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Abstract. A universal C*-algebra of the electromagnetic field is constructed. It is repre-
sented in any quantum field theory which incorporates electromagnetism and expresses
basic features of the field such as Maxwell’s equations, Poincaré covariance and Einstein
causality. Moreover, topological properties of the field resulting from Maxwell’s equations
are encoded in the algebra, leading to commutation relations with values in its center. The
representation theory of the algebra is discussed with focus on vacuum representations, fix-
ing the dynamics of the field.
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1. Introduction

The general structural analysis of the electromagnetic field is a long-standing
research topic in quantum field theory. Originally, this analysis was based on the
Borchers algebra approach to quantum field theory, cf. [3] and references quoted
there. But this setting, involving unbounded field operators, has its mathemati-
cal shortcomings because of notorious domain problems. In particular, it does
not allow for a thorough discussion of non-regular representations, appearing for
example in the presence of constraints [16], or of omnipresent infrared problems
[17]. This fact triggered attempts to reformulate the theory in terms of C*-algebras
[14]. For the non-interacting electromagnetic field, this step can be accomplished
by proceeding to the Weyl algebra of the field, cf. [22] and references quoted there.
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This approach works also with slight modifications for the electromagnetic field
coupled to c-number currents [24]. But the case of paramount physical interest,
describing the coupling of the electromagnetic field to quantized relativistic mat-
ter, is not covered by these approaches.
In this article, we exhibit a C*-algebra describing basic features of the electro-

magnetic field which may be taken for granted in any relativistic quantum field the-
ory which includes electromagnetism. Whereas the ensuing algebra does not incor-
porate any dynamical law, it has a sufficiently rich structure to identify in its dual
space states describing the vacuum. The resulting GNS representations fix dynam-
ical ideals corresponding to specific theories. The algebra thus provides a concrete
C*-algebraic framework for the general structural analysis and physical interpre-
tation of the electromagnetic field. The ideas underlying its construction may be
known to experts; but, to the best of our knowledge, this approach has not yet
been put on record.
To motivate the relations encoded in the algebra let us briefly recall the basic

properties of the electromagnetic field. We use units where c=�= 1 and consider
four-dimensional Minkowski space R

4 with metric fixed by the Lorentz
scalar product xμyμ = x0 y0 − x y. The proper description of the electromagnetic
field requires the introduction of spaces of tensor valued test functions
(differential forms). We denote by Dr (R

4), r =0, . . . ,4, the spaces of real test
functions x �→ f μ1...μr (x) which have compact support in R

4 and are skew sym-
metric in μ1 . . . μr , r ≥ 2. They are stable under Poincaré transformations
P

.= (y, L)∈P↑
+ =R

4
�L↑

+, given by f �→ fP , where

f μ1···μr
P (x)

.= Lμ1
ν1

· · · Lμr
νr

f ν1...νr (P−1x).

There exist two canonical mappings between these spaces: The exterior derivative
d :Dr (R

4)→Dr+1(R
4) is defined by

(d f )μ1...μr+1(x)
.=−∂ [μ1 f μ2...μr+1](x),

where ∂μ denotes the partial derivatives with respect to the coordinates of x and
the square bracket indicates anti-symmetrization. The corresponding co-derivative
δ :Dr (R

4)→Dr−1(R
4) is given by

(δ f )μ1...μr−1(x)
.=−r ∂ν f

νμ1...μr−1(x);
it is related to d by δ =−�d�, where � :Dr →D4−r is the Hodge operator,

(� f )μ1...μ4−r (x)
.= (1/r !) εν1...νr

μ1...μ4−r f ν1...νr (x),

and εμ1...μ4 the Levi-Civita tensor. The particular choice of signs in these defini-
tions is convenient here.
Making use of this notation, the electromagnetic field F can be presented as an

operator valued real linear map from the space of real test functions D2(R
4) to the

symmetric (hermitean) generators of some polynomial *-algebra P,

f �→ F( f )= Fμν( f
μν), f ∈D2(R

4).
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The homogeneous Maxwell equation for the field reads F(δh)=0 for h ∈D3(R
4)

and the inhomogeneous Maxwell equation is given by j (g) = jμ(gμ)
.= F(dg) for

g ∈D1(R
4). The latter relation is to be interpreted as the definition of the (iden-

tically conserved) current j since F is regarded as being given. Einstein causal-
ity is expressed by the condition of locality according to which the commuta-
tor of the electromagnetic field satisfies [F( f1), F( f2)] = 0 whenever the supports
of f1, f2 ∈D2(R

4) are spacelike separated. These relations are consistent with the
automorphic action of the Poincaré group on the algebra P fixed by the mapping
F( f ) �→ F( fP ), P ∈P↑

+.
It is convenient to proceed from the electromagnetic field F to its intrinsic

(gauge invariant) vector potential A, given by

A(δ f )= Aμ((δ f )μ)
.= F( f ) for f ∈D2(R

4).

Clearly, δ(δ f )= 0, f ∈D2(R
4), that is, δ f ∈D1(R

4) is co-closed. Conversely, given
any co-closed g ∈D1(R

4), δg = 0, Poincaré’s lemma (cf. [18, Lem. 17.27] and the
appendix) implies that there exists some f ∈ D2(R

4) such that g = δ f , i.e., g is
co-exact. Moreover, the ambiguities involved in the choice of f consist of addi-
tive terms of the form δh where h∈D3(R

4). Denoting by C1(R4)⊂D1(R
4) the real

subspace of co-closed forms g ∈D1(R
4), δg = 0, one can therefore define for any

g∈C1(R4) and correspondig co-primitive f ∈D2(R
4) the potential

A(g)
.= F( f ), f ∈{ f ′ ∈D2(R

4) : δ f ′ = g}.
This definition is consistent since δ f ′ = g = δ f implies according to Poincaré’s
lemma that f ′ = f +δh for some h∈D3(R

4) and consequently F( f ′)= F( f ) by the
homogeneous Maxwell equation.
In view of these facts, one can express the properties of the electromagnetic

field in terms of its intrinsic vector potential A. This potential defines a real lin-
ear map g �→ A(g) from C1(R4) to the symmetric generators of the *-algebra P.
The homogeneous Maxwell equation is satisfied by construction and the inhomo-
geneous Maxwell equation now reads j (g)

.= A(δdg), g∈D1(R
4). Noticing that the

subspace C1(R4) ⊂D1(R
4) is stable under the action of Poincaré transformations,

the automorphic action of the Poincaré group on the algebra P is fixed by the
mappings A(g) �→ A(gP), P ∈P↑

+.
The formulation of Einstein causality in terms of the intrinsic vector potential

is more subtle, however, since one may not assume from the outset that A can be
extended to the space D1(R

4) as a local and covariant field. These non-observable
extensions require the consideration of indefinite metric spaces [26,27] or of mod-
ifications of the *-operation [28], so they do not fit into the present setting. To
avoid these auxiliary constructs we make use of some pertinent geometrical facts.
Given any g ∈ C1(R4) that has support in some open double cone O⊂ R

4 it fol-
lows from a local version of Poincaré’s lemma (cf. Appendix) that there is some
co-primitive f ∈D2(R

4), satisfying δ f = g, that has its support in O as well. The
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locality of the electromagnetic field then implies

[A(g1), A(g2)]= [F( f1), F( f2)]=0

whenever g1, g2 ∈C1(R4) have their supports in spacelike separated double cones.
If g1, g2 ∈C1(R4) have their supports in spacelike separated but topologically non-
trivial regions one can, however, no longer conclude that the commutators van-
ish. Yet, as is shown in the appendix, all of these commutators are invariant under
spacetime translations, viz.

[A(g1), A(g2)]= [A(g1 y), A(g2 y)] for any y ∈R
4.

Hence, because of locality, they commute with all elements of the algebra P, i.e.,
they are elements of its center. Note that the customary Gupta–Bleuler potential
of the electromagnetic field, restricted to the test function space C1(R4), provides a
concrete representation of the algebra P where these central elements vanish; yet
this does not hold true within the abstract algebra.
These basic properties of the intrinsic vector potential A can be recast in terms

of unitary operators that may heuristically be interpreted as its exponentials, viz.,
V (a, g) =̂ exp (iaA(g)) where a ∈ R, g ∈ C1(R4). As a matter of fact, this corre-
spondence can rigorously be established in regular representations of the algebra
V generated by these unitaries. This algebra is defined in the subsequent section,
where its C*-property is also established. In the third section, the incorporation of
dynamics into the framework is explained, based on the choice of vacuum states
on the algebra V. This approach is illustrated by examples, clarifying its relation
to standard field theoretic treatments. The article concludes with a brief summary
and an appendix containing specific local and causal versions of Poincaré’s lemma
which are of relevance in the present context.

2. The Universal Algebra

The construction of the C*-algebra of the electromagnetic field proceeds from the
*-algebra V0 generated by the elements of the set {V (a, g) : a ∈ R, g ∈ C1(R4)}
which satisfy the relations given below. Denoting by the symbol ⊥ pairs of space-
like separated subsets of R

4 and by 
X,Y � .= XY X∗Y ∗ the group theoretic commu-
tator of unitary operators X,Y , these relations read

V (a1, g)V (a2, g)=V (a1 +a2, g) , V (a, g)∗ =V (−a, g) , V (0, g)=1 (2.1)

V (a1, δ f1)V (a2, δ f2)=V (1,a1δ f1 +a2δ f2) if supp f1 ⊥ supp f2 (2.2)


V (a, g), 
V (a1, g1),V (a2, g2)��= if supp g1 ⊥ supp g2 , (2.3)

where a,a1,a2 ∈R, g, g1, g2 ∈C1(R4) and f, f1, f2 ∈D2(R
4). That is, we start with

the unitary group G0 generated by {V (a, g) : a ∈ R, g ∈ C1(R4)}, subject to these
relations, and proceed to the complex linear span of the elements of G0 to obtain
the *-algebra V0.
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Relation (2.1) encodes the algebraic properties of unitary one-parameter groups
a �→V (a, g), expressing the idea that one deals with the exponential function of the
smeared potential. Relation (2.2) combines the information that the electromag-
netic field is linear on D2(R

4) and local: since the functional equation for the expo-
nential function of operators holds only if the operators commute, the additivity of
the field manifests itself in this restricted form. Relation (2.3) embodies the infor-
mation that the commutator [A(g1), A(g2)] of the potential commutes with any
other A(g) whenever g1, g2 have spacelike separated supports. In the special case
where the supports of g1, g2 are contained in spacelike separated double cones, it
follows from the local Poincaré lemma and relation (2.2) that one has

V (a1, g1)V (a2, g2)=V (1,a1g1 +a2g2)=V (a2, g2)V (a1, g1),

hence 
V (a1, g1),V (a2, g2)�=1.
The algebra V0 can be equipped with a C*-norm by a standard construction

which we recall for the convenience of the reader. It relies on the fact that each
state (viz., positive, linear and normalized functional) on a *-algebra gives rise
to a Hilbert space representation by the GNS construction, cf. [14, Sec. III.2].
Since the present algebra consists of linear combinations of unitary operators, their
respective Hilbert space representatives are bounded and their Hilbert space norm
defines a C*-seminorm on this algebra. If the underlying state is faithful, this semi-
norm is even a norm. The existence of such states is established in the subsequent
lemma. There we make use of the fact that V0 is the complex linear span of the
elements of the unitary group G0.

LEMMA 1. Let ω be the functional on the unitary group G0 given by ω(V )=0 for
V ∈G0\{1} and ω(1)=1. The canonical extension of this functional to the complex
linear span of G0 is a faithful state on V0.

Proof. Since the elements of G0 form a basis of V0, the linear extension of ω to
V0 is consistently defined by ω(c01+∑

n cnVn)= c0, where Vn ∈G0\{1}. Assuming
without loss of generality that the unitaries Vn are different one also obtains

ω
(

(c01+
∑

n

cnVn)
∗(c01+

∑

n′
cn′Vn′)

)=|c0|2 +
∑

n

|cn|2 ≥0

because the terms for n =n′ contain operators in G0\{1} and therefore vanish. This
shows that the linear and normalized functional ω on V0 is positive on positive
elements, hence it is a state. Moreover, since the equality sign in the above relation
holds only for the zero element of V0, this state is faithful, completing the proof
of the statement.

As indicated, any state ω induces by the GNS construction a representation
(π,H,�) of V0, where π is a homomorphism mapping V0 into the algebra of
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all bounded operators on some Hilbert space H and �∈H is a unit vector such
that 〈�,π(A)�〉=ω(A), A∈V0. If ω is faithful, such as the state exhibited in the
preceding lemma, the Hilbert space norm ‖π(A)‖H of the represented operators
A∈V0 defines a norm on V0 which has the C*-property. In order not to exclude
from the outset any representations we proceed here to the largest C*-norm on V0,
given by

‖A‖ .= sup ‖π(A)‖H , A∈V0 ,

where the supremum extends over all GNS representations of V0. Note that the
supremum exists since the Hilbert space representatives of any given finite sum of
unitary operators are uniformly bounded. The completion of V0 with respect to
this norm defines the universal C*-algebra V of the electromagnetic field; it is rep-
resented in any theory incorporating electromagnetism.
We conclude this section by showing that the algebra V provides a physically

significant example fitting into the general framework of observable algebras,
established by Haag and Kastler [15]. To this end, we define for any given open
double cone O ⊂ R

4 the subalgebra V(O) ⊂V that is generated by the unitaries
{V (a, g) :a∈R, g∈C1(O)}, where C1(O) denotes the subspace of co-closed forms in
D1(R

4) having support in O. By definition, V(O1)⊂V(O2) whenever O1 ⊂O2, so
the assignment O �→V(O) defines an isotonous net of C*-algebras on Minkowski
space R

4 with common identity. Since the unitaries underlying the construction of
V are based on test functions with compact support, the inductive limit of this net
coincides with V. Moreover, as has been explained, relation (2.2) implies that the
operators assigned to spacelike separated double cones O1,O2 commute, in short
[V(O1),V(O2)]=0. So, the net satisfies the condition of locality.
In order to see that this net is also Poincaré covariant, we note that the relations

(2.1) to (2.3) do not change if, for given P ∈P↑
+, one replaces all test functions by

their respective Poincaré transforms. This implies that the invertible maps α defined
on {V (a, g) :a∈R, g∈C1(R4)} by

αP (V (a, g))
.=V (a, gP ) , P ∈P↑

+ ,

extend to automorphisms of the group G0 and thereon to its linear span V0. Com-
posing these automorphisms yields a representation of the Poincaré group, that
is αP1 ◦ αP2 = αP1P2 and α−1

P =αP−1 for P, P1, P2 ∈ P↑
+. Moreover, by continuity

one can further extend these automorphisms to the C*-algebra V. For the set of
GNS representations of V0 is stable under composition with any automorphism
and consequently

‖αP (A)‖= sup‖π(αP (A))‖H = sup‖π ◦αP (A)‖H =‖A‖ for A∈V0.

Finally, noticing that for any g∈C1(O) one has gP ∈C1(PO), it is apparent that
αP (V(O))=V(PO), P ∈P↑

+, proving the Poincaré covariance of the net.
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Thus the universal algebra V generated by the electromagnetic field satisfies all
Haag–Kastler axioms [15, p. 849] with one exception: it is not a primitive alge-
bra since it does not have any faithful irreducible representation. In fact, it follows
from relation (2.3) that V has a non-trivial center. This deficiency can be resolved,
however, by identifying suitable irreducible representations (π,H,�) of V. The
kernel of a representation, denoted by kerπ , characterizes a two-sided ideal in V

and if this kernel is stable under the action of the automorphisms αP , P ∈P↑
+,

the corresponding quotient algebra V/kerπ is by construction a primitive algebra
which satisfies all Haag–Kastler axioms. Even more importantly, using this device
one can in principle incorporate any dynamics into the quotient algebra which is
compatible with the basic properties of the electromagnetic field. This issue will be
discussed in the subsequent section.

3. Representations

All possible states of the electromagnetic field are described by elements of the
dual space of the universal algebra V. We begin by characterizing those states
and representations which are of primary physical interest, allowing it to recover
from V the electromagnetic field, respectively the intrinsic vector potential as well
defined observables.

DEFINITION 1. Let ω be a state on V. This state is regular if all functions

a1, . . . ,an �→ω(V (a1, g1) · · ·V (an, gn)), g1, . . . , gn ∈C1(R4),

are continuous, n∈N. It is strongly regular if all of these functions are smooth and
their derivatives at a1 = . . .=an =0 are bounded by Schwartz norms of the under-
lying test functions (tempered).

It is not difficult to see that in the GNS representation (π,H,�) induced by
a regular state ω the unitary one-parameter groups a �→ π(V (a, g)) are continu-
ous in the strong operator topology. Stone’s theorem therefore implies that there
exist densely defined selfadjoint operators Aπ (g) in the underlying Hilbert space H
such that π(V (a, g))= eiaAπ (g) for a∈R, g∈C1(R4). So, one recovers in these rep-
resentations the intrinsic vector potential. Moreover, if ω is strongly regular these
operators have a common dense domain D ⊂H, containing �, that is stable under
their action and a core for each of them. In particular, the correlation functions
〈�, Aπ (g1) . . . Aπ (gn)�〉 are well defined for any g1, . . . , gn ∈ C1(R4) and they are
bounded by Schwartz norms of these test functions, n∈N.

It follows from relation (2.2) that the operators Aπ appearing in the GNS repre-
sentation induced by a strongly regular state satisfy on their common domain D a
restricted form of linearity. Namely, a1Aπ (g1)+a2Aπ (g2)= Aπ (a1g1 +a2g2) when-
ever g1, g2 ∈ C1(R4) have their supports in spacelike separated double cones and
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a1,a2 ∈ R. Linearity on all of C1(R4) is ensured if the state satisfies the following
stronger condition.

DEFINITION 2. A state ω on V has property L if it is strongly regular and

d
da

ω(V1 V (a, g1)V (a, g2)V (−a, g1 + g2)V2)
∣

∣

a=0 =0

for every g1, g2 ∈C1(R4) and V1,V2 ∈G0.

We mention as an aside that in the GNS representations induced by states hav-
ing property L the operator sums a1Aπ (g1)+a2Aπ (g2) are essentially selfadjoint
on D since they coincide on this domain with Aπ (a1g1 +a2g2) for g1, g2 ∈C1(R4)

and a1,a2 ∈ R. Next, we recall the familiar characterization of vacuum states by
their physically expected properties of Poincaré invariance and stability [14].

DEFINITION 3. Let ω be a pure state on V; ω is interpreted as vacuum state
if for every A, B ∈V (i) ω(αP (A)) = ω(A) for P ∈P↑

+, (ii) P �→ ω(AαP (B)) is
continuous and (iii) the Fourier transforms of all functions x �→ω(Aαx (B)) on the
subgroup R

4 ⊂P↑
+ of spacetime translations have support in the closed forward

lightcone V+ (relativistic spectrum condition).

As is well known [14], there exists in the GNS representation (π,H,�) induced
by a vacuum state a continuous unitary representation Uπ of the Poincaré group
such that (i) Uπ (P)� = �, P ∈P↑

+, (ii) the generators of the subgroup Uπ � R
4

(energy–momentum) have joint spectrum in V+ (i.e., � is a ground state in all
Lorentz frames) and (iii) the unitaries Uπ implement the action of the Poincaré
transformations on observables, viz., Uπ (P)π(A)Uπ (P)−1 = π(αP (A)) for any
P ∈P↑

+ and A∈V. The latter relation implies that the kernel of π is stable under
Poincaré transformations. Moreover, since vacuum states are pure states by defi-
nition, the representation π is irreducible. Hence, proceeding to the quotient alge-
bra V/kerπ , each vacuum state on V defines a consistent dynamical theory of the
electromagnetic field which fulfills all Haag–Kastler axioms.
It follows from these remarks that the construction of theories involving the

electromagnetic field amounts to the task of exhibiting vacuum states in the dual
space of the algebra V. As a matter of fact, every vacuum state ω on V is
determined by its generating function g �→ ω(V (1, g)) on C1(R4). For, due to the
invariance of vacuum states under spacetime translations and the relativistic spec-
trum condition, the functions x1, · · · , xn �→ ω(αx1(V (1, g1)) · · ·αxn (V (1, gn)))
extend continuously in the variables (xm+1 − xm), m = 1, . . . ,n − 1, to the tube
(R4 + iV+)n−1 ⊂ C

4(n−1) and are analytic in its interior [25]. Moreover, for given
functions gm ∈ C1(R4) there exist open sets of translations xm ∈ R

4 such that the
supports of the shifted functions gm,xm are contained in spacelike separated double
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cones, m=1, . . . ,n. Thus, the local Poincaré lemma and relation (2.2) imply that

ω(αx1(V (1, g1)) · · ·αxn (V (1, gn)))=ω(V (1, g1,x1) · · ·V (1, gn,xn ))

=ω(V (1, g1,x1 + . . .+ gn,xn )),

where the right hand side can be determined if the generating function is given.
The left hand side can then be continued analytically to arbitrary configurations
xm ∈ R

4, m = 1, . . . ,n. Hence, the generating function fixes the expectation values
of vacuum states ω on the unitary group G0, whence on all of V by linearity and
continuity.
Note that if a vacuum state on V also satisfies condition L then the expecta-

tion values of the polynomials in the smeared field Fπ ( f ) = Aπ (δ f ), f ∈D2(R
4),

are defined in this state and comply with all Wightman axioms [25]. We make use
of this fact in the following simple example.

3.1. TRIVIAL CURRENTS

In this subsection, we determine all vacuum states ω on V which lead to theo-
ries with trivial current and have property L. The unique result is the theory of
the free electromagnetic field. Since this result is obtained without any input from
a classical Lagrangian, respectively quantization scheme, it illustrates the fact that
the algebra V embodies fundamental physical information.

As outlined in the introduction, the current is related to the intrinsic vector
potential by the formula j (g)= A(δdg), g∈D1(R

4). Thus in the GNS representa-
tion induced by a vacuum state ω in which the current vanishes one has

〈�, Aπ (δdg)Aπ (δdg)�〉=0, g∈D1(R
4).

This equality implies Aπ (δdg)=0 since the vacuum vector � is separating for local
operators by the Reeh–Schlieder theorem, cf. [14, Ch. II.5.3]. Since δd + dδ =�,
where � denotes the d’Alembertian, one has δdg=�g for g∈C1(R4)⊂D1(R

4), so
the vector potential fulfills the wave equation Aπ (�g)= 0, g ∈C1(R4). It then fol-
lows from locality and Poincaré covariance of the potential by standard arguments
(Källén–Lehmann representation) that its Wightman two-point function coincides
with that of the free field,

W (g1, g2)
.=〈�, Aπ (g1)Aπ (g2)�〉
= c

∫

dp θ(p0)δ(p
2) ĝ1μ(−p)ĝμ

2 (p), g1, g2 ∈C1(R4), (3.1)

where ĝ denotes the Fourier transform of g. Rescaling the potential, one can
adjust the constant in this equality to its conventional value c= −(2π)−3, where
the sign is dictated by the condition of positivity of states. It is a remarkable con-
sequence of this result that in the given vacuum representation all commutators of
the smeared potential are multiples of the identity, [Aπ (g1), Aπ (g2)]=c(g1, g2)1H,
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cf. the arguments in [19]; the value of c(g1, g2) can be read off from the preced-
ing two-point function, g1, g2 ∈C1(R4). So, one recovers the intrinsic vector poten-
tial of the free electromagnetic field in the Fock representation. The corresponding
generating function is well known,

g �→ω(V (1, g))= e−W (g,g)/2 , g∈C1(R4) ,

where W is the two-point function given above.
This special form of generating functions, depending only on a two-point func-

tion, is distinctive of quasifree states on V. Making use of the general Källén–
Lehmann representation of two-point functions, it is not difficult to determine all
quasifree vacuum states on V which have property L. Of particular interest is the
case where the current is proportional to the intrinsic vector potential in the under-
lying GNS representation. By arguments similar to those given above one finds
that the potential then is a free massive vector field with two-point function

Wm(g, g)=−(2π)−3
∫

dp θ(p0)δ(p
2 −m2) ĝμ(−p)ĝμ(p), g∈C1(R4).

The mass square m2 is determined by the constant of proportionality between the
current and the potential. Plugging this two-point function into the above formula
yields the generating function of the corresponding vacuum state.

3.2. CLASSICAL CURRENTS

Next, we discuss the cases where the electromagnetic field is coupled to classical
currents. Such currents are simultaneously measurable with all other observables
and are therefore described by representations of V where the current operators
j (g)= A(δdg), g ∈D1(R

4), are affiliated with the center. It is clear from the out-
set that such representations cannot be induced by vacuum states on V since the
appearance of classical currents breaks the Poincaré symmetry of these states spon-
taneously. We are therefore led to consider a more general class of pure states ω

on V which have property L. The corresponding GNS representations (π,H,�)

are irreducible, so their center consists of multiples of the identity and one has
π(V (1, δdg)) = ei jπ (g) 1H, g ∈ D1(R

4), where the current jπ is a conserved real-
valued distribution fixed by the representation.
Whenever the current jπ is sufficiently regular it can be extended to the space

G0D1(R
4) ⊃D1(R

4) obtained by convolution of the test functions with the time
symmetric Green’s function G0 of the wave equation (i.e., half the sum of the
retarded and advanced Green’s functions). One can then define an automorphism
γ of V, putting on its generating unitaries

γ (V (1, g)) .= e−i jπ (G0 g) V (1, g), g∈C1(R4);
note that relations (2.1) to (2.3) are preserved by this map. Composing the given
representation with this automorphism yields the representation π0

.= π ◦ γ of V
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on H. Now for g∈D1(R
4) one has δdg=� g−dδg, hence jπ (δdg)= jπ (�g) since

jπ is conserved. As jπ (G0 �g)= jπ (g) this implies π0(V (1, δdg))=1H, g∈D1(R
4).

Thus, the current vanishes in the representation π0. One may therefore consis-
tently assume that this representation coincides with the vacuum representation of
the free electromagnetic field. With this input, one obtains for the representation
π =π0 ◦γ −1 the generating function

ω(V (1, g))= ei jπ (G0 g) e−W (g,g)/2 , g∈C1(R4),

where W is the above two-point function of the free electromagnetic field.

3.3. QUANTUM CURRENTS

The rigorous construction of vacuum states on V that describe the coupling of
the electromagnetic field to charged quantum fields and their currents is a long-
standing open problem. In most approaches, one proceeds from time-ordered prod-
ucts of the underlying generating functions, denoted by ω(VT (1, g)). Relying on
the relativistic spectrum condition, the vacuum states ω on V can likewise be
reconstructed from these functions by methods of analytic continuation. Heuristic
candidates for the time-ordered functions are Feynman path integrals of the form

ω(VT (1, g)) .= Z−1
∫

dAdψ dψ ei S(A,ψ,ψ) ei A(g),

where all charged fields ψ,ψ appearing in the underlying classical action S are
integrated out. In spite of important progress in the rigorous construction of such
integrals [1,13], all presently available methods of determining these expectations
rely on renormalized perturbation theory, cf. [10,11,23] and references quoted there.
A perturbative approach to the computation of the unordered generating functions
ω(V (1, g)), based on field equations, has been developed by Steinmann [26].

Since the algebra V embodies all basic features of the electromagnetic field, a
rigorous proof that vacuum states describing interaction exist in its dual space
(possibly based on other constructive schemes) would be of great physical inter-
est. On the other hand, the unlikely possibility that no fully consistent theory of
interacting electromagnetic fields can be accommodated in the general framework
of local quantum field theory would likewise manifest itself in the structure of the
dual space of V. Thus, this algebra provides a solid basis for further study of this
existence problem.

3.4. TOPOLOGICAL CHARGES

Finally, we discuss representations of the algebra V where the properties of the
intrinsic vector potential in non-contractible regions matter. The general geometri-
cal features of nets based on such regions were studied in [8] with applications to
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the electromagnetic field and potential in [9]. Here, we focus on irreducible repre-
sentations of V where the (central) group theoretic commutator 
V (1, g1),V (1, g2)�
has values different from 1 for certain pairs of test functions g1, g2 with spacelike
separated, linked supports. Since the specific topology of the supports is of impor-
tance here, we interpret these values as topological charges.
At the algebraic level, let us first note that there exist functions g1, g2 ∈ C1(R4)

with spacelike separated supports such that V (1, g1)V (1, g2) = V (1, g2)V (1, g1).
For the equality of such spacelike separated unitaries is not required in the defin-
ing relations (2.1) to (2.3). Hence if equality holds nonetheless for a given pair of
functions, this must be a consequence of the condition of locality of the electro-
magnetic field which is encoded in relation (2.2). In other words, there must exist
functions f1, f2 ∈ D2(R

4) with supp f1 ⊥ supp f2 such that g1 = δ f1 and
g2=δ f2. Yet, as can be inferred from the work of Roberts [21, §1], there exist pairs
g1, g2 ∈ C1(R4), having their supports in spacelike separated linked loop-shaped
regions, for which this condition cannot be satisfied. Hence, the corresponding
group-theoretic commutators 
V (1, g1),V (1, g2)� are non-trivial unitary operators.
We denote by Z⊂V the C*-algebra generated by 
V (1, g1),V (1, g2)� for all pairs
of functions g1, g2 ∈ C1(R4) with spacelike separated supports. According to the
preceding remarks, this algebra is non-trivial and, by relation (2.3), contained in
the center of V. In particular, Z is an abelian algebra.

Given any pure state (character) ζ on Z, this state can be extended to some
pure state ωζ on V by the Hahn–Banach theorem [2, II.6.3.2]. In the correspond-
ing GNS representation (πζ ,Hζ ,�ζ ), all elements of the algebra Z are represented
by multiples of the identity (the topological charges) whose values depend on the
choice of the state ζ . It is an open problem whether for some suitable non-trivial
choice of ζ there exist pure extensions ωζ which are Poincaré invariant. However,
states with non-trivial topological charges are in general not regular.

4. Summary

In the present investigation, we have constructed a universal C*-algebra V of the
electromagnetic field whose basic features are encoded in the defining relations
(2.1) to (2.3). Even though this algebra does not contain any dynamical informa-
tion, it has a sufficiently rich structure to identify in its dual space all possible vac-
uum states of the field which depend on its particular coupling to charged matter.
The GNS representations π resulting from these states allow to construct selfad-
joint generators of the spacetime transformations, comprising the desired dynam-
ical information, and the corresponding quotient algebras V/kerπ of observables
satisfy all Haag–Kastler axioms. In the simple cases of trivial or classical currents,
one can determine the underlying states without relying on any further input, such
as a classical Lagrangian or canonical commutation relations. This fact shows that
the universal algebra subsumes essential physical information. The still pending
rigorous construction of interacting theories of the electromagnetic field amounts
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to the identification of appropriate vacuum states in the dual space of V. It there-
fore calls for further study of this algebra.
Apart from these constructive aspects, the universal algebra provides a solid

basis for the structural analysis, the physical interpretation and the classification of
theories incorporating electromagnetism. For example, based on the Haag–Kastler
axioms, a general scattering theory for the electromagnetic field has been developed
in [5], the notorious infrared problems appearing in this context were analyzed in
[6,12] and, more recently, the possible charge structures and statistics appearing
in theories of the electromagnetic field were determined in [7]. Thus, the universal
algebra V is a concrete and physically significant example fitting into the general
algebraic framework of relativistic quantum field theory.
Furthermore, the universal algebra V seems to fully encode the geometrical fea-

tures underlying gauge theories. In particular, the locality properties of the electro-
magnetic field, encoded in the commutation relations (2.2) and (2.3) of the intrin-
sic vector potential, lead to the emergence of new types of topological charges
that can be described by cohomological invariants associated with linked commu-
tators. We believe that these aspects are not confined to the electromagnetic field
but should be present also in non-Abelian gauge theories. Thus, further investiga-
tions of these structures seem warranted.
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Appendix

We show in this appendix that the commutator of the intrinsic vector potential,
smeared with test functions that have spacelike separated supports, lies in the
center of the polynomial algebra P. The argument is based on refinements of
Poincaré’s lemma that put emphasis on the support properties of the co-primitives.
For the convenience of the reader, we outline the proofs of these basic results,
noting that the subsequent facts adopted from differential geometry and algebraic
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topology on R
4 carry over to Minkowski space since they do not depend on the

choice of a metric.

Local Poincaré Lemma: Let g∈C1(R4), where supp g is contained in a given open
star-shaped region R ⊂ R

4 (e.g., a double cone). There exists f ∈ D2(R
4) with

supp f ⊂R such that δ f = g.

Proof. Making use of the fact that �� �Dr (R
4)= (−1)r+1 �Dr (R

4), r = 0, . . . ,4,
one obtains d � f = − � δ f for f ∈D2(R

4). It is then apparent that finding a co-
primitive for g is equivalent to finding a primitive f ′ for h

.=− � g ∈D3(R
4), i.e.,

d f ′ =h. Note that h has the same support as g since the Hodge operator does not
change supports. Since dh = � δg= 0 it follows from the compact Poincaré lemma
[18, Lem. 17.27] that there is some f ′′ ∈ D2(R

4) such that d f ′′ = h. To modify
f ′′ so as to obtain a co-primitive supported in R, we make use of the fact that
supph ⊂R is compact. Hence, there is an open neighborhood N of R

4\R such
that d f ′′ = h = 0 on N . We choose N ∼R

4\R such that supp g⊂R
4\N , where ∼

denotes homotopy equivalence [18, p. 614]. Since R is star shaped it is homotopic
to a point o∈R and one has N ∼R

4\R∼R
4\{o}.

Now the corresponding de Rham cohomology groups of homotopic manifolds
are isomorphic, cf. [18, Thm. 17.11], so it follows from [18, Cor. 17.23] that the
second de Rham cohomology group of N is trivial. Thus, every closed two-form
f ′′ on N is exact and there is some smooth one-form g′′ such that dg′′ = f ′′
on N . Picking some smooth characteristic function χ with χ � R

4\R = 1 and
χ �R

4\N =0 we put f ′ = f ′′ −d χg′′. Clearly, supp f ′ ⊂R and d f ′ =d f ′′ =h. Thus,
f

.=−� f ′ is the desired co-primitive of g.

Causal Poincaré Lemma: Let g∈C1(R4) and O⊂R
4 an open double cone satisfying

O⊥ supp g. There exists f ∈D2(R
4) such that δ f = g and supp f ⊥O.

Proof. Since g has compact support there are open double cones O2 ⊃O1 ⊃O
such that supp g⊂O ′

1

⋂O2; we put K .=O ′
1

⋂O2, where the bar denotes closure,
cf. the Figure 1. Note that the collar-shaped region K is simply connected in four
spacetime dimensions. Since supp g⊂O2 and O2 is star shaped, there exists accord-
ing to the preceding lemma a co-primitive f ′ ∈D2(R

4), i.e., δ f ′ =g, which has sup-
port in O2.
To exhibit a co-primitive f of g which has support in a neighborhood of K, we

have to rely on methods of algebraic topology [4]. To this end, we consider the
function f ′′ .=−� f ′ ∈D2(R

4) and note that d f ′′ =�δ f ′ =�g=0 on R
4\K. Since K

is compact it follows from the Alexander duality theorem [4, Cor. 8.6] that the sec-
ond (real) homology group of R

4\K is isomorphic to the first cohomology group
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Figure 1. Collar-shaped region K in the spacelike complement of O.

of K, H2(R
4\K)≈ H1(K); note that these groups coincide with the corresponding

reduced groups in the case at hand. Moreover, since K is simply connected we have
0=H1(K)≈H2(R

4\K)≈H2(R4\K), where the latter isomorphism relies on the fact
that the coefficient group of interest here is R, cf. [20, Thm. 6.9]. Finally, apply-
ing de Rham’s Theorem we obtain H2

dR(R4\K)≈ H2(R4\K)=0, cf. [4, Thm. 6.9],
hence every closed two-form on R

4\K is exact.
So, we conclude that there exists a smooth one-form g′′ such that dg′′ = f ′′

on R
4\K. Choosing some open bounded region N , K ⊂N ⊂O′, and a smooth

characteristic function χ which satisfies χ � K = 1 and χ � R
4\N = 0, we define

f ′′′ .= f ′′ − d(1 − χ)g′′. Then, d f ′′′ = d f ′′ = �g on R
4 and supp f ′′′ ⊂ N .

Hence, f
.=� f ′′′ is a co-primitive of g which has its support in N ⊂O′, completing

the proof.

After these preparations, we turn now to the analysis of commutators of the
intrinsic vector potential, smeared with test functions having arbitrary spacelike
separated supports. Let g ∈C1(R4) and let gy be its translate for given y ∈R

4. As
one sees by a straightforward computation, there exists a co-primitive fy ∈D2(R

4)

of the difference (gy − g)∈C1(R4), given by

x �→ f μ1μ2
y (x)

.= (1/2)

1
∫

0

dt
(

yμ1gμ2(x − t y)− yμ2gμ1(x − t y)
)

.

It has support in the cylindrical region {supp g + t y : 0 ≤ t ≤ 1} which, for suffi-
ciently small y, is contained in an arbitrarily small neighborhood of the support of
g. Now let g1, g2 ∈C1(R4) have spacelike separated supports. Then, for sufficiently
small translations y ∈ R

4, there is a co-primitive f2y ∈ D2(R
4) of (g2y − g) with

supp f2y ⊥ supp g1. By a partition of unity one can decompose this co-primitive
into a sum f2y =∑n

m=1 f2y,m of elements f2y,m ∈D2(R
4) which have their supports

in double cones Om ⊥ supp g1, m=1, . . . ,n. Thus,
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[A(g1), A(g2y − g2)]= [A(g1), A(δ f2y)]

=
n

∑

m=1

[

A(g1), A(δ f2y,m)
]=

n
∑

m=1

[

A(δ f1,m), A(δ f2y,m)
]

,

where in the last equality the causal Poincaré lemma has been used according
to which there exist co-primitives f1,m ∈D2(R

4) of g1 such that supp f1,m ⊥Om ,
m=1, . . . ,n. Because of locality of the electromagnetic field one has

[A(δ f1,m), A(δ f2y,m)]=0, m=1, . . . ,n,

and consequently [A(g1), A(g2y)] = [A(g1), A(g2)] for small y. Applying the same
argument to the translates of g1, one finds that [A(g1y), A(g2y)] = [A(g1), A(g2)]
for sufficiently small y. This equality extends to arbitrary translations y ∈ R

4 by
iteration. It then follows from locality and the Jacobi identity that the commuta-
tor [A(g1), A(g2)] commutes with any other operator A(g)∈P if g1, g2 ∈C1(R4)

and supp g1 ⊥ supp g2. Hence, it lies in the center of P, completing the proof.

References

1. Albeverio, S.A., Høegh-Krohn, R.J., Mazzucchi, S.: Mathematical theory of Feynman
path integrals, vol. 523. Lecture Notes in Physics. Springer, Berlin, Heidelberg (2008)

2. Blackadar, B.: Operator algebras. Theory of C*-algebras and von Neumann algebras,
vol. 122. Encyclopaedia of Mathematical Sciences. Springer, Berlin, Heidelberg (2006)

3. Bongaarts, P.J.M.: Maxwell’s equations in axiomatic quantum field theory. I. Field ten-
sor and potentials. J. Math. Phys. 18, 1510–1516 (1977)

4. Bredon, G.B.: Topology and Geometry. Springer, New York (1993)
5. Buchholz, D.: Collision theory for massless Bosons. Commun. Math. Phys 52, 147–

173 (1977)
6. Buchholz, D.: The physical state space of quantum electrodynamics. Commun. Math.

Phys. 85, 49–71 (1982)
7. Buchholz, D., Roberts, J.E.: New light on infrared problems: Sectors, statistics, sym-

metries and spectrum. Commun. Math. Phys. 330, 935–972 (2014)
8. Ciolli, F., Ruzzi, G., Vasselli, E.: Causal posets, loops and the construction of nets of

local algebras for QFT. Adv. Theor. Math. Phys. 26, 645–691 (2012)
9. Ciolli, F., Ruzzi, G., Vasselli, E.: QED representation for the net of causal loops. Rev.

Math. Phys 5, 1550012 (2015)
10. Feldman, J.S., Hurd, T.R., Rosen, L., Wright, J.D.: QED: a proof of renormalizability.

Lecture Notes in Physics, vol. 312. Springer, Berlin, Heidelberg, New York (1988)
11. Fredenhagen, K., Lindner, F.: Construction of KMS states in perturbative QFT and

renormalized Hamiltonian dynamics. Commun. Math. Phys. 332, 895–932 (2014)
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