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Abstract. The equitable presentation of the quantum superalgebra ospq (1|2), in which all
generators appear on an equal footing, is exhibited. It is observed that in their equitable
presentations, the quantum algebras ospq (1|2) and slq (2) are related to one another by
the formal transformation q→−q. A q-analog of the Bannai–Ito algebra is shown to arise
as the covariance algebra of ospq (1|2).
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1. Introduction

The purpose of this Letter is threefold: to display the equitable, or Z3-symmetric,
presentation of the quantum superalgebra ospq(1|2), to show that the equitable
presentations of ospq(1|2) and slq(2) are related to one another by the for-
mal transformation q → −q, and to demonstrate that the covariance algebra of
ospq(1|2) is a q-analog of the Bannai–Ito algebra.
Our considerations take root in the Racah problem for the su(2) algebra, i.e.,

the coupling of three angular momenta. In this problem, the states are usually
described in terms of the quantum numbers ji associated to the individual angular
momenta �Ji with i ∈{1,2,3}, the quantum number j associated to the total angu-
lar momentum �J = �J1 + �J2 + �J3, the quantum number M associated to the projec-
tion of the total angular momentum �J along one axis, and any one of the quan-
tum numbers j12, j23, j31 associated to the intermediate angular momenta �Ji j =
�Ji + �J j for (i j) ∈ {(12), (23), (31)}. These bases are related via Racah coefficients
[3]. The main drawback of such bases is their involved behavior under particle
permutations. To circumvent this problem, Chakrabarti [2] and Lévy-Leblond and
Lévy-Nahas [21] devised an “equitable” coupling scheme and showed that there is
a “democratic” basis specified by the quantum numbers j1, j2, j3, j and ζ , where
ζ is the eigenvalue of the volume operator � = ( �J1 × �J2) · �J3. The three angular
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momenta �Ji enter symmetrically in this scheme and the states of the democratic
basis have definite behaviors under particle permutations.
The Racah–Wilson algebra is the hidden algebraic structure behind the Racah

problems of su(2) and su(1,1) [12]. The concern for a democratic approach to
these Racah problems leads to the equitable presentation of this algebra [9]. In this
presentation, the defining relations of the Racah–Wilson algebra are Z3-symmetric
and all the generators appear on an equal footing, whence the epithets “equitable”
or “democratic”. It was recently shown in [5] that the equitable generators of the
Racah/Wilson algebra can also be realized as quadratic expressions in the equitable
sl(2) generators proposed in [15]. Note that the Racah–Wilson algebra also arises
as symmetry algebra for superintegrable systems [17] and encodes the bispectrality
of the Racah/Wilson polynomials [6].

The Racah problem can also be posited for the quantum algebra slq(2). In this
case, it is the Askey–Wilson algebra [27], also known as the Zhedanov algebra [18],
that arises as the hidden algebraic structure [13]. This algebra encodes the bispec-
trality of the Askey–Wilson polynomials and, as shown in [14], arises as the covari-
ance algebra for slq(2). An equitable presentation of the (universal) Askey–Wilson
algebra was offered by Terwilliger in [23] who also showed that it can be real-
ized by quadratic combinations of the equitable generators of slq(2). The equitable
presentation of slq(2) was itself studied in [16]. A democratic presentation for the
quantum group Uq(g) associated with a symmetrizable Kac–Moody algebra g was
also proposed in [22].
In a recent paper [11], the Racah problem for the quantum superalgebra

ospq(1|2) was considered. It was shown that in this case a q-analog of the Bannai–
Ito algebra, an algebra proposed in [25], appears as the “hidden” algebraic struc-
ture. The algebra obtained in [11] exhibits a Z3 symmetry and is related to the
Askey–Wilson algebra by the formal transformation q →−q.

In this Letter, we display the equitable presentation of the quantum superalgebra
ospq(1|2), determine its relation with the equitable presentation of slq(2) and show
that it can be used to realize the q-analog of the Bannai–Ito algebra defined in
[11]. The results that we present here enrich the understanding of the quintessen-
tial quantum superalgebra ospq(1|2) and shed light on its relationship with other
algebraic structures that have appeared recently. The contents of the Letter are as
follows.
In Section 2, the definition of ospq(1|2) is reviewed and its extension by the

grade involution is presented. A two-parameter family of ospq(1|2)-modules is
defined. The equitable presentation of ospq(1|2) is introduced and several expres-
sions are given for the Casimir operator. The equitable presentation of slq(2) is
reviewed and compared with the one found for ospq(1|2). In Section 3, the real-
ization of the q-deformed Bannai–Ito algebra in terms of the equitable ospq(1|2)
generators is presented. A short conclusion follows.
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2. The ospq(1|2) Algebra and Its Equitable Presentation

In this section, we recall the definition of the ospq(1|2) algebra, present its exten-
sion by the grade involution, define a family of irreducible representations and dis-
play its equitable presentation. We review the equitable presentation of slq(2) and
compare it with that of ospq(1|2).

2.1. DEFINITION OF ospq (1|2), THE GRADE INVOLUTION, AND REPRESENTATIONS

Let q be a complex number which is not a root of unity and let [n]q denote

[n]q = qn −q−n

q −q−1
.

The quantum superalgebra ospq(1|2) is the Z2-graded unital associative C-algebra
generated by the even element A0 and the odd elements A± satisfying the relations
[19]

[A0, A±]=±A±, {A+, A−}=[2A0]q1/2 ,
where [x, y]= xy− yx and {x, y}= xy+ yx , respectively, stand for the commutator
and the anticommutator. The sCasimir operator of ospq(1|2) is defined as [20]

S= A+A− −[A0 −1/2]q .
This operator is readily seen to obey the relations

{S, A±}=0, [S, A0]=0.

The abstract Z2-grading of ospq(1|2) can be concretized by adding the grade
involution P to the set of generators and by declaring that the even and odd gen-
erators, respectively, commute and anticommute with P . The quantum superalge-
bra ospq(1|2) can thus be presented as the unital associative C-algebra generated
by the elements A0, A± and the involution P obeying the relations

[A0, A±]=±A±, {A+, A−}=[2A0]q1/2 , {P, A±}=0, [P, A0]=0, P2 =1.
(2.1a)

In (2.1a), the parity of the elements no longer needs to be specified. Upon intro-
ducing the generators

K =q A0 , K−1 =q−A0 ,

one can write the relations (2.1a) in the form

K A+K−1 =q A+, K A−K−1 =q−1A−, KK−1 =1, P2 =1,

[K , P]=0, [K−1, P]=0, {A±, P}=0, {A+, A−}= K − K−1

q1/2 −q−1/2
.

(2.1b)
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It is directly verified that the Casimir operator

Q=
(
A+A− −[A0 −1/2]q

)
P, (2.2)

which is related to the sCasimir operator by Q= SP , commutes with all the gener-
ators in (2.1). The quantum superalgebra ospq(1|2) can be equipped with a Hopf
algebraic structure [19]. Introduce the coproduct map � : ospq(1|2) → ospq(1|2) ⊗
ospq(1|2) with

�(A+)= A+ ⊗ K P +1⊗ A+, �(A−)= A− ⊗ P + K−1 ⊗ A−,

�(K )= K ⊗ K , �(P)= P ⊗ P,
(2.3)

the counit map ε :ospq(1|2)→C with

ε(P)=1, ε(K )=1, ε(A±)=0, (2.4)

and the coinverse map σ :ospq(1|2)→ospq(1|2) with

σ(P)= P, σ (K )= K−1, σ (A+)=−A+K−1P, σ (A−)=−K A−P. (2.5)

It is a straightforward exercise to verify that with the coproduct �, the counit ε

and the coinverse σ defined as in (2.3), (2.4) and (2.5), the algebra (2.1) complies
with the well-known requirements for a Hopf algebra [26].

Remark 1 Let us note that in computing with the coproduct, one should use the
standard product rule (a ⊗ b)(c⊗ d) = (ac⊗ bd), as opposed to the usual graded
product rule used for superalgebras when the grade involution is not introduced.

Let us now bring a two-parameter family of irreducible representations of
ospq(1|2). Let ν be a real parameter and let e= ±1. Moreover, let W (e,ν) be the
infinite-dimensional vector space spanned by the basis vectors f (e,ν)

n , where n is a
non-negative integer. It is verified that the actions

K f (e,ν)
n =qn+ν+1/2 f (e,ν)

n , P f (e,ν)
n = e(−1)n f (e,ν)

n ,

A+ f (e,ν)
n = f (e,ν)

n+1 , A− f (e,ν)
n =ρn f (e,ν)

n−1 ,
(2.6)

where

ρn =[n+ν]q − (−1)n[ν]q ,
define representations of ospq(1|2) on W (e,ν). For generic values of ν, one has ρn �=
0 for all n≥1. As a consequence, these representations are irreducible. On W (e,ν),
the Casimir operator (2.2) acts as a multiple of the identity

Q f (e,ν)
n =− e [ν]q f (e,ν)

n ,

as expected from Schur’s lemma. Note that the representations W (e,ν) are associ-
ated to the q-analog of the parabosonic oscillator [4].



THE EQUITABLE PRESENTATION 1729

Remark 2 It is possible to define finite-dimensional representations of (2.1). Indeed,
if one takes ν = −(N + 1)/2, where N is a even integer, one can use the actions
(2.6) to define (N +1)-dimensional irreducible representations of ospq(1|2).

The representations W (e,ν) have a Bargmann realization on functions of the
complex argument z. In this realization, the basis vectors f (e,ν)

n ≡ f (e,ν)
n (z) read

f (e,ν)
n (z)= zn, n=0,1,2, . . . ,

and the generators have the expressions

K (z)=qν+1/2 Tq , P(z)= eRz,

A+(z)= z, A−(z)= qν

q−q−1

(
Tq−Rz

z

)
− q−ν

q−q−1

(
T−1
q −Rz

z

)
,

(2.7)

where Rzg(z)= g(−z) is the reflection operator and where T±
q g(z)= g(q±1z) is the

q-shift operator.

2.2. THE EQUITABLE PRESENTATION OF ospq (1|2)

Let X , Y±, Z and ωy be defined as

X = K−1P − (1−q−1)A+K−1P, Y± = K±P,

Z = K−1P + (q1/2 +q−1/2)A−P, ωy = P. (2.8)

Using the relations (2.1), one readily verifies that these operators satisfy

q1/2XY +q−1/2Y X

q1/2 +q−1/2
=1,

q1/2Y Z +q−1/2ZY

q1/2 +q−1/2
=1,

q1/2Z X +q−1/2X Z

q1/2 +q−1/2
=1.

(2.9)

In addition to YY−1 =1 and ω2
y =1, one has also the relations

Xωy +ωy X =2Y−1ωy, Yωy +ωyY =2Yωy, Zωy +ωy Z =2Y−1ωy .

(2.10)

We refer to the relations (2.9) and (2.10) as the equitable presentation of ospq(1|2)
and to the generators X , Y±, Z and ωy as the equitable generators. It is observed
that in this presentation, the generators are more or less on an equal footing; some
asymmetry occurs in the relations with the involution ωy given in (2.10). The stan-
dard generators of ospq(1|2) can be expressed as follows in terms of the equitable
generators:

A+ = 1− XY

1−q−1
, A− = (Z −Y−1)ωy

q1/2 +q−1/2
, K± =Y±ωy, P =ωy . (2.11)

In the equitable presentation, the “normalized” Casimir operator

ϒ = (q −q−1) Q, (2.12)
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can be written in several different ways. One has

ϒ =q1/2X −q−1/2Y +q1/2Z −q1/2XY Z , ϒ =q1/2Y −q−1/2Z +q1/2X −q1/2Y Z X,

ϒ =q1/2Z −q−1/2X +q1/2Y −q1/2Z XY, ϒ =q1/2Y −q−1/2Z −q−1/2X +q−1/2ZY X,

ϒ =q1/2Z −q−1/2X −q−1/2Y +q−1/2X ZY, ϒ =q1/2X −q−1/2Y −q−1/2Z +q−1/2Y X Z .

With respect to the presentation (2.8), the coproduct (2.3) has the expression

�(X)= X ⊗1+Y−1 ⊗ (X −1), �(Z)= Z ⊗1+Y−1 ⊗ (Z −1),

�(Y )=Y ⊗Y, �(ωy)=ωy ⊗ωy .

On the basis f (e,ν)
n , the equitable generators have the actions

X f (e,ν)
n = e(−1)nq−(n+ν+1/2)

(
f (e,ν)
n − (1−q−1) f (e,ν)

n+1

)
,

Y f (e,ν)
n = e(−1)nqn+ν+1/2 f (e,ν)

n ,

Z f (e,ν)
n = e(−1)n

(
q−(n+ν+1/2) f (e,ν)

n + (q1/2 +q−1/2) ρn f (e,ν)

n−1

)
.

(2.13)

2.3. THE EQUITABLE PRESENTATION OF slq (2)

Let us now establish the relation between the equitable presentations of ospq(1|2)
and slq(2). The quantum algebra slq(2) is defined as the unital C-algebra with gen-
erators κ±, J+, J− and relations

κκ−1 =κ−1κ =1, κ J+κ−1 =q J+, κ J−κ−1 =q−1 J−, [J+, J−]= κ −κ−1

q1/2 −q−1/2
.

(2.14)

The equitable generators x , y± and z of slq(2) are given by [16]

x =κ−1 − (q1/2 −q−1/2)J+κ−1, y± =κ±, z=κ−1 + (1−q−1)J−,

(2.15)

and satisfy the relations

q1/2xy−q−1/2yx

q1/2 −q−1/2
=1,

q1/2yz−q−1/2zy

q1/2 −q−1/2
=1,

q1/2zx −q−1/2xz

q1/2 −q−1/2
=1.

(2.16)

It is directly seen that the equitable presentation of slq(2) given in (2.16) and the
equitable presentation of ospq(1|2) given in (2.9) are related to one another by the
formal transformation q→−q. This formal relation can also be observed using the
standard presentations (2.1) and (2.14). Indeed, upon defining the generators
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κ̃ = K P, κ̃−1 = K−1P, J̃+ = 1
i

(
1−q−1

q1/2 +q−1/2

)
A+, J̃− =

(
q1/2 +q−1/2

1+q−1

)
A−P,

one finds that they satisfy the relations

κ̃ κ̃−1 = κ̃−1κ̃ =1, κ̃ J̃+κ̃−1 =−q J̃+, κ̃ J̃−κ̃−1 =−q−1 J̃−, [ J̃+, J̃−]= κ̃ − κ̃−1

i(q1/2 +q−1/2)
,

which indeed corresponds to (2.14) with q →−q.

Remark 3 Note that if one artificially introduces an involution ωy with {J±,ωy}=
0 and [κ,ωy]=0, relations of the form (2.10) also appear in the equitable presen-
tation of slq(2).

3. A q-Generalization of the Bannai–Ito Algebra and the Covariance
Algebra of ospq(1|2)

In this section, the definitions of the Bannai–Ito algebra and that of its q-extension
are reviewed. It is shown that the Z3-symmetric q-deformed Bannai–Ito algebra
can be realized in terms of the equitable ospq(1|2) generators.

3.1. THE BANNAI–ITO ALGEBRA AND ITS q-EXTENSION

The Bannai–Ito algebra first arose in [25] as the algebraic structure encoding the
bispectral properties of the Bannai–Ito polynomials. It also appears as the hidden
algebra behind the Racah problem for the Lie superalgebra osp(1|2) [8] and as a
symmetry algebra for superintegrable systems [1,7,10]. The Bannai–Ito algebra is
unital associative algebra over C with generators K1, K2, K3 and relations

{K1, K2}= K3 +α3, {K2, K3}= K1 +α1, {K3, K1}= K2 +α2, (3.1)

where αi , i =1,2,3, are structure constants. This algebra admits the Casimir oper-
ator

L = K 2
1 + K 2

2 + K 2
3 , (3.2)

which commutes with every generator Ki , i = 1,2,3. In [11], a q-deformation of
the algebra (3.1) was identified in the study of the Racah problem for ospq(1|2).
This q-extension has generators I1, I2, I3 and relations

{I1, I2}q = I3 + ι3, {I2, I3}q = I1 + ι1, {I3, I1}q = I2 + ι2, (3.3)

where ι1, ι2, ι3 are structure constants and where

{A, B}q =q1/2AB+q−1/2BA, (3.4)

is the q-anticommutator. The algebra (3.3) is formally related to the Zhedanov
algebra by the transformation q →−q [11]. It has for Casimir operator
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= (q−1/2 −q3/2)I1 I2 I3 +q I 21 +q−1 I 22
+q I 23 − (1−q) ι1 I1 − (1−q−1) ι2 I2 − (1−q) ι3 I3, (3.5)

which commutes with all generators Ii , i =1,2,3. It is easily seen that in the limit
q → 1, the relations (3.3) and the expression (3.5) tend to the relations (3.1) and
the expression (3.2).

3.2. COVARIANCE ALGEBRA OF ospq (1|2)

Let a±, b±, c± be complex parameters and consider the operators A, B, C defined
as follows:

A=aX −a−1Y + bc−1(XY−Y X)

q1/2+q−1/2 , B=bY −b−1Z + ca−1(Y Z−ZY )

q1/2+q−1/2 ,

C = cZ − c−1X + ab−1(Z X−XZ)

q1/2+q−1/2 ,
(3.6)

where X , Y and Z are the equitable generators of ospq(1|2) defined in (2.8). A
direct calculation shows that the elements A, B and C satisfy the relations

q1/2AB+q−1/2BA
q−q−1 =C + (a−a−1)(b−b−1)−(c−c−1)ϒ

q1/2−q−1/2 ,

q1/2BC+q−1/2CB
q−q−1 = A+ (b−b−1)(c−c−1)−(a−a−1)ϒ

q1/2−q−1/2 ,

q1/2CA+q−1/2AC
q−q−1 = B+ (c−c−1)(a−a−1)−(b−b−1)ϒ

q1/2−q−1/2 ,

(3.7)

where ϒ is the normalized Casimir operator (2.12) of ospq(1|2). The algebra (3.7)
is easily seen to be equivalent to the q-deformed Bannai–Ito algebra (3.3). Indeed,
upon taking

M1 = A

q −q−1
, M2 = B

q −q−1
, M3 = C

q −q−1
, (3.8)

one finds that the elements M1, M2, M3 satisfy the defining relations (3.3) of the
q-deformed Bannai–Ito algebra

{M1, M2}q =M3 +m3, {M2, M3}q =M1 +m1, {M3, M1}q =M2 +m2, (3.9)

where the structure constants m1, m2 and m3 read

m1 = (q1/2 +q−1/2)
(

(b−b−1)(c−c−1)−(a−a−1)ϒ

(q−q−1)2

)
,

m2 = (q1/2 +q−1/2)
(

(c−c−1)(a−a−1)−(b−b−1)ϒ

(q−q−1)2

)
,

m3 = (q1/2 +q−1/2)
(

(a−a−1)(b−b−1)−(c−c−1)ϒ

(q−q−1)2

)
.

(3.10)

The presentation (3.9), (3.10) is clearly invariant with respect to the simultane-
ous cyclic permutation of the generators (M1, M2, M3) and arbitrary parameters
(a,b, c); it is thus Z3-symmetric. In this realization, the Casimir operator (3.5) of
the q-deformed Bannai–Ito algebra takes the definite value
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=
(

(a−a−1)(b−b−1)(c− c−1)ϒ

(q −q−1)2

)

+
(
a−a−1

q −q−1

)2

+
(
b−b−1

q −q−1

)2

+
(
c− c−1

q −q−1

)2

+
(

ϒ

q −q−1

)2

− q

(1+q)2
.

(3.11)

In view of the above results, one can conclude that the q-deformed Bannai–Ito
algebra serves as the covariance algebra for ospq(1|2).
Remark 4 Let us note that if one takes a=qα , b=qβ , c=qγ and ϒ =−(qδ −q−δ),
the structure constants (3.10) and the Casimir value (3.11) are identical to the ones
arising in the Racah problem for ospq(1|2) [11].

4. Conclusion

In this Letter, the equitable presentation of the quantum superalgebra ospq(1|2)
was displayed. It was observed that ospq(1|2) and slq(2) are related by the for-
mal transformation q→−q and it was established that the q-deformed Bannai–Ito
algebra arises as the covariance algebra of ospq(1|2).

Under the appropriate reparametrization, the q-deformed Bannai–Ito algebra
(3.9) with structure constants (3.10) tends to the Bannai–Ito algebra in the q →1
limit. Similarly in the limit q → 1, the quantum superalgebra ospq(1|2) defined in
(2.1) tends to the Lie superalgebra osp(1|2) extended by its grade involution, also
known as sl−1(2) [24]. However, one observes that the operators of the realization
(2.8), (3.6), (3.8) do not have a well-defined q → 1 limit. Consequently, one can-
not conclude from the above results that the Bannai–Ito algebra is a covariance
algebra of osp(1|2). The interesting problem of realizing the Bannai–Ito algebra in
terms of the Lie superalgebra osp(1|2) thus remains.
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