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Abstract. We define “population” of Vogel’s plane as points for which universal character
of adjoint representation is regular in the finite plane of its argument. It is shown that they
are given exactly by all solutions of seven Diophantine equations of third order on three
variables. We find all their solutions: classical series of simple Lie algebras (including an
“odd symplectic” one), D2,1,λ superalgebra, the line of sl(2) algebras, and a number of iso-
lated solutions, including exceptional simple Lie algebras. One of these Diophantine equa-
tions, namely knm=4k+4n+2m+12, contains all simple Lie algebras, except so(2N +1).
Among isolated solutions are, besides exceptional simple Lie algebras, so called e7 1

2
algebra

and also two other similar unidentified objects with positive dimensions. In addition, there
are 47 isolated solutions in “unphysical semiplane” with negative dimensions. Isolated solu-
tions mainly belong to the few lines in Vogel plane, including some rows of Freudenthal
magic square. Universal dimension formulae have an integer values on all these solutions
at least for first three symmetric powers of adjoint representation.
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1. Introduction

In 1974 ’t Hooft introduced [7] now famous 1/N expansion of perturbative SU(N )

gauge theories as a step towards gauge/string duality. This requires extension of
quantum averages of gauge-invariant quantities to continuous values of rank N . It
appears that similar extension of SO(N ) and Sp(N ) theories leads to their dual-
ity [15] under N → −N transformation (which is a symmetry of SU(N ) theory).
This raises the question whether this duality can be included into some wider con-
nection between gauge theories with different groups. This remained an unproven
hypothesis until in 1995 Pierre Vogel in his study [23] (about which we became
aware in 2011) of Vassiliev’s finite invariants in knot theory derived a “universal”
expression for dimensions of simple Lie algebras g:

dim g= (α −2t)(β −2t)(γ −2t)
αβγ

(1)

t =α +β +γ (2)
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Here α,β, γ are projective parameters of Vogel’s plane which parameterize simple
Lie algebras according to Vogel’s Table I. Vogel plane is defined [13,23] as pro-
jective plane factorized over all permutations of its three projective parameters:
P2/S3.
Evidently, (1) points in desired direction of “unification” of simple Lie algebras

and perhaps on a unification of their applications. Let’s give more detailed defini-
tion of parameters and their values for simple Lie (super)algebras.
Let 2t be the value of (arbitrarily normalized) second Casimir operator on an

adjoint representation ad of some simple Lie algebra over, say, complex numbers
field. The symmetric square of ad has decomposition [23]:

Sym2ad=1+Y2(α)+Y2(β)+Y2(γ ), (3)

4t −2α, 4t −2β, 4t −2γ (4)

where the last row contains values of the same Casimir operator on representa-
tions Y2(α),Y2(β),Y2(γ ) respectively. Actually (4) is definition of parameters, and
one can show that

α +β +γ = t (5)

With these definitions Vogel’s result is Table I. For exceptional line Exc(n) n=
−1,−2/3,0,1,2,4,8 for sl(2),g2, so(8), f4, e6, e7, e8 algebras, respectively. Actually
definitions can be extended [23] to simple superalgebras. It appears that superal-
gebra D2,1,λ occupies line α + β + γ = 0, but other superalgebras don’t give new
points on Vogel’s plane, e.g. superalgebras sl(p|q) have parameters (−2,2, p− q),
etc., (see also Table 2 in [20]). Note that values of parameters agree with N →
−N duality: for sl(N ) they are self-dual, if multiplied on (−1) and α,β switched,
parameters for so(N ) under change of sign of N go into those of sp(N ) if mul-
tiplied on (−1/2) and α,β switched. So, due to this relation sp(N )= so(−N ) (see
[1,2,9,15,18]) we shall use below only the notation of orthogonal algebras so. Note
also that all exceptional simple Lie algebras in Table I belong to the line γ =2(α+
β). This was the basis of the Deligne’s hypothesis [3,5] that they combine into
series of Lie algebras. He assumed an existence of tensor category, corresponding
to the line γ = 2(α + β), such that the tensor products of corresponding adjoint

Table I. Vogel’s parameters for simple Lie algebras

Algebra/parameters α β γ t =α +β +γ Line

sl(N ) −2 2 N N α +β =0
so(N ) −2 4 N −4 N −2 2α +β =0
sp(2n) −2 1 n+2 n+1 α +2β =0
Exc(n) −2 n+4 2n+4 3n+6 γ =2(α +β)

D2,1,λ −2 β −β +2 0 α +β +γ =0
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representations decomposes into irreducible modules in a uniform way. Formulas
of the dimensions of these modules are given by ratio of the products of linear
functions over the parameter on this line (see also description of Deligne’s hypoth-
esis in [14,23]).
We shall call universal those quantities in simple Lie algebras (e.g. dimensions

of representations, eigenvalues of Casimir operators, etc.) which are given by some
“reasonable” functions (rational, analytical, etc.) of universal parameters such that
at their values from Table I they give values of that quantity for a corresponding
simple Lie algebra. An example of universal quantity is an eigenvalue of the above-
mentioned second Casimir operator on adjoint representations, which is given by
2t function. An important universal quantity is the dimension of adjoint represen-
tation (1).
The abovementioned hypothesis on gauge theories (now formulated as “univer-

sality” of gauge theories) has been partially confirmed in works [16,19], where
some quantities in Chern–Simons theory on 3d sphere have been shown to be uni-
versal: central charge, perturbative [19] and non-perturbative [16] partition func-
tions, etc. Also a universal expression has been established [20] for the eigenval-
ues of higher Casimir operators on adjoint representation. In [17] the connec-
tion of universal partition function with number theory functions (Barnes’ multiple
gamma functions) is established. Another connection with the number theory will
be revealed below, where the parameters of Table I are expressed in terms of solu-
tions of certain Diophantine equations.
In this paper we continue to investigate different aspects of universality in the

simple Lie algebras and gauge theories. Our focus is the “road map” of Vogel’s
plane, which consists of a “population” (“interesting” points on Vogel’s plane, see
definition below) and “roads”, the term that we coin for the lines, to which large
number of the populated points belong to.
It is already known, that Vogel’s approach reveals some objects, which behave

like simple Lie algebras, in some respects. These are an “odd symplectic alge-
bras” [21], i.e. sp(N ) points (−2,1, N/2+2) with odd N and e7 1

2
[12,25,26] point

(−1,5,8). Corresponding points give integers, when substituted in universal dimen-
sion formulae [13]. In the present paper we have discovered more interesting points
on Vogel’s plane, and their connections, as well as lines, passing through many of
these points. Last feature is making contact with Freudenthal’s magic square.
Our main tool will be one of the key ingredients in universal gauge theories,

namely a universal expression f (x) for character of adjoint representation of sim-
ple Lie algebra, restricted to the line xρ (see e.g. [6], where ρ is Weyl vector in
roots space, half of the sum of all positive roots), derived in [19]:

χad(xρ)= r +
∑

μ∈R

ex(μ,ρ) ≡ f (x) (6)

f (x)= sinh(x α−2t
4 )

sinh( xα4 )

sinh(x β−2t
4 )

sinh(x β
4 )

sinh(x γ−2t
4 )

sinh(x γ
4 )

(7)
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We shall call this expression the universal character for adjoint representation.
With the help of the universal character f (x) we define “population” as all

points for which f (x) is non-singular in finite x plane, exactly as it happens for
simple Lie algebras, as it is evident from the definition of character (6). Denomina-
tors for corresponding points cancel with numerators, and f (x) becomes the sum
of exponents in (6).
This requirement appears to be strong enough to restrict points on Vogel’s plane

mainly to those from Table I. However, there are some very interesting additions
and details of this description. The most interesting one is its equivalence to some
Diophantine equations.
Parameters in (7) should be non-zero, so if one of the numbers 2t − α,2t −

β,2t − γ is zero then the character is zero. Due to the permutation-invariance all
these points belong to the same line, say α +2β +2γ =0 on the Vogel plane which
we denote as 0d line. When 2t −α,2t −β,2t −γ are non-zero each zero of sines in
the denominator should be canceled by zero of numerator, which means that for
each value of σ =α,β, γ at least one of the ratios (2t −α)/σ, (2t −β)/σ, (2t −γ )/σ

should be integer.
The complete matrix of these ratios

Rσ,κ = (2t −κ)/σ,

where κ, σ = α,β, γ , can be easily calculated for any given simple Lie algebras,
examples for sl(n) and g2 are given in Tables II and III.
We see that in each row there is an integer, as stated. The same happens for

all other simple Lie algebras. We shall call a “pattern” the set of places, one in
the each row, of matrix Rκ,σ where integers are present. The same algebra can
appear in different patterns. For example, exceptional algebra g2 appears only in
one abovementioned pattern, but e7 in this one and two others, also, see below. It
is easy to deduce, that there are 7 different, up to permutations, patterns of matrix
R to have integers in each row.
In principle, the specified property is necessary, but not sufficient, for the charac-

ter to be regular. Extra care should be taken for the cases when the ratio of some

Table II. Matrix R for sl(N )

−(N +1) 1− N − N
2

N +1 N −1 N
2

2+ 2
N 2− 2

N 1

Table III. Matrix R for g2

−5 − 7
3 − 8

3

3 7
5

8
5

15
4

7
4 2
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parameters, say α/β, becomes integer. If that happens in the pattern with integer
Rα,κ and Rβ,κ (same κ) then the denominator in f (x) can have a second-order
zero, which cannot be canceled by the one first order zero in numerator. However,
this does not happen. More exactly, below we find solutions for all patterns and
explicitly check that for all of them f (x) is regular, i.e. in all cases some other
numerator “automatically” becomes integer. Partial explanation of this phenomena
is given in the Section 3.3.
The abovementioned seven patterns are the following, all others can be obtained

by permutations, and neither two of these seven are connected by permutation. To
list them we indicate three values of κ, i.e. (κ1, κ2, κ3), for which Rα,κ1 , Rβ,κ2 , Rγ,κ3

are integers (denote them k,n,m respectively):

(α,α,α), (α,α,β), (α,α, γ ), (α,β, γ ), (α, γ, β), (β,α,α), (β, γ,α)

We shall call them 1aaa, 2aab, 3aag, 4abg, 5agb, 6baa and 7bga respectively.
Consider for example the fourth, most symmetric, pattern 4abg. One ha?

(2t −α)= kα, (2t −β)=nβ, (2t −γ )=mγ (8)

or in matrix form in Table IV.
This is a system of three linear equations on three variables α,β, γ , with con-

stant terms equal to zero, so non-trivial solution can exist only if the correspond-
ing determinant is zero. That determinant is a third order polynomial over k,n,m
and equation is

knm= kn+nm+ km+3n+3k+3m+5 (9)

We shall call this equation a Diophantine equation (or condition) for a given
pattern.
This equation can be presented in a an elegant and more memorable form, pro-

vided all integers are not equal to −1:

2
k+1

+ 2
n+1

+ 2
m+1

=1 (10)

α = 2t
k+1

, β = 2t
n+1

, γ = 2t
m+1

(11)

where we also present the solution for universal parameters in that case. In such
form this Diophantine condition looks classical, although we could not find dis-
cussion in literature concerning exactly this equation. Let’s stress that we present

Table IV. Matrix form of Equation (8)

1− k 2 2 α

2 1−n 2 β =0
2 2 1−m γ
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this form of equation just for its simplicity, with the correct form being (9), which
makes sense at all values of integers k,n,m.

Another, normalized form, i.e. that without second order terms, can be derived
by variables shift k= k̃+1,n= ñ+1,m= m̃+1, which leads to the equation k̃ñm̃=
4m̃+4ñ+4k̃+16.
In the next section we list all seven Diophantine equations in both initial and

normalized forms. Next we prove Proposition 1, which provides an effective tool
for finding all solutions of these equations. All solutions are presented, according
to the Proposition 2, in Tables VII, VIII, IX, X, XI, XII, XIII and XIV. Section 2
contains also Proposition 3 which states that each solution of Diophantine equa-
tions provides the solution of initial problem of finding points on Vogel’s plane for
which the character f (x) is a regular function on the entire finite x plane. In Sec-
tion 3 we discuss some features of the solutions obtained: lines on Vogel’s plane, to
which many of these solutions belong to, Z2 symmetry of 3aag pattern, dimension
formulae, universal subgroup, etc. Most of these topics require further investiga-
tion. Section 4 contains discussion on the possible directions of development.

2. Diophantine Equations

In a similar way one can deduce Diophantine conditions for all other patterns. In
each case one obtains the third order equation, which we present in the Table V
(corresponding row of the second column). In the third column we present trans-
formation (shift) of variables, which leads to a normalized form of equation, given
in the last column.
We solve all these equations in the normalized form with the help of the follow-

ing proposition.

PROPOSITION 1. Let us have the following equation for integer variables k,n,m
with the integer coefficients a,b, c,d:

knm=ak+bn+ cm+d

Table V. Diophantine equations

Pattern Diophantine Eq.: kmn= Shift: (k,n,m)= Normalized form:
k̃ñm̃=

1aaa mn+2kn+2km (k̃, ñ, m̃)+ (1,2,2) 4k̃+2m̃+2ñ+8
2aab mn+2kn+2km+2n−2k (k̃, ñ, m̃)+ (1,2,2) 2k̃+4ñ+2m̃+10
3aag mn+ kn+2km+3n+2k (k̃, ñ, m̃)+ (1,2,1) 4k̃+4ñ+2m̃+12
4abg nm+ km+ kn+3m+3n+3k+5 (k̃, ñ, m̃)+ (1,1,1) 4m̃+4ñ+4k̃+16
5agb mn+2kn+2km+2n+2m−3k−5 (k̃, ñ, m̃)+ (1,2,2) 4m̃+4ñ+ k̃+8
6baa 2mn+2kn+2km−2n−3m (k̃, ñ, m̃)+ (2,2,2) m̃+2ñ+4k̃+6
7bga 2mn+2kn+2km−2n−2m−2k+5 (k̃, ñ, m̃)+ (2,2,2) 2m̃+2ñ+2k̃+9
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Each of its solutions belongs to either series solutions (first two cases below), or
to isolated solutions (the third case):
1. Classical series: knm=0.
2. Non-classical series: (kn− c)(km−b)(nm−a)=0.
3. Isolated solutions:

knm �=0

(kn− c)(km−b)(nm−a) �=0

|k| ≤ K , |n| ≤ N , |m| ≤ M

where

K = (|a|+1)(|b|+ |c|)+|d|
N = (|b|+1)(|a|+ |c|)+|d|
M = (|c|+1)(|a|+ |b|)+|d|

Proof. It is sufficient to prove that if some solution (k,n,m) does not belong to
the first two cases, i.e. classical and non-classical series, then it belongs to the third
case.
We have

k(nm−a)=bn+ cm+d

Next, x = nm − a is non-zero (otherwise solution belongs to the non-classical
series), so minimal value of |x | is 1. For the fixed x maximal value of |n| and |m|
is not greater than |x |+ |a|, (since m �= 0 and n �= 0, otherwise we have the classi-
cal series). From this we obtain an upper bound for |k|: |k|= |(bn+ cm + d)/x | ≤
(|b|(|x | + |a|) + |c|(|x | + |a|) + |d|)/|x | ≤ (|b| + |c| + |ab| + |ac| + |d|) = K . Similarly
we get |n| ≤ N , |m| ≤ M .
Few comments will be pertinent here. The first is on designations of three cases.

As we shall see below, solutions belonging to the first case correspond to the clas-
sical algebras: sl, so, sp, hence the name. Solutions from the second case corre-
spond to the superalgebra D2,1,λ, lines 3d and 0d (see below), and depend on the
arbitrary parameter(s), that is why we call them series. Solutions of the third type
particularly contain exceptional algebras.
Second, Proposition 1 provides an effective way for finding all solutions. Indeed,

first case leads to the easily solvable linear equations on two integers with the
integer coefficients. Second case gives the system of two equations, linear and
quadratic, over two variables, obviously easily solvable. The third case restricts pos-
sible remaining solutions to finitely many points, which can be checked by the
computer. In our case bounds are very low, not greater than 56, so the number
of points to be checked is about one million, which requires few minutes of the
computing time.
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Third, same algebras can appear both in series and as an isolated solution. I.e.
different solutions of Diophantine equations can give the same points in Vogel’s
plane. E.g. algebra so(8) with (α,β, γ ) ∝ (−2,4,4) appears in pattern 3aag as
a classical series solution (k,n,m) = (2,2,−7) (i.e. (k̃, ñ, m̃) = (1,0,−8)) and as
an isolated solution (k,n,m)= (2,−4,2), (i.e. (k̃, ñ, m̃)= (1,−6,1)), which doesn’t
belong to the classical or non-classical series.
Using Proposition 1, we get

PROPOSITION 2. All essentially different solutions of Diophantine equations (V)
are listed in Tables VII (series solutions) and Tables VIII, IX, X, XI, XII, XIII and
XIV (isolated solutions). “Essentially different” means that for patterns 1aaa, 4abg,
5agb and 7bga, as described below, from solutions with permuted k,n,m giving the
same points on Vogel’s plane, we present in the tables only one representative.

Finally, the following Proposition 3 shows that we completely solve an initial
problem of finding all points on Vogel’s plane with the regular character: they are
given exactly by all solutions of seven Diophantine equations:

PROPOSITION 3. Equation (V) are both necessary and sufficient for the regularity
of f (x), which for each solution becomes a finite sum of exponents eAx .

Necessity was discussed above, sufficiency is proved by the direct case-by-case
check.
In the Table VII we list all series solutions for the initial parameters (k,n,m)

of all patterns, in Tables VIII, IX, X, XI, XII, XIII and XIV isolated solutions
are listed. The solutions for normalized parameters can be easily obtained by the
shift given in Table V. Besides the solution (k,n,m), Tables contain corresponding
solution for the projective parameters (in some convenient normalizations, usually
when they are integers without common divisor), dimension (1) of that solution
(column “Dim”), column “Rank” is equal to the constant term in function f (x)
represented as a finite sum of exponents (cf. (6)). Column “Lines” for the isolated
solutions contains notation of lines, to which given solution belongs. Correspond-
ing lines are described in the next section.
Below we briefly comment solutions of all seven Diophantine equations.
Equations for pattern 1aaa are

2t −α = kα, 2t −α =nβ, 2t −α =mγ (12)

They are symmetric w.r.t. the transposition of n and m with simultaneous trans-
position of α,β, so we present isolated solutions with n ≥ m, only. Similarly, in
the series solutions we present only one solution among those, connected by sym-
metry transformation (the same for similarly symmetric cases below). Pattern 1aaa
contains classical series sl(2N ), so(2k+4) and non-classical series 0d, i.e. entire line
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α+2β +2γ =0 with zero dimension and zero character function f (x). Among iso-
lated solutions, Table VIII, there is a solution (α,β, γ )∝ (1,−3,−5) of dimension
99 and rank 7, which we denote as X2.
Beside these solutions, which have positive dimensions according to the dimen-

sion formula (1), we observe an appearance of other solutions. We call them Y -
objects and numerate according to their dimensions in descending order. They have
all projective parameters of the same sign and correspondingly negative dimension.
The total number of them is 47, their nature is not known, but they have some
features of the simple Lie algebras. In particular, they give integers when substi-
tuted into the universal dimension formulae [13], at least in the first three orders,
and probably in all cases when it makes sense. Below we shall call the semiplane
of the Vogel’s plane with the different signs of parameters the physical semiplane,
and that with same signs of parameters an unphysical semiplane. Dimension (1)
can be positive for points in the physical semiplane only.
Pattern 2aab has an equations

2t −α = kα, 2t −α =nβ, 2t −β =mγ (13)

and contains classical series sl(2N ), so(2k + 4), so(2N + 1) and points (−n,3,2n−
3) as non-classical series, which belong to the 3d line α +β + 2γ = 0. Actually all
points on the 3d line have dim=3, rank=1, and character function

f (x)= sinh(x α−2t
4 )

sinh( xα4 )

sinh(x β−2t
4 )

sinh(x β
4 )

sinh(x γ−2t
4 )

sinh(x γ
4 )

(14)

= sinh(x 3α
4 )

sinh( xα4 )

sinh(x −γ
4 )

sinh(x β
4 )

sinh(x −β
4 )

sinh(x γ
4 )

(15)

= e
xα
2 +1+ e−

xα
2 (16)

i.e. it is the whole line of sl(2) algebras. All points on the 3d line appear as solu-
tions in some patterns below.
Isolated solutions, Table IX, contain, among others, the points X2, which

appears earlier in the pattern 1aaa, and X1 with dim= 156 and rank= 8, as well
as the abovementioned point (−8,1,−5) of e7 1

2
.

Pattern 3aag has an equations

2t −α = kα, 2t −α =nβ, 2t −γ =mγ (17)

which contain classical series sl(N ), sl(2N ), so(2k+4), as non-classical series super-
algebra D2,1,λ, integer points (−2,−2k, k + 1) on the 3d line, and points (2(m +
1),−(m + 3),2) on the 0d line. The novel element in the isolated solutions,
Table X, is that both e6 and e8 appear twice, with the essentially different (k, l,m)

but, of course, the same (α,β, γ ).
We denote these solutions as e6(1), e6(2) and e8(1), e8(2). These are different

descriptions of the same algebra. The descriptions are really different, which can
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be understood e.g. from the expression for the dimension of algebra in terms of
k,n,m. These formulae are given in the Section 3.3, for 3aag pattern it is

dim(g)=m(k−n− kn)

Thus, for e.g. e8 the same dimension’s integer 248 is represented as 4×62 for e8(1)
and as 2×124 for e8(2).
Concluding with the pattern 3aag, one may remark that it contains all simple

Lie algebras except the odd orthogonal so(2n+1).
Pattern 4abg, discussed above, contains as solutions the classical series sl(N ),

the superalgebra D2,1,λ, as well as a number of isolated solutions, Table XI, par-
ticularly e8, e6 and so(8). Since Diophantine equation is symmetric w.r.t. the per-
mutations of k,n,m with corresponding permutation of projective parameters, we
present isolated solutions with k ≥ n ≥ m only.
For the fifth pattern 5agb with equations

2t −α = kα, 2t −γ =nβ, 2t −β =mγ (18)

we have a symmetry between interchange of n and m, which change α,β, so we
list solutions with n ≥ m only. The classical series are sl(N ), so(4N ), non-classical
series are represented by 3d line, isolated solutions are combined in the Table XII.
For the sixth pattern 6baa

2t −β = kα, 2t −α =nβ, 2t −α =mγ (19)

we have classical series so(2N + 1), so(4N ) (twice), and non-classical 3d line
((−m−2,m,1) points) and 0d line ((2,2−2k,2k−3) points). Isolated solution are
given in the Table XIII.
Equations of the last, seventh pattern 7bga

2t −β = kα, 2t −γ =nβ, 2t −α =mγ (20)

are cyclic symmetric w.r.t. the permutation k → n →m → k, which leads to α →
β →γ →α, so isolated solutions that we present contain one representative of each
orbit of cyclic transformations. There are no series solutions for this pattern, and
only few isolated ones are present, Table XIV.
We combine information about the isolated solutions with the positive dimen-

sion in the physical Vogel semiplane in the Table XV.

3. Properties and Relations of Population of Vogel’s Plane

In this section we describe additional properties of solutions, as well as some
hypotheses, which require (and worth) further investigation.
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3.1. ROAD MAP: ROADS

In the previous section we have studied the population of Vogel’s plane, i.e. points
with the non-singular universal character (7). In the present section we are inter-
ested in the roads, connecting these populated points, by which we understand
lines, connecting sufficiently large numbers of them. We say, following [13], that a
collection of points lie on a line in Vogel’s plane (which is a factor projective plane
over group of all permutations of its projective parameters, P2/S3) if some lift of
them to P2 is a collinear set of points.
sl(N ) algebras are located along the line α +β =0, which we shall call SL line,

all so(N ) and sp(N ) algebras—along the line SO : 2α +β = 0. All five exceptional
algebras lie on one line Exc: γ =2(α +β).
The choice of lines is to a large extent arbitrary, we are free to put a line

through any of two points. But the line becomes worth to mention when it con-
tains a large number of populated points, in analogy with the classical series or
exceptional algebras’ lines. In our case we would like to note the following lines:
T line with points satisfying α +2β =γ , F line with the equation α =β +γ , K line
α +2β =2γ , M line 3α =2β +2γ , D line α +β +γ =0, 0d line 2α +2β +γ =0, 3d
line 2α +β +γ =0. In the Tables XI, XII, XIII, XIV and XV it is shown for each
point whether it belongs to one of these lines. We see that a lot of points belong
to these lines, particularly many to the T line. This line T is of particular interest
for us as a line containing the points X1 and X2, and it appears to coincide with
the so-called subexceptional line in [13], denoted there as F33.

One can make a contact with the Freudenthal magic square. The line Exc is the
e8 line of the magic square, line T is the line of e7 family, and line K is the line of
f4 family. Interestingly, the algebras of e6 line of magic square do not constitute a
line on Vogel’s plane (it seems to be an F line, but actually does not coincide with
it). All of this certainly worth further investigation.
One can consider the points of intersection of these lines. Many intersection

points can be found from the Tables, namely in many cases one point belongs to
more than one line, which means an intersection in that point. Actually, the tables
completely answer the question of intersections on the isolated points. Note also
that a “central” point (α,β, γ ) = (1,1,1) with (k,n,m) = (5,5,5) (in all patterns)
does not belong to any of abovementioned lines.

3.2. X1, X2 AND e
7 1
2

e7 1
2
was discovered in [12,26] as a point on an exceptional line, where the dimen-

sion formulae give an integer answer. It is proved to be a Lie algebra “between” e7
and e8 (hence notation) in a following sense: the six-dimensional algebra S (“sexto-
nions”) in between the quaternions and octonions is identified in [12,26] (see also
[8,10]), and the triality construction of exceptional algebras is applied to S to get
an algebra e7 1

2
. The latter appears to be a semidirect product e7 � H56 where H is
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Table VI. Dimensions

Pattern Dim

1aaa k−3m−3km−3n−3kn+4mn
2aab n(k+1)(m−1)+ k
3aag m(k−n− kn)

4abg −knm
5agb −knm
6baa k(3n+2m−nm)

7bga −knm

(56+1)-dimensional Heisenberg algebra, where 56 is an irrep of e7 with an invari-
ant symplectic form.
The dimension formulae work for X1, X2 algebras as well. For example for

X2 we have dimY2(α) = 3927,dimY2(β) = 77,dimY2(γ ) = 945, for X1 dimY2(α) =
10166,dimY2(β)=90,dimY2(γ )=1989, etc.
We have not identified X1 and X2 as some Lie algebras. One can note however

that their dimensions can be represented in a similar to e7 1
2
way: dim(X2)= 99=

66+32+1, where 66 is the dimension of an algebra so(12), 32 is the dimension of
its spinor representation, and dim(X1)=156=91+64+1, where 91 is the dimen-
sion of algebra so(14), 64 is its spinor representation. Moreover, the spinor rep-
resentations 32 of so(12) has an invariant symplectic form, in full analogy with
56 of e7 1

2
(but 64 of so(14) doesn’t1). So, the natural hypothesis is that X2 is the

semidirect product so(12)� H32, where H32 is the Heisenberg algebra based on an
invariant symplectic form in spinor representation. Note that so(12)�H32 (denoted
there D6.H32) already appears in additional row/column of extended magic square
in [12].
Point X1 is also noted in [25], where it is suggested to be a centralizer of unipo-

tent element of e8.

3.3. DIMENSION FORMULAE

Since projective parameters can be expressed through integers k,n,m, we can
express dimensions in terms of that integers, see Table VI.
It is beautiful that dimensions appear as explicitly integer numbers, without the

denominators of dimension formula (1). This gives some (partial) explanation, why
Diophantine conditions actually are sufficient to provide a regularity of character
function f (x).
We see from e.g. expressions for fourth, fifth and seventh patterns, that solu-

tions of Diophantine equations directly give multipliers in some decomposition of
dimension of algebra. For example, dim(e6)=78=−knm=−3×2× (−13), accord-

1I’m indebted to P. Deligne and A. Marrani for pointing this out to me.
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ing to the pattern 4abg, same number is represented in pattern 3aag in two ways:
as 78=m(k−n− kn)=3×26 and as 78=m(k−n− kn)=2×39.
Higher dimension formulae [13,23] probably gives an integers on all solutions, if

not singular. This is directly checked for Y2(α),Y2(β),Y2(γ ) and Y3(α),Y3(β),Y3(γ ).

3.4. UNIVERSALLY CHARACTERIZED SUBALGEBRA AND D2,1,λ, 3D AND 0D LINES

In their work on the universal dimension formulae Landsberg and Manivel [13]
found a special simple subalgebra (simple factor of centralizer of principal sl(2),
see [13] for the exact definition) of simple Lie algebras, universal parameters of
which (α′, β ′, γ ′) are expressed by those of initial algebra in the simple way:

α′ =α (21)

β ′ =γ −β (22)

γ ′ =β (23)

α <0, β >0, γ >β (24)

where the initial parameters are supposed to be ordered in the way shown in the
last line.
The application of this transformation to D2,1,λ superalgebra is quite interesting.

For this superalgebra α +β +γ =0, for primed parameters one get α′ +β ′ +2γ ′ =
α +β +γ =0, which is a characteristic equation of 3d line from Table VII. This is
an explanation of appearance of 3d line on Vogel’s plane.
Similarly, applying transformation to the 3d line we get 2α′ +β ′ +2γ ′ =2α+β +

γ (=0 on 3d line), which means that if point with initial parameters belongs to 3d
line, then primed one belongs to 0d line, which is an explanation of the appearance
of 0d line on Vogel’s plane.
Similarly, applying this transformation to Y -objects, we obtain the whole tree of

relations between Y -objects, e.g. Y11 →Y1.
However, not always this transformation gives other objects in Vogel’s plane. E.g.

from 0d line we get line α′ +2β ′ +4γ ′ =0 which does not correspond to any of the
solution above. Similarly Y1 doesn’t pass into any of the objects listed in this paper.

3.5. Z2 SYMMETRY OF PATTERN 3AAG

In the normalized form of Diophantine equation of pattern 3aag we notice a sym-
metry under the interchange of k̃ and ñ. In the language of initial k and n it is
a transformation (k,n,m)↔ (n − 1, k + 1,m). Under this transformation points in
Vogel’s plane do really change their places so this transformation in fact connects
different algebras.
For the points in the physical semiplane we get transpositions sl(2n)↔ so(2n+

2), sl(k + 1)↔ sl(k), X1 ↔ e8(1), f4 ↔ e6(2), so(10)↔ e6(1), e7 ↔ e7,g2 ↔ so(8), e7 1
2
↔
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e8(2),0d1↔0d4,0d2↔0d3,0d5↔0d6. It would be interesting to connect this trans-
formation to the known one(s) in the theory of simple Lie algebras.

4. Conclusion

The main result of present paper is the established connection between the solu-
tions of certain Diophantine equations, population of Vogel’s plane (defined above)
and simple Lie (super)algebras. Some additional objects, similar in some respects
to the simple Lie algebras, appear in this classification.
The starting point of the research is the universal character f (x) for the adjoint

representations, (7). Such universal characters (i.e. character, restricted to Weyl line
and expressed in terms of universal parameters) can be derived for all representa-
tions having a universal dimension formula. E.g. universal character for represen-
tation Y2(α) is

χY2(α)(xρ)=

− sinh[ xt2 ]sinh[ x(β−2t)
4 ]sinh[ x(γ−2t)

4 ]sinh[ x(β+t)
4 ]sinh[ x(γ+t)

4 ]sinh[ x(3α−2t)
4 ]

sinh[ xα4 ]sinh[ xα2 ]sinh[ xβ4 ]sinh[ xγ4 ]sinh[ x(α−β)
4 ]sinh[ x(α−γ )

4 ] (25)

and permutations of this for Y2(β),Y2(γ ). Compare this with Vogel’s expression for
dimension of Y2(α) [23]:

dimY2(α)=−
(
t (β −2 t) (γ −2 t) (β + t) (γ + t) (3α −2 t)

α2 (α −β) β (α −γ ) γ

)
(26)

If for a given Lie algebra we consider decomposition of the product of repre-
sentations into the sum of representations, the same relation holds for the corre-
sponding characters. Deligne [4] suggested that if all characters involved are uni-
versal, then that relation holds for the arbitrary points in the Vogel’s plane. E.g.
for (3) it would mean

χSym2(ad)
(xρ)=χY2(α)(xρ)+χY2(β)(xρ)+χY2(γ )(xρ)+1 (27)

for all points in Vogel’s plane, not only for those from Table I. Deligne [4], in par-
ticular, completely checked the version of his hypothesis, restricted to sl(N ) line.
Relation (27) holds, also, provided one expresses the l.h.s by f (x):

χSym2(ad)
(xρ)= 1

2
( f 2(x)+ f (2x)) (28)

Next, derivations of universal dimension formulae in [13] and universal character
of adjoint in [19] (and (25)) are based on the Weyl character formula and produce
a unique answer. However, if we ask whether one can deform them in such way
that their values at true simple Lie algebras remains unchanged, the answer would
be positive. One can easily construct a symmetric polynomial over projective coor-
dinates of order 16, which is zero on all of the lines from Table I.
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On the other side, it is not possible to get a unique definition [11,24] of the
group weights of diagrams on entire Vogel’s plane, based on Vogel’s 
-algebra,
due to constraint found by Vogel [23]. That constraint restricts values of projec-
tive parameters at the most to few lines, including classical and exceptional ones.
One can imagine definition of unique universal characters, independent from

that in [19], based on Deligne’s hypothesis, so that characters’ relations of that
hypothesis partially play the role of definitions and partially the check for such
defined characters.
These considerations worth further investigation and can be relevant for the

problem of universality of Yang–Mills theory.
Another direction of development is an investigation of the role of Yn points,

which seem to be an interesting and unique objects. One may speculate on their
connection with Rozansky–Witten non-Lie-algebraic weights in knot theory, in this
connection see [22].
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Appendix: Tables of Solutions of Diophantine Equations

See Tables VII, VIII, IX, X, XI, XII, XIII, XIV and XV.

Table VII. Points in Vogel plane: series

g α,β, γ Patterns k,n,m Dim Rank

sl(N ) 2,−2, N 3aag N −1,−N +1,1 N2 −1 N −1
−2,2, N 4abg −N −1, N −1,1
N ,−2,2 5agb 1,1− N , N +1

sl(2N ) N ,1,−1 1aaa 1,−N , N (2N )2 −1 2N −1
2aab 1, N ,1−2N
3aag 1, N ,−2N −1

http://arxiv.org/abs/1209.5709
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Table VII. continued

g α,β, γ Patterns k,n,m Dim Rank

so(2k+4) 2, k,−1 3aag k,2,−2k−3 (k+2)(2k+3) 2k+2
2,−1, k 1aaa k,−2k,2
2, k,−1 2aab k,2,−2− k

so(2N +1) −2,4,2N −3 2aab −2N , N ,2 N (2N +1) N
−4,2,3−2N 6baa N ,3−2N ,2

so(4N ) −1,2,2N −2 5agb 1−4N , N ,2 2N (4N −1) 2N
2N −2,2,−1 6baa 2, N ,−2N
−1,2,2N −2 6baa N ,2,4−4N

D2,1,λ α +β +γ =0 4abg −1,−1,−1 1 1
−n,1, (n−1) 3aag −1,n,−1

3d 2α +β +γ =0 5agb −3,1,1 3 1
−n,3,2n−3 2aab −3,n,1
−2,−2k, k+1 3aag k,1,−3
−m−2,m,1 6baa 1,1,m

0d α +2β +2γ =0 1aaa 0,0,0 0 0
2(m+1),−(m+3),2 3aag 0,0,m
2,2−2k,2k−3 6baa k,0,0
2m−2,−m−2,3 2aab 0,0,m

Table VIII. Isolated solutions of 1aaa pattern

k n m α β γ Dim Rank Algebra Lines

2 3 −12 −6 −4 1 133 7 e7 Exc, T
−15 5 3 1 −3 −5 99 7 X2 T
−6 4 3 2 −3 −4 21 3 so(7) SO, T, K
−3 1 −3 −1 3 −1 3 1 3d1 3d
−3 3 3 1 −1 −1 3 1 sl(2) 3d, T
−2 1 −4 −2 4 −1 3 1 so(3) 3d
5 5 5 1 1 1 −125 −19 Y1 ?
6 6 4 2 2 3 −132 −10 Y4 K
4 8 4 2 1 2 −144 −14 Y10 K, M
3 6 6 2 1 1 −147 −17 Y11 F
10 5 4 2 4 5 −153 −7 Y13 K
9 9 3 1 1 3 −189 −17 Y21 T
3 12 4 4 1 3 −195 −11 Y23 F, K
6 12 3 2 1 4 −195 −13 Y24 T
12 8 3 2 3 8 −207 −7 Y26 T
5 15 3 3 1 5 −221 −11 Y28 T
2 8 8 4 1 1 −242 −18 Y31 Exc
2 12 6 6 1 2 −272 −14 Y38 Exc
21 7 3 1 3 7 −285 −11 Y39 T
4 24 3 6 1 8 −319 −9 Y42 T, M
2 20 5 10 1 4 −377 −11 Y45 Exc
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Table IX. Isolated solutions of 2aab pattern

k n m α β γ Dim Rank Algebra Lines

2 −16 5 −8 1 −5 190 8 e7 1
2

Exc

4 −16 3 −4 1 −7 156 8 X1 T, M
2 3 −14 −6 −4 1 133 7 e7 Exc, T
−15 3 3 1 −5 −3 99 7 X2 T
2 −6 4 −6 2 −5 52 4 f4 Exc, K
3 −6 3 −2 1 −3 45 5 so(10) SO, T, F
5 5 5 1 1 1 −125 −19 Y1 ?
4 5 6 10 8 7 −129 −1 Y2 M
6 6 4 2 2 3 −132 −10 Y4 K
7 4 5 4 7 5 −135 −3 Y7 K
4 4 8 2 2 1 −144 −14 Y10 K, M
3 6 7 2 1 1 −147 −17 Y11 F
12 4 4 2 6 5 −168 −6 Y16 K
4 12 4 6 2 7 −184 −6 Y17 K, M
10 8 3 4 5 13 −186 −2 Y18 T
9 3 7 1 3 1 −189 −17 Y21(1) T
9 9 3 1 1 3 −189 −17 Y21(2) T
3 4 13 4 3 1 −195 −11 Y23(2) F, K
3 12 5 4 1 3 −195 −11 Y23(1) F, K
6 3 10 2 4 1 −195 −13 Y24 T
12 3 6 2 8 3 −207 −7 Y26 T
15 6 3 2 5 9 −207 −5 Y27 T
5 3 13 3 5 1 −221 −11 Y28 T
7 14 3 2 1 5 −231 −13 Y30 T
2 8 11 4 1 1 −242 −18 Y31 Exc
2 9 10 18 4 5 −245 −3 Y33 Exc
2 6 16 6 2 1 −272 −14 Y38 Exc
21 3 5 1 7 3 −285 −11 Y39 T
25 5 3 1 5 7 −285 −9 Y40 T
2 14 8 14 2 5 −296 −6 Y41 Exc
4 3 22 6 8 1 −319 −9 Y42 T, M
6 24 3 4 1 9 −342 −10 Y44 T
2 5 26 10 4 1 −377 −11 Y45 Exc
2 24 7 12 1 5 −434 −10 Y46 Exc

Table X. Isolated solutions of 3aag pattern

k n m α β γ Dim Rank Algebra Lines

2 −20 4 −10 1 −6 248 8 e8(1) Exc, M
4 −24 2 −6 1 −10 248 8 e8(2) Exc, M
−25 5 2 1 −5 −8 190 8 e7 1

2
Exc

−21 3 4 1 −7 −4 156 8 X1 T, M
2 3 −19 −6 −4 1 133 7 e7 Exc, T
2 −8 3 −4 1 −3 78 6 e6(1) Exc, F
3 −9 2 −3 1 −4 78 6 e6(2) Exc, F
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Table X. continued

k n m α β γ Dim Rank Algebra Lines

−10 4 2 2 −5 −6 52 4 f4 Exc, K
−9 3 3 1 −3 −2 45 5 so(10) SO, T, F
2 −4 2 −2 1 −2 28 4 so(8) SO, Exc
−5 3 2 3 −5 −4 14 2 g2 Exc, T
−9 −3 0 −1 −3 8 0 0 0d1 0d
−6 −4 0 −2 −3 10 0 0 0d2 0d
−5 −5 0 −1 −1 4 0 0 0d3 0d
−4 −8 0 −2 −1 6 0 0 0d4 0d
−2 4 0 2 −1 −2 0 0 0d5 K, 0d
3 −1 0 −1 3 −4 0 0 0d6 F, 0d
5 5 5 1 1 1 −125 −19 Y1 ?
4 6 5 6 4 5 −130 −4 Y3 M
6 4 6 2 3 2 −132 −10 Y4 K
7 5 4 5 7 8 −132 −2 Y5 M
5 4 7 4 5 3 −133 −2 Y6 K
8 4 5 2 4 3 −140 −8 Y9 K
4 4 9 2 2 1 −144 −14 Y10(1) K, M
4 8 4 2 1 2 −144 −14 Y10(2) K, M
3 6 7 2 1 1 −147 −17 Y11(1) F
7 7 3 1 1 2 −147 −17 Y11(2) F
3 7 6 7 3 4 −150 −4 Y12(1) F
6 8 3 4 3 7 −150 −4 Y12(2) F
3 5 9 5 3 2 −153 −7 Y14(1) F
9 6 3 2 3 5 −153 −7 Y14(2) F
3 9 5 3 1 2 −165 −13 Y15(1) F
5 10 3 2 1 3 −165 −13 Y15(2) F
14 4 4 2 7 6 −184 −6 Y17 K, M
7 3 11 3 7 2 −187 −7 Y20 T
9 3 9 1 3 1 −189 −17 Y21 T
3 4 15 4 3 1 −195 −11 Y23(1) F, K
6 3 13 2 4 1 −195 −13 Y24 T
15 5 3 1 3 4 −195 −11 Y23(2) F, K
11 3 8 3 11 4 −200 −4 Y25 T
5 3 17 3 5 1 −221 −11 Y28 T
3 15 4 5 1 4 −228 −10 Y29(1) F, M
4 16 3 4 1 5 −228 −10 Y29(2) F, M
15 3 7 1 5 2 −231 −13 Y30 T
2 8 11 4 1 1 −242 −18 Y31(1) Exc
11 11 2 1 1 4 −242 −18 Y31(2) Exc
10 12 2 6 5 22 −244 −2 Y32 Exc
2 7 13 14 4 3 −247 −5 Y34 Exc
2 10 9 10 2 3 −252 −8 Y35 Exc
15 9 2 3 5 16 −258 −4 Y37 Exc
2 6 17 6 2 1 −272 −14 Y38(1) Exc
2 12 8 6 1 2 −272 −14 Y38(2) Exc
8 16 2 2 1 6 −272 −14 Y38(3) Exc
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Table X. continued

k n m α β γ Dim Rank Algebra Lines

20 8 2 2 5 14 −296 −6 Y41 Exc
4 3 29 6 8 1 −319 −9 Y42 T, M
2 16 7 8 1 3 −322 −12 Y43(1) Exc
7 21 2 3 1 8 −322 −12 Y43(2) Exc
27 3 6 1 9 4 −342 −10 Y44 T
2 5 29 10 4 1 −377 −11 Y45 Exc
35 7 2 1 5 12 −434 −10 Y46 Exc
2 28 6 14 1 6 −492 −10 Y47(1) Exc
6 36 2 6 1 14 −492 −10 Y47(2) Exc

Table XI. Isolated solutions of 4abg pattern

k n m α β γ Dim Rank Algebra Lines

4 2 −31 −6 −10 1 248 8 e8 Exc, M
3 2 −13 −3 −4 1 78 6 e6 Exc, F
2 2 −7 −2 −2 1 28 4 so(8) SO, Exc
0 −5 −5 4 −1 −1 0 0 0d3 0d
0 −4 −7 6 −2 −1 0 0 0d4 0d
5 5 5 1 1 1 −125 −19 Y1 ?
9 4 4 1 2 2 −144 −14 Y10 K, M
7 7 3 1 1 2 −147 −17 Y11 F
11 5 3 1 2 3 −165 −13 Y15 F
19 4 3 1 4 5 −228 −10 Y29 F, M
11 11 2 1 1 4 −242 −18 Y31 Exc
14 9 2 2 3 10 −252 −8 Y35 Exc
17 8 2 1 2 6 −272 −14 Y38 Exc
23 7 2 1 3 8 −322 −12 Y43 Exc
41 6 2 1 6 14 −492 −10 Y47 Exc

Table XII. Isolated solutions of 5agb pattern

k n m α β γ Dim Rank Algebra Lines

2 5 −19 −8 −5 1 190 8 e7 1
2

Exc

4 3 −13 −4 −7 1 156 8 X1 T, M
3 3 −5 −2 −3 1 45 5 so(10) SO, T, F
−1 −1 −1 2 −1 −1 1 1 so(2) SO, D2,1,λ
0 −5 −5 4 −1 −1 0 0 0d3 0d
0 −3 −11 8 −3 −1 0 0 0d1 0d
0 7 −1 −4 −1 3 0 0 0d6 F, 0d
5 5 5 1 1 1 −125 −19 Y1 ?
5 7 4 3 2 4 −140 −8 Y9 K
9 4 4 1 2 2 −144 −14 Y10 K, M
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Table XII. continued

k n m α β γ Dim Rank Algebra Lines

3 7 7 2 1 1 −147 −17 Y11 F
9 7 3 1 1 3 −189 −17 Y21 T
3 13 5 4 1 3 −195 −11 Y23 F, K
13 5 3 1 2 4 −195 −13 Y24 T
7 11 3 2 1 5 −231 −13 Y30 T
2 11 11 4 1 1 −242 −18 Y31 Exc
21 4 3 1 4 6 −252 −10 Y36 T, K
6 19 3 4 1 9 −342 −10 Y44 T
2 31 7 12 1 5 −434 −10 Y46 Exc

Table XIII. Isolated solutions of 6baa pattern

k n m α β γ Dim Rank Algebra Lines

−11 5 3 −5 1 −3 99 7 X2(1) T
−9 3 5 −3 1 −5 99 7 X2(2) T
3 −9 3 −3 −5 1 99 7 X2(3) T
−3 3 4 −3 2 −4 21 3 so(7) SO, T, K
−3 −3 1 3 −1 −1 3 1 3d1 3d
−1 −5 1 5 −3 −1 3 1 3d2 3d, T
−1 3 3 −1 1 −1 3 1 sl(2)(1) 3d, T
3 −1 1 −1 −1 1 3 1 sl(2)(2) 3d, T
5 5 5 1 1 1 −125 −19 Y1 ?
4 5 6 5 8 6 −132 −2 Y6 K
6 6 4 3 2 2 −132 −10 Y4 K
5 7 4 7 6 4 −135 −3 Y8 K
4 4 8 1 2 2 −144 −14 Y10 K, M
9 5 4 5 2 4 −153 −7 Y13 K
4 10 4 5 6 2 −168 −6 Y16 K
3 6 8 3 10 4 −186 −4 Y19(1) T
6 3 10 3 4 10 −186 −4 Y19(2) T
3 7 7 1 3 1 −189 −17 Y21(1) T
7 3 9 1 1 3 −189 −17 Y21(2) T
7 11 3 11 5 3 −189 −3 Y22 T
9 9 3 3 1 1 −189 −17 Y21(3) T
3 5 10 1 4 2 −195 −13 Y24(1) T
5 3 12 1 2 4 −195 −13 Y24(2) T
3 9 6 3 8 2 −207 −7 Y26(1) T
9 3 8 3 2 8 −207 −7 Y26(2) T
3 4 16 1 6 4 −252 −10 Y36(1) T, K
4 3 18 1 4 6 −252 −10 Y36(2) T, K
3 15 5 3 7 1 −285 −11 Y39(1) T
5 21 3 7 5 1 −285 −9 Y40 T
15 3 7 3 1 7 −285 −11 Y39(2) T
19 7 3 7 1 3 −285 −11 Y39(3) T
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Table XIV. Isolated solutions of 7bga pattern

k n m α β γ Dim Rank Algebra Lines

3 3 −11 −3 −5 1 99 7 X2 T
1 1 −3 1 −3 1 3 1 3d1 3d
3 −1 1 −1 1 −1 3 1 sl(2) 3d
3 1 −1 1 −5 3 3 1 3d2 3d, T
5 5 5 1 1 1 −125 −19 Y1
9 3 7 3 11 5 −189 −3 Y22 T
9 7 3 1 1 3 −189 −17 Y21 T
19 3 5 1 7 5 −285 −9 Y40 T
19 5 3 1 3 7 −285 −11 Y39 T

Table XV. Isolated solutions in physical semiplane

k n m α β γ Dim Rank Algebra Lines Patterns

2 −20 4 −10 1 −6 248 8 e8(1) Exc, M 3aag
4 −24 2 −6 1 −10 248 8 e8(2) Exc, M 3aag
4 2 −31 −6 −10 1 248 8 e8 Exc, M 4abg
2 −16 5 −8 1 −5 190 8 e7 1

2
Exc 2aab

−25 5 2 1 −5 −8 190 8 e7 1
2

Exc 3aag

2 5 −19 −8 −5 1 190 8 e7 1
2

Exc 5agb

4 −16 3 −4 1 −7 156 8 X1 T, M 2aab
−21 3 4 1 −7 −4 156 8 X1 T, M 3aag
4 3 −13 −4 −7 1 156 8 X1 T, M 5agb
2 3 −12 −6 −4 1 133 7 e7 Exc, T 1aaa
2 3 −14 −6 −4 1 133 7 e7 Exc, T 2aab
2 3 −19 −6 −4 1 133 7 e7 Exc, T 3aag
−15 5 3 1 −3 −5 99 7 X2 T 1aaa
−15 3 3 1 −5 −3 99 7 X2 T 2aab
−11 5 3 −5 1 −3 99 7 X2(1) T 6baa
−9 3 5 −3 1 −5 99 7 X2(2) T 6baa
3 −9 3 −3 −5 1 99 7 X2(3) T 6baa
3 3 −11 −3 −5 1 99 7 X2 T 7bga
2 −8 3 −4 1 −3 78 6 e6(1) Exc, F 3aag
3 −9 2 −3 1 −4 78 6 e6(2) Exc, F 3aag
3 2 −13 −3 −4 1 78 6 e6 Exc, F 4abg
2 −6 4 −6 2 −5 52 4 f4 Exc, K 2aab
−10 4 2 2 −5 −6 52 4 f4 Exc, K 3aag
3 −6 3 −2 1 −3 45 5 so(10) SO, T, F 2aab
−9 3 3 1 −3 −2 45 5 so(10) SO, T, F 3aag
3 3 −5 −2 −3 1 45 5 so(10) SO, T, F 5agb
2 −4 2 −2 1 −2 28 4 so(8) SO, Exc 3aag
2 2 −7 −2 −2 1 28 4 so(8) SO, Exc 4abg
−6 4 3 2 −3 −4 21 3 so(7) SO, T, K 1aaa
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Table XV. continued

k n m α β γ Dim Rank Algebra Lines Patterns

−3 3 4 −3 2 −4 21 3 so(7) SO, T, K 6baa
−5 3 2 3 −5 −4 14 2 g2 Exc, T 3aag
−3 1 −3 −1 3 −1 3 1 3d1 3d 1aaa
−3 3 3 1 −1 −1 3 1 sl(2) 3d, T 1aaa
−2 1 −4 −2 4 −1 3 1 so(3) 3d 1aaa
−3 −3 1 3 −1 −1 3 1 3d1 3d 6baa
−1 −5 1 5 −3 −1 3 1 3d2 3d, T 6baa
−1 3 3 −1 1 −1 3 1 sl(2)(1) 3d, T 6baa
3 −1 1 −1 −1 1 3 1 sl(2)(2) 3d, T 6baa
1 1 −3 1 −3 1 3 1 3d1 3d 7bga
3 −1 1 −1 1 −1 3 1 sl(2) 3d 7bga
3 1 −1 1 −5 3 3 1 3d2 3d, T 7bga
−1 −1 −1 2 −1 −1 1 1 so(2) SO, D 5agb
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