,
the studied operator T is generically non-self-adjoint (and non-normal). Hence the
spectrum typically does not remain real and the basis property of eigensystem is
no longer guaranteed.
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The main aim is to extend (to cover in particular the δ potential) the results
of [3–5] on sufficient conditions on perturbations guaranteeing that the eigensys-
tem of the perturbed operator contains a Riesz basis. Problems of this type are
studied in many works, both classical ones as [10,19,20] and more recent ones, for
instance, [5,26,32,33,35].
The essential issue in the analysis is that the gaps between the eigenvalues of the

unperturbed operator A do not grow. Assuming that the gaps grow, i.e. μn+1 −
μn → +∞ and the perturbation B is bounded, Kato proved, cf. [19, Theorem
V.4.15a, Lemma V.4.17a], that the system of eigenfunctions of A+ B, plus possibly
finite number of associated functions, contains a Riesz basis. The analogous clas-
sical theorem allowing also unbounded perturbations can be found in [10, Theo-
rem XIX.2.7]; nevertheless, the growth condition of the gaps is preserved. Constant
gaps are allowed in [5]; however, only bounded perturbations satisfy the assump-
tion in [5] and the result is weaker, since only the Riesz basis with brackets is
claimed.
Adduci and Mityagin overcome the problem of the non-growing gaps in the

study of the harmonic oscillator, cf. [3], by

(a) using the Hilbert transform as the important technical tool,
(b) replacing the condition of the boundedness of perturbation B by

‖Bψn‖→0 as n→∞, (2)

(c) using the following result of Kato;

Criterion 1 [19, Lemma V.4.17a]. Let {Pj }∞j=0 be a complete family of orthogonal
projections in a Hilbert space H, and let {Q j }∞j=0 be a family of (not necessarily
orthogonal) projections such that Q j Qk = δ jk Q j . Assume that

Rank P0 =Rank Q0 <∞,

∀ f ∈H,

∞∑

j=1

‖Pj (Q j − Pj ) f ‖2 ≤ c0‖ f ‖2,

where c0 is a constant smaller than 1. Then there is a W ∈B(H) with W−1 ∈B(H)

such that Q j =W−1PjW for j ∈N0 :=N∪{0}.

The condition (2) has been called by Shkalikov a local subordinate condition,
see the discussion in [27] and also [4, Section 1] for some explanations on this
wording. Criterion 1 substitutes for the often used Bari–Markus criterion, which
is given with more restrictive conditions

∞∑

j=0

‖Q j − Pj‖2 <∞,

Rank Pj =Rank Q j <∞, j ∈N0,

see e.g. [15, Chapter 6, Section 5.3, Theorem 5.2] or [20].
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For the harmonic oscillator in L2(R), the property of Hermite functions,

max
x∈R

|hn(x)|≤C n− 1
12 , n∈N, (3)

can be used to show that (2) is satisfied for B being, for instance, a multiplication
operator by V ∈ L2(R) what is consistently used in [3].

The results of [3] for the harmonic oscillator have been extended in [4] to the
abstract setting with the possibility of the controlled condensation of eigenvalues,
i.e. μn+1−μn ≥κnω−1 with fixed κ >0 and ω>1/2, or the finite clustering of eigen-
values, i.e. there exist fixed values q>0 and δ>0 such that μn+q −μn ≥δ for all n.
In the latter case, similar results have been obtained in [26] using different meth-
ods. However, the δ potential is not covered by the assumption (2) which is essen-
tial in [3,4,26].

In this paper, we consider perturbations of A in the sense of quadratic forms.
(Such a setting has been considered in [5] under the form p-subordination assump-
tion, cf. (5) below.) At first we define the quadratic form t := a + b, where a cor-
responds to A and b is the perturbation. The perturbed operator T is associated
with the form t , see Section 2 for details. Such a framework is one way how to
include singular perturbations, cf. [19, Chapter VI.3.-4] or [29, Section 1] in self-
adjoint setting. Our main example is the harmonic oscillator in L2(R) perturbed
by the δ potential with complex coupling. We remark that the form b does not
need to be closed, and therefore it does not need to represent an operator in a
considered Hilbert space H, distributional potentials are typical cases.
A straightforward reformulation of the condition (2), coming from [3,4,26],

would be

‖Bψn‖2 =
∞∑

m=1

|b(ψn,ψm)|2 →0 as n→∞.

Nevertheless, the analysis of the harmonic oscillator perturbed by the δ poten-
tial, i.e. b(φ,ψ)=φ(0)ψ(0), reveals that the condition (1) is not satisfied, cf. (19)–
(20) in Section 5.
Our results are obtained under the assumption

∃α >0, ∃Mb >0, ∀m,n∈N, |b(ψm,ψn)|≤ Mb

mαnα
, (4)

see also Remark 4 at the end of Section 4. This extends the previously consid-
ered classes of perturbations. For the harmonic oscillator particularly, it means a
step towards singular potentials including the mentioned δ. This paper yields also
a partially new version of the proof of the main result in [3] for some cases. More
precisely, unlike in [3,4], where the important technical tool was the Hilbert trans-
form, only the Schur test is used here. The connection to the previous work [3]
is explained in Section 5.2. Moreover, the result of [3] is extended to perturba-
tions by potentials V ∈ L(p, τ ), 1≤ p<∞, τ/4+ t (2p)<0, cf. Theorem 2 and (23),
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(25) in Section 5.2; in particular we obtain the extension to potentials V ∈ L p(R),
1≤ p<2. The overall result on perturbations of the harmonic oscillator is formu-
lated in Corollary 1 in Section 5.3. Further detailed analysis of the spectrum of a
harmonic oscillator perturbed by point interactions can be found in [22,23].
This paper as well as mentioned previous works aim to find sufficient conditions

for the Riesz basisness of the eigensystem. However, the negative results, i.e. the
fact that the eigensystem is not a Riesz basis (or even a basis), have been obtained
particularly for complex oscillators in [7–9,17,18,28] and just recently in [24].
The paper is organized as follows. In Section 2, we define the operator T and

recall some known facts. The main results on the localization of the spectrum and
Riesz basisness of the eigensystem are contained and proven in Section 3. In Sec-
tion 4, we collect technical lemmas used in the proofs of main results. Section 5
consists of examples and the result for the harmonic oscillator. Conclusions and
short discussion are contained in the final Section 6.

2. Definition of the Operator and Preliminaries

The definition of the operator T is based on the first representation theorem [19,
Theorem VI.2.1] that provides the unique correspondence between the m-sectorial
operator T and the closed sectorial form t . The detailed definition of the operator
T can be also found in [5, Section 2.].
The self-adjoint operator A is associated, via the second representation theorem

[19, Theorem VI.2.23], with a quadratic form

a(ψ,ψ) :=‖A 1
2 ψ‖2, Dom(a) :=Dom(A

1
2 ).

We consider perturbations by a form b satisfying the condition (4). It follows
that b is a form p-subordinated perturbation of a, i.e. there exist 0≤ p< 1 and
C >0 such that

∀ f ∈Dom(a), |b( f, f )|≤C (a( f, f ))p ‖ f ‖2(1−p), (5)

see Lemma 1. The form p-subordination implies the form relative boundedness of
b with respect to a with the bound 0. The perturbed operator T is defined as the
operator associated, via the first representation theorem [19, Theorem VI.2.1], with
a sectorial form

t :=a+b, Dom(t)=Dom(a).

The domains of t and a are the same due to the p-subordination, nevertheless,
Dom(T ) and Dom(A) are typically different. The form relative boundedness with
the bound 0 together with [19, Theorem VI.3.4] imply that T has a compact resol-
vent.
The definition of T can be also reformulated as

T = A
1
2 (I − B(0))A

1
2 .
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Here B(z), z ∈ C, is the operator uniquely determined by the bounded form
b((z − A)−1/2·, (z − A)−1/2·), i.e. 〈B(z) f, g〉 = b((z − A)−1/2 f, (z − A)−1/2g) for all
f, g∈H. The square root of z− A is defined as

(z− A)−
1
2 f :=

∑

k∈N
(z−μk)

− 1
2 ckψk,

for f =∑
k∈N ckψk and ws := |w|seis argw, −π <argw ≤π , for 0 =w ∈C and s ∈R.

For all z∈ρ(A),

z−T = (z− A)
1
2 (I − B(z))(z− A)

1
2 .

This relation yields a suitable representation of the resolvent of T , i.e.

(z−T )−1 = (z− A)−
1
2 (I − B(z))−1(z− A)−

1
2 , (6)

provided I − B(z) is invertible and z∈ρ(A). Formulas of this type are also derived
in [5, Lemma 1], [19, Chapter VI.3.1].

Remark 1. We have started with the operator A with eigenvalues satisfying μn+1−
μn ≥ �, � > 0. However, to simplify all formulas, we will assume that � = 1 and
μ1 ≥ 1 in the sequel. (Without loss of generality this can be always achieved by
considering �−1(A+cI ) with a suitably chosen c∈R+.) Eigenvalues μ then satisfy

μk ≥ k. (7)

3. Main Results

Set

�0 := {z∈C :−h<Rez<(N +3/2), |Imz|<h}
�k := {z∈C : |z−μk |<1/2}, k :=∂�k, (8)

� :=�0 ∪
( ⋃

j>N+1

� j

)
,

where N ∈N and h>1 are determined in the following way. The aim is to localize
the spectrum of T . We will succeed if we guarantee that ‖B(z)‖≤1/2 for z outside
of �.
Let N ≡ N (α) be an integer such that

∀n> N , Mb C(2α)σ2α(n)≤ 1
2
, (9)

where Mb is as in (4) and C(α), σα(n) are introduced in Lemma 2 below. h>1 is
selected such that
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2Mb

(
1
h

N+2∑

k=1

1
k2α

+ D(2α)τ2α(h)

)
≤ 1

2
, (10)

where D(α), τα(h) are introduced in Lemma 3.

PROPOSITION 1. Let conditions (1), (4) hold and let N and h satisfy the condi-
tions (9) and (10), respectively. Then the eigenvalues of T are contained in the inte-
rior of �, cf. (8). Moreover, Riesz projections

SN+1 := 1
2π i

∫

0

(z−T )−1dz,

Pj := 1
2π i

∫

 j

(z−T )−1dz for j > N +1,
(11)

are well defined and

Rank SN+1 = N +1, Rank Pj =1 for j > N +1.

Proof. At first we show that (z − T )−1 is well-defined and bounded for every
z /∈ �0 ∪ j>N+1 � j . Using the resolvent factorization (6), it suffices to prove that
‖B(z)‖≤1/2. Let f =∑∞

j=1 f jψ j ∈H, then

‖B(z) f ‖2 =
∞∑

k=1

|〈B(z) f,ψk〉|2 =
∞∑

k=1

∣∣∣∣∣∣

∞∑

j=1

f j b(ψ j ,ψk)

(z−μ j )
1
2 (z−μk)

1
2

∣∣∣∣∣∣

2

≤ M2
b

∞∑

k=1

1
k2α|μk − z|

⎛

⎝
∞∑

j=1

| f j |
jα|μ j − z| 12

⎞

⎠
2

≤ M2
b

( ∞∑

k=1

1
k2α|μk − z|

)2

‖ f ‖2. (12)

Let Rez ∈ [μn − 1/2,μn+1 − 1/2] and z /∈ �n , n ≥ N . We apply inequalities from
Lemma 2 and we obtain

‖B(z)‖≤Mb C(2α)σ2α(n)≤ 1
2
, (13)

for n> N , where N is chosen above, cf. (9).
The next step is an estimate outside of �0. If Rez=−h, then

‖B(z)‖≤Mb

∞∑

k=1

1
k2α(k+h)

≤Mb D(2α) τ2α(h)≤ 1
2
,

for h selected as above, cf. (10).
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If Rez∈[−h, (N +3/2)], then |Imz|≥h. We denote z= s+ ih, then

‖B(z)‖≤Mb

∞∑

k=1

1

k2α
√

(μk − s)2 +h2
≤2Mb

∞∑

k=1

1
k2α(|μk − s|+h)

≤2Mb

⎛

⎝
N+2∑

k=1

1
hk2α

+
∞∑

k=N+3

1
k2α(k− N −2+h)

⎞

⎠

≤2Mb

(
1
h

N+2∑

k=1

1
k2α

+ D(2α)τ2α(h)

)
≤ 1

2
,

where we use (7), (10), and inequalities

(a+b)/2≤
√
a2 +b2, −h≤ s≤ N +3/2.

The standard argument, based on [11, Lemma VII.6.7], shows that

Trace
1
2π i

∫

n

(z− A)−
1
2 (I − t B(z))−1(z− A)−

1
2 dz, 0≤ t ≤1,

is a continuous integer valued function. Therefore, it is constant and the second
part of the claim follows.

The obvious corollary is that the eigenvalues λn of T become eventually sim-
ple (for n > N + 1) and localized closely to those of the unperturbed operator A,
while the first part of the spectrum is localized in �0; it is important that there
is only a finite number of eigenvalues in �0. The latter also means that the eigen-
system of T contains at most a finite number of root vectors associated with dif-
ferent eigenvalues {λn}N0

n=1, N0 ≤ N +1, in �0 with algebraic multiplicities {mn}N0
n=1,∑N0

n=1mn = N +1, and the rest, {λn}n>N+1, consists of eigenvectors {φn} related to
eigenvalues in ∪ j>N� j of both algebraic and geometric multiplicity one.

Remark 2. Proposition 1 serves to define the Riesz projections SN+1 and Pj that
are further analyzed in Theorem 1. If we wish to localize the eigenvalues of T
more precisely, we can modify �k , k > N , to be circles with radii rk → 0 instead
of 1/2. Then the straightforward modification of estimates (12), (13), and Lemma
2 yields that rk does decay as O(k−2α).
A detailed eigenvalue asymptotics of a harmonic oscillator perturbed by point

interactions, see Section 5 below, can be found in [22,23].

To formulate the main result we denote {P0
n } the one-dimensional spectral pro-

jections of A related to eigenvalues {μn}, i.e.

P0
n := 1

2π i

∫

|z−μn |= �
2

(z− A)−1dz, n∈N.
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THEOREM 1. Let conditions (1) and (4) hold. Then there exists a bounded opera-
tor W with bounded inverse such that projectors {Pn} and SN+1, cf. (11), satisfy

WPnW
−1 = P0

n

for all n> N +1 and

WSN+1W
−1 =

N+1∑

n=1

P0
n .

Hence, {SN+1, PN+2, PN+3, . . . } is a Riesz system of projectors.

Remark 3. Projectors Pn are one-dimensional for n > N + 1 and SN+1 has rank
N + 1. Therefore the system of root vectors of T contains a Riesz basis { fn}∞n=1
with fn =φn for n> N +1.

Proof. The proof is based on the Criterion 1. The spectral projections P0
n of A

form a complete family of orthogonal projections, since A is self-adjoint with dis-
crete spectrum.
In order to apply Criterion 1, we have to find N∗ > N +2, N∗ ∈N, such that

∀ f ∈H,

∞∑

n≥N∗
‖P0

n (Pn − P0
n ) f ‖2 ≤ 1

2
‖ f ‖2,

so we take (in the notation of Criterion 1) P0 :=∑N∗−1
j=1 P0

j and Q0 = SN∗−1. The
latter has the same rank as P0, cf. Proposition 1.

If n> N +2 and z∈n , then we have

‖P0
n (Pn − P0

n ) f ‖2 ≤ 1
4π2

∥∥∥∥∥∥∥

∫

n

((z−T )−1 − (z− A)−1) f dz

∥∥∥∥∥∥∥

2

≤ 1
4π2

⎛

⎜⎝
∫

n

‖(z−A)−
1
2 ‖‖(I−B(z))−1‖‖B(z)(z−A)−

1
2 f ‖|dz|

⎞

⎟⎠

2

≤ 2
π2

⎛

⎜⎝
∫

n

‖B(z)(z− A)−
1
2 f ‖|dz|

⎞

⎟⎠

2

, (14)

where we use the factorization of resolvent (6) and the bound ‖B(z)‖≤1/2 for z∈
n , n> N , cf. the proof of Proposition 1.



ROOT SYSTEM 155

Decomposing f =∑∞
j=1 f jψ j ∈H we obtain

‖B(z)(z− A)−
1
2 f ‖2 =

∞∑

k=1

∣∣∣∣∣∣

〈
B(z)(z− A)−

1
2

∞∑

j=1

f jψ j ,ψk

〉∣∣∣∣∣∣

2

≤
∞∑

k=1

1
|μk − z|

∣∣∣∣∣∣

∞∑

j=1

f j
z−μ j

b(ψ j ,ψk)

∣∣∣∣∣∣

2

≤ M2
b

∞∑

k=1

1
k2α|μk − z|

⎛

⎝
∞∑

j=1

| f j |
jα|μ j − z|

⎞

⎠
2

.

For n> N +2, we select z∗n ∈n for which the maximum of the integrand in the
last integral in (14) is attained; notice that {z∗n} depends on f . Then we can con-
tinue estimates in (14),

‖P0
n (Pn − P0

n ) f ‖2 ≤2M2
b

∞∑

k=1

1
k2α|μk − z∗n|

⎛

⎝
∞∑

j=1

| f j |
jα|μ j − z∗n|

⎞

⎠
2

. (15)

We apply Lemma 2 on the first sum in (15),

‖P0
n (Pn − P0

n ) f ‖2 ≤2M2
bC(2α)σ2α(n)

⎛

⎝
∞∑

j=1

| f j |
jα|μ j − z∗n|

⎞

⎠
2

.

The final step is estimating the sum of ‖P0
n (Pn − P0

n ) f ‖2, starting at some N1 >

N + 2, N1 ∈N. We fix ω, 0<ω <min{α,1/2}, and assume that N1 is so large that
σα(n)≤σα(N1) and σ2α(n)n2ω ≤σ2α(N1)N 2ω

1 for n≥ N1. Then

∞∑

n=N1

σ2α(n)

⎛

⎝
∞∑

j=1

| f j |
jα|μ j − z∗n|

⎞

⎠
2

≤σ2α(N1)N
2ω
1

∞∑

n=N1

⎛

⎝
∞∑

j=1

| f j |
nω jα|μ j − z∗n|

⎞

⎠
2

=σ2α(N1)N
2ω
1 ‖M f̃ ‖2

�2(N)
,

where M is an operator acting in �2(N) with matrix elements

Mnj =0, n< N1,

Mnj = 1
nω jα|μ j − z∗n|

, n≥ N1.

and f̃ ={| fn|}n∈N ∈�2(N).
We intend to bound ‖M‖ using the Schur test, cf. [25] or [12, Section 3], [16,

Theorem 5.2]. To this end we estimate the following sums by applying Lemma 2
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∞∑

j=1

|Mnj |=
∞∑

j=1

1
nω jα|μ j − z∗n|

≤ 1
nω

C(α)σα(n)≤C(α)
σα(N1)

Nω
1

,

∞∑

n=1

|Mnj |≤ 1
jα

C(ω)σω( j)≤ C(ω)

ωe
,

where we use (17) and that N1 is such that σα(n) ≤ σα(N1). The Schur test then
yields

‖M‖2 ≤ C(α)C(ω)

ωe

σα(N1)

Nω
1

.

Therefore, since ω<α,

∞∑

n≥N1

‖P0
n (Pn − P0

n ) f ‖2 ≤ 2M2
bC(2α)C(α)C(ω)

ωe
σ2α(N1)σα(N1)N

ω
1 ‖ f ‖2,

which proves the existence of sought N∗ and Theorem 1.

4. Technical Lemmas

We collect technical results, mainly estimates on the sums appearing in the proofs
of main results. At first we explain in details the form subordination of the per-
turbation.

LEMMA 1. Let A and b satisfy (1) and (4). Then there exist 0≤ p< 1 and C > 0
such that

∀ f ∈Dom(a), |b( f, f )|≤C (a( f, f ))p ‖ f ‖2(1−p),

i.e. b is p-subordinated to a. Moreover, for α ≤1/2, p can be selected as 1−2α + τ ,
with τ >0 arbitrarily small. If α >1/2, then b is bounded.

Proof. Writing f =∑∞
j=1 f jψ j , we get (0≤β <1/2)

|b( f, f )|=
∣∣∣∣∣∣

∞∑

j,k=1

f j fkb(ψ j ,ψk)

∣∣∣∣∣∣
≤Mb

⎛

⎝
∞∑

j=1

| f j |
jα

⎞

⎠
2

=Mb

⎛

⎝
∞∑

j=1

| f j | jβ 1
jα+β

⎞

⎠
2

≤ Mb‖Aβ f ‖2
∞∑

j=1

1
j2(α+β)

≤Mb(a( f, f ))2β‖ f ‖2(1−2β)
∞∑

j=1

1
j2(α+β)

,

where we used the Hölder inequality in the last step. For α ≤ 1/2, we select β =
1/2−α + τ/2, τ >0 and we receive the claim with p=1−2α + τ . For α >1/2, we
can take β =0, and therefore b is bounded.
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LEMMA 2. Let n∈N, n>1, Rezn ∈[μn −1/2,μn+1 −1/2], and zn /∈�n , where �n

is defined in (8) and γ >0. Then

∞∑

k=1

1
kγ |μk − zn| ≤C(γ )σγ (n),

where C(γ ) does not depend on n and

σγ (n) :=
{
n−γ log n, γ ≤1,

n−1, γ >1.

Proof. Using |μk − zn| ≥ |k − n|/2 for k /∈ {n,n+ 1}, |μn − zn| ≥ 1/2, and |μn+1 −
zn|≥1/2, we obtain

∞∑

k=1

1
kγ |μk − zn| ≤2

⎛

⎝
n−1∑

k=1

1
kγ (n− k)

+ 2
nγ

+
∞∑

k=n+2

1
kγ (k−n)

⎞

⎠ . (16)

If f is a convex non-negative function in interval [1, p], then
p∫

1

f (x)dx ≤
p∑

i=1

f (i)≤ f (1)+ f (p)+
p∫

1

f (x)dx .

Therefore the first term on the right in (16) can be estimated as

n−1∑

k=1

1
kγ (n− k)

≤ 1
n−1

+ 1
(n−1)γ

+
n−1∫

1

dx
xγ (n− x)

.

Splitting the integral we obtain

n−1∫

n
2

dx
xγ (n− x)

≤ 2γ

nγ

n−1∫

n
2

dx
n− x

≤2γ log n
nγ

,

n
2∫

1

dx
xγ (n− x)

≤ 2
n

n
2∫

1

dx
xγ

,

where depending on γ

2
n

n
2∫

1

dx
xγ

≤

⎧
⎪⎪⎨

⎪⎪⎩

2γ (1−γ )−1n−γ , γ <1,

2n−1 log n, γ =1,

2(γ −1)−1n−1, γ >1.
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The third term in (16) is split as well

∞∑

k=n+2

1
kγ (k−n)

=
2n∑

k=n+2

1
kγ (k−n)

+
∞∑

k=2n+1

1
kγ (k−n)

and estimated as

2n∑

k=n+2

1
kγ (k−n)

≤ 1
nγ

2n∑

k=n+2

1
k−n

≤ 1
nγ

2n∫

n+1

dx
x −n

≤ log n
nγ

,

∞∑

k=2n+1

1
kγ (k−n)

≤2
∞∑

k=2n+1

1
kγ+1

≤2

∞∫

2n

dx
xγ+1

≤ 21−γ

γ

1
nγ

,

where we used k−n> k/2 in the second estimate.
Combing all the inequalities and using for γ =1+β >1 that

log n
nβ

≤max
x≥0

x

eβx
= 1

βe
, (17)

we obtain the claim.

LEMMA 3. Let h>1. Then

∞∑

k=1

1
kγ (k+h)

≤ D(γ )τγ (h),

where D(γ ) does not depend on h and

τγ (h) :=

⎧
⎪⎪⎨

⎪⎪⎩

h−γ , if γ <1,

h−1 log h, if γ =1,

h−1, if γ >1.

Proof. Proof is analogous to the one of Lemma 2.

Remark 4. A careful analysis of our proof and proper adjustments in the proofs
of technical lemmas 2 and 3 and in the inequalities related to (15) show that we
can weaken Condition (4) in Theorem 1 by assuming only that

∃β >
3
2
, ∃Mb >0, ∀m,n∈N, |b(ψm,ψn)|≤ Mb

(log(m+1) log(n+1))β
. (4A)
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5. Examples

We start with the analysis of perturbations of the harmonic oscillator in L2(R):

A=− d2

dx2
+ x2, Dom(A)={ψ ∈W 2,2(R) : x2ψ ∈ L2(R)},

a(ψ,ψ)=‖ψ ′‖2 +‖xψ‖2, Dom(a)={ψ ∈W 1,2(R) : xψ ∈ L2(R)}. (18)

Eigenvalues of A are μn =2n+1, n ∈N0, and eigenfunctions are Hermite func-
tions

hn(x)= 1

(2nn!√π)
1
2

e− x2
2 Hn(x), n=0,1,2, . . . . (19)

5.1. δ POTENTIAL

The first example is the perturbation by the δ potential placed in x0 with coupling
ν ∈C, more precisely

b1(φ,ψ)=ν φ(x0)ψ(x0), ν ∈C, Dom(b1)=W 1,2(R).

In the following, we estimate |b1(hm,hn)|= |ν||hm(x0)||hn(x0)|.
If x0 =0, the values hn(0) read, cf. [1, Eqs. 22.4.8, 22.2.14],

h2n−1(0)=0, h2n(0)= (−1)n((2n)!) 1
2

π
1
4 2nn!

.

Using the Stirling formula for the factorial,

n!=√
2πn

(n
e

)n
eλn ,

1
12n+1

<λn <
1

12n
,

cf. [1, Equation 6.1.38], [13, Section 2.9], yields

|h2n(0)|=
1+O( 1n )

π
1
2 n

1
4

, (20)

hence the perturbation b1 satisfies condition (4) with α =1/4 if x0 =0.
Further analysis, cf. [6, p. 700] and further references in [3], shows that

|hn(x)|≤C

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(N
1
2 (N

1
2 − x))−

1
4 , 0≤ x ≤ N

1
2 − N− 1

6 ,

N− 1
12 , N

1
2 − N− 1

6 ≤ x ≤ N
1
2 + N− 1

6 ,

exp(−ξN
1
4 (x − N

1
2 )

3
2 )

(N
1
2 (x − N

1
2 ))

1
4

, N
1
2 + N− 1

6 ≤ x ≤ (2N )
1
2 ,

exp(−ξ x2), x ≥ (2N )
1
2 ,

(21)

where N = 2n + 1 and ξ > 0. Therefore we can apply our results, since |hn(x0)| ≤
Cn−1/4 when n is sufficiently large, e.g. if N 1/2 ≥ x0 +1.
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5.2. FUNCTION POTENTIAL V

We consider a form generated by a function potential

b2(φ,ψ) := 〈Vφ,ψ〉. (22)

At first let V ∈ L p(R), 1≤ p<∞. The condition (4) holds for b2, since

|〈Vhm,hn〉|≤‖V ‖L p‖hmhn‖Lq ≤‖V ‖L p‖hmhn‖
1
p
L∞‖hmhn‖

1
q

L1

≤C(mn)
− 1

12p , m,n∈N,

where 1/p+1/q=1 and we use ‖hmhn‖L1 ≤1 and (3). Hence the statement of The-
orem 1 holds.

A next step is to take V ∈ L(p, τ ), where

L(p, τ ) :=
{
v : (1+|x |2)− τ

2 |v(x)| ∈ L p(R)
}

, 1≤ p<∞, τ ≥0, (23)

is introduced in [3]; notice that L p(R) is a special case for τ = 0. It has been
showed in [3] that for 2≤ p<∞ and n∈N, n>1,

‖Vhn‖≤C

⎧
⎨

⎩
n

τ
2+t (p), p =4,

n
τ
2− 1

8 log n, p=4,
(24)

with

t (p)=
⎧
⎨

⎩
− 1

6 (1− 1
p ), 2≤ p<4,

− 1
2p , 4≤ p<∞,

(25)

see [3, Lemma 5.2] for details. Hence the condition (2) holds for V ∈ L(p, τ ) if
2≤ p<∞ and τ/2+ t (p)<0. (The condition (2) holds for V also if τ/2+ t (p)≤0,
(p, τ ) = (4,1/4), see [3, Prop. 5.4].) Therefore the eigensystem of T = A+ V con-
tains a Riesz basis, cf. [3, Theorem 1.3]. Now we can explain this result of [3] as
a corollary of Theorem 1; indeed

|b2(hm,hn)|= |〈Vhm,hn〉|≤min(‖Vhm‖,‖Vhn‖)≤‖Vhm‖ 1
2 ‖Vhn‖ 1

2

and the inequalities (24) imply (4) with some α >0.
The approach with forms enables us to include potentials V ∈ L(p, τ ) with 1≤

p<2 and a suitable τ in our analysis and obtain the following claim.

THEOREM 2. Let A be the harmonic oscillator, cf. (18), and V ∈ L(p, τ ) with 1≤
p<∞, τ ≥0 and τ/4+ t (2p)<0, where t (p) is defined in (25).
Then the statement of Theorem 1 holds for T = A+V defined as a sum of forms.
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Proof. The proof is based on the inequality

‖hn(x)(1+|x |2) τ̃
2 ‖Lq̃ ≤C

{
n

τ̃
2+t ( p̃), p̃ =4,

n
τ̃
2− 1

8 log n, p̃=4,
(26)

where 1/q̃ + 1/ p̃= 1/2 and n ∈N, n > 1, proved in [2, Section 6.2], [3, Eqs. (41)–
(46)] using (21). If V ∈ L(p, τ ), then

|b2(hm,hn)|≤
∫

R

|V (x)| (1+|x |2)− τ
2 |hm(x)| |hn(x)| (1+|x |2) τ

2 dx

≤‖V (x)(1+|x |2)− τ
2 ‖L p‖hm(x)hn(x)(1+|x |2) τ

2 ‖Lq

≤C‖hm(x)(1+|x |2) τ
4 ‖L2q‖hn(x)(1+|x |2) τ

4 ‖L2q , (27)

where 1/p+1/q=1. The inequality (26) with τ̃ =τ/2 and q̃=2q yields, for all n∈
N, n>1,

‖hn(x)(1+|x |2) τ
4 ‖L2q ≤C

⎧
⎨

⎩
n

τ
4+t (2p), p =2,

n
τ
4− 1

8 log n, p=2.

Therefore, the condition (4) holds for b2 if τ/4+ t (2p)< 0 and Theorem 1 can
be applied.

5.3. SINGULAR POTENTIAL WITH COMPACT SUPPORT

Another example is a form generated by a singular potential V ∈W−s,2(R), 0< s<

1/2, with a compact support, contained in an interval [−p, p],
b3(φ,ψ) := (V, φψ).

For n sufficiently large, e.g. N 1/2 ≥2p+1, with N =2n+1, we have

|hn(x)|≤Cn− 1
4 , |h′

n(x)|≤Cn
1
4 , x ∈[−3p/2,3p/2].

These estimates follow from (21) and the relation for the derivative of Hermite
functions

h′
n(x)=

√
n

2
hn−1(x)+

√
n+1
2

hn+1(x). (28)

Therefore, for m,n∈N,

|b3(hm,hn)|= |(V,hmhn)|≤C‖hmhn‖1−s
L2((−p,p))

‖hmhn‖sW 1,2((−p,p))
≤C(mn)

2s−1
4

and the condition (4) is satisfied for s < 1/2. Hence the statement of Theorem 1
holds.
The assumption on the compact support of singular potential can be omitted,

but the range of s is more restrictive. Namely, if V ∈W−s,2(R), 0< s<1/11, then
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the statement of Theorem 1 holds. The proof of this claim is analogous, but we
use (3) and (28) or more general inequalities for weighted polynomials, cf. [21,34].

Remark 5. The condition (4) puts restrictions on the system of linear functionals of
V . Therefore, if we can represent V as a finite sum of potentials {Vj } in such a way
that each Vj satisfies condition (4), then V satisfies the condition (4) as well and
the statement of Theorem 1 on the Riesz basisness of eigensystem of T = A+ V
holds. In particular, the following is true.

COROLLARY 1. Let A be the harmonic oscillator, cf. (18). If V = V1 + V2 + V3,
where V3∈W−s,2(R), 0< s<1/2, with compact support, V2∈ L(p, τ ) with 1≤ p<∞,
τ ≥0 and τ/4+ t (2p)<0, cf. (23), (25), and V1 ∈ L1(R), then the statement of The-
orem 1 holds for T = A+V defined as a sum of forms.

5.4. INFINITE NUMBER OF δ-POTENTIALS

We can go to infinite sums V = ∑
j V j , but then we have to watch carefully the

behavior of constants Mj in (4), i.e.

|〈Vjhm,hn〉|≤ Mj

mαnα
.

To illustrate this point, we consider the infinite number of δ potentials.

EXAMPLE 1. Let A be the harmonic oscillator, cf. (18), and let

b4(φ,ψ)=
∞∑

k=−∞
νk φ(pk)ψ(pk),

where points {pk}k∈Z and coupling constants {νk}k∈Z satisfy pk = (sgn k) |k|γ , 0<

γ ≤1, and νk =O(|k|−β), β ≥0, respectively. If β +γ >1, then b4 satisfies the con-
dition (4) and therefore the statement of Theorem 1 holds.

Proof. We intend to determine the relation between β and γ guaranteeing that
b4 satisfies the assumption (4). In the first step, we use Hölder inequality and the
fact that Hermite functions are either even or odd and obtain

|b4(hm,hn)|≤2

( ∞∑

k=0

|νk ||hm(pk)|2
) 1

2
( ∞∑

k=0

|νk ||hn(pk)|2
) 1

2

.

The estimates are based on the behavior of Hermite functions (21) and are
divided into four parts. For k ≤ K1 with K1 ∈N such that (N 1/2 − N−1/6)1/γ −1≤
K1 ≤ (N 1/2 − N−1/6)1/γ , we have

K1∑

k=1

N− 1
4

kβ(N
1
2 − kγ )

1
2

≤
K1∫

1

N− 1
4 dx

xβ(N
1
2 − xγ )

1
2

+ 2N− 1
4

pβ∗ (N
1
2 − pγ∗ )

1
2

,
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where 1≤ p∗ ≤ K1 is such that the maximum of x−β(N 1/2 − xγ )−1/2 is attained at
x = p∗. By a very crude estimate without searching for the actual value of p∗, the
second term is O(N−1/6). The substitution xγ = N 1/2y in the integral leads to

K1∫

1

N− 1
4 dx

xβ(N
1
2 − xγ )

1
2

≤ N
1−β−γ

2γ

γ

1∫

N− 1
2

y
1−β
γ

−1dy

(1− y)
1
2

.

As N →+∞ the integral is O(1) for 0<β <1, O(log N ) for β =1, and O(N
β−1
2γ )

for β >1. Taking into account the behavior of the prefactor, assumption (4) is sat-
isfied if β >1−γ .
In the second part, we have

K2∑

k=K1+1

N− 1
6

kβ
≤ N− 1

6

(K1 +1)β
+

K2∫

K1+1

N− 1
6 dx

xβ
,

where (N 1/2+N−1/6)1/γ −1≤K2≤ (N 1/2+N−1/6)1/γ . The first term is O(N
−γ−3β

6γ ),
giving no condition on β. For β =1, the integral can be estimated as

K2∫

K1+1

N− 1
6 dx

xβ
≤

(N
1
2 +N− 1

6 )
1
γ∫

(N
1
2 −N− 1

6 )
1
γ

N− 1
6 dx

xβ

≤ N− 1
6

|1−β|
∣∣∣∣(N

1
2 + N− 1

6 )
1−β
γ − (N

1
2 − N− 1

6 )
1−β
γ

∣∣∣∣

= N
3−3β−γ

6γ

|1−β|
∣∣∣∣
2(1−β)

γ
N− 2

3 +O(N− 4
3 )

∣∣∣∣=O(N
3−3β−5γ

6γ )

For β = 1 the integral is o(N−1/6). Therefore the condition on β reads β > 1−
5γ /3, which is less restrictive than β >1−γ from the first part. Using analogous
estimates, it can be verified that the conditions on β from the third and fourth part
are also weaker. Therefore, we will make the assumption β > 1− γ to guarantee
that the condition (4) holds, and therefore the statement of Theorem 1 holds.

5.5. PERTURBATIONS OF ANHARMONIC OSCILLATORS

Now we make a few remarks to extend the results of [4]. We perturb self-adjoint
operators in L2(R):

A=− d2

dx2
+|x |β, β ≥2,

Dom(A)={ψ ∈W 2,2(R) : |x |βψ ∈ L2(R)}, (29)
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a(ψ,ψ)=‖ψ ′‖2 +‖|x | β
2 ψ‖2,

Dom(a)={ψ ∈W 1,2(R) : |x | β
2 ψ ∈ L2(R)}.

The spectrum of A is discrete and eigenvalues are simple. Moreover, eigenvalues
μn and normalized eigenfunctions φn satisfy

lim
n→∞

(
2λ

2+β
2β
n �β −

(
n+ 1

2

)
π

)
=0 with �β =2

1∫

0

(1− xβ)
1
2 dx, (30)

|φn(x)|≤Cλ
1
2β − 1

4
n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λn − xβ)−
1
4 , 0≤ x <λ

1
β
n − δn,

(λn −|λ
1
β
n − δn|β)−

1
4 , λ

1
β
n − δn ≤ x ≤λ

1
β
n + δ

(1)
n ,

exp

(
− ∫ x

λ

1
β
n

(tβ −λn)
1
2 dt

)

(xβ −λn)
1
4

, x >λ
1
β
n + δ

(1)
n ,

(31)

where δn and δ
(1)
n are defined by

λ

1
β
n∫

λ

1
β
n −δn

(λn − xβ)
1
2 dx =1,

λ

1
β
n +δ

(1)
n∫

λ

1
β
n

(xβ −λn)
1
2 dx =1 (32)

and satisfy δn, δ
(1)
n =O(λ

− 1−β
3β

n ) and δ−1
n , (δ

(1)
n )−1 =O(λ

1−β
3β
n ), see [14,30], [31, Section

22.27] and [24] for more details.
The growth condition on eigenvalues implies the existence of constant C >0 and

N ∈N, both depending on β, such that for all n> N

λn+1 −λn ≥Cnα−1, with α = 2β
β +2

,

cf. [4, Section 8.2]. Therefore, if β ≥2, the growth condition on μn in (1) is satis-
fied.
As a perturbation we consider form b2, cf. (22), generated by a function poten-

tial V ∈ L(p, τ ), cf. (23), and formulate an analogous result to Theorem 2 for har-
monic oscillator.

THEOREM 3. Let A be the anharmonic oscillator, cf. (29), and V ∈ L(p, τ ) with
1≤ p<∞, τ ≥0 and τ/(β +2)+ t (2p, β)<0, where

t (p, β) :=
⎧
⎨

⎩
− 1

6

(
1− 4(β−1)

β+2
1
p

)
, 1≤ p<2,

− 2
β+2

1
p , 2≤ p≤∞,

(33)

Then the statement of Theorem 1 holds for T = A+V defined as a sum of forms.
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Proof. The proof follows the lines of the one of Theorem 2, but the estimate for
φn , n∈N, n>1, is used,

‖φn(x)(1+|x |2) τ̃
2 ‖Lq̃ ≤C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n
2

β+2

(
τ̃− 1

p̃

)

, 2≤ p̃<4,

n
2

β+2

(
τ̃− 1

4

)

log n, p̃=4,

n
− 1

6+ 2
β+2

(
τ̃+ β−1

3 p̃

)

, p̃>4,

(34)

where 1/q̃ +1/ p̃=1/2. If V ∈ L(p, τ ), then the same procedure as in (27) gives

|b2(φm, φn)|≤C‖φm(x)(1+|x |2) τ
4 ‖L2q‖φn(x)(1+|x |2) τ

4 ‖L2q ,

where 1/p+1/q=1, and the claim is then obtained from inequalities (34) with τ̃ =
τ/2 and q̃ =2q, i.e. p̃=2p.

6. Conclusions

The positive results, i.e. the claims that the eigensystem of T contains a Riesz
basis, are obtained if the local subordination condition in the sense of operators
(2), used in [3,4,26], or in the sense of forms (4) is satisfied. The usual subordi-
nation condition in the sense of operators or forms, cf. (5), is used in previous
works [5,20,32] where no claims on the Riesz basisness for the perturbations of the
harmonic oscillator are given (except a weaker result of Riesz basis of subspaces
for bounded perturbations, cf. [5]). As it follows from [24, Theorem 2.6], Equation
(2.18), the example

− d2

dx2
+ x2 +2ix,

shows that the subordination does not help to claim even the basisness of eigen-
system, since in this case the perturbation 2ix is subordinated; however, the norms
of Riesz projections Pn grows in n, namely

lim
n→∞

1√
n
log ‖Pn‖=2

3
2 .

In fact, various rates of spectral projection growth can be obtained by subordi-
nated perturbations of harmonic and anharmonic oscillators, cf. [24].
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