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Abstract. In a recent paper, Pandharipande, Solomon and Tessler initiated a study of the
intersection theory on the moduli space of Riemann surfaces with boundary. The authors
conjectured KdV and Virasoro type equations that completely determine all intersection
numbers. In this paper, we study these equations in detail. In particular, we prove that the
KdV and the Virasoro type equations for the intersection numbers on the moduli space of
Riemann surfaces with boundary are equivalent.
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1. Introduction

Denote by Mg,n the moduli space of smooth complex algebraic curves of genus g
with n distinct marked points. In [2], Deligne and Mumford defined a natural com-
pactification Mg,n ⊂Mg,n via stable curves (with possible nodal singularities). The
moduli space Mg,n is a nonsingular complex orbifold of dimension 3g−3+n.
A new direction in the study of the moduli space Mg,n was opened by Wit-

ten [9]. The class ψi ∈ H2
(Mg,n;C

)
is defined as the first Chern class of the line

bundle over Mg,n formed by the cotangent lines at the ith marked point. Intersec-
tion numbers

〈
τk1τk2 . . . τkn

〉c
g are defined as follows:

〈
τk1τk2 . . . τkn

〉c
g :=

∫

Mg,n

ψ
k1
1 ψ

k2
2 . . .ψkn

n .

The superscript c here signals integration over the moduli of closed Riemann sur-
faces. Let us introduce variables u, t0, t1, t2, . . . and consider the generating series

Fc(t0, t1, . . . ;u) :=
∑

g≥0,n≥1
2g−2+n>0

u2g−2

n!
∑

k1,...,kn≥0

〈
τk1τk2 . . . τkn

〉c
g tk1 tk2 . . . tkn .

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-015-0789-3&domain=pdf
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Witten ([9]) proved that the generating series Fc satisfies the so-called string equa-
tion and conjectured that the second derivative ∂2Fc

∂t20
is a solution of the KdV hier-

archy. Witten’s conjecture was proved by Kontsevich ([5]).
There is a reformulation of Witten’s conjecture due to Dijkgraaf, Verlinde and

Verlinde ([4]) in terms of the Virasoro algebra. They defined certain quadratic dif-
ferential operators Ln , n≥−1, and proved that Witten’s conjecture is equivalent to
the equations

Ln exp(Fc)=0, (1.1)

that are called the Virasoro equations. The operators Ln satisfy the relation
[Ln, Lm]= (n−m)Ln+m .
In [8], the authors initiated a study of the intersection theory on the moduli

space of Riemann surfaces with boundary. They introduced intersection numbers
on this moduli space and completely described them in genus 0. In higher genera,
the authors conjectured that the generating series of the intersection numbers satis-
fies certain partial differential equations that are analagous to the string, the KdV
and the Virasoro equations. In [8], these equations were called the open string, the
open KdV and the open Virasoro equations.
The open KdV equations and the open Virasoro equations provide two different

ways to describe the intersection numbers on the moduli space of Riemann sur-
faces with boundary. It is absolutely non-obvious that these two descriptions are
equivalent and it was left in [8] as a conjecture. The main purpose of this paper is
to prove this conjecture. We show that the system of the open KdV equations has
a unique solution specified by a certain initial condition that corresponds to the
simplest intersection numbers in genus 0. The main result of the paper is the proof
of the fact that this solution satisfies the open Virasoro equations. This proves that
the open KdV and the open Virasoro equations give equivalent descriptions of
the intersection numbers on the moduli space of Riemann surfaces with bound-
ary.

1.1. WITTEN’S CONJECTURE AND THE VIRASORO EQUATIONS

In this section, we review Witten’s conjecture and its reformulation due to Dijk-
graaf, Verlinde and Verlinde.
One of the basic properties of the generating series Fc is the so-called string

equation ([9]):

∂Fc

∂t0
=
∑

n≥0

tn+1
∂Fc

∂tn
+ t20

2u2
. (1.2)
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1.1.1. KdV equations

Witten conjectured ([9]) that the generating series Fc is the logarithm of a tau
function of the KdV hierarchy. In particular, it means that it satisfies the following
system:

u−2 2n+1
2

∂3Fc

∂t20∂tn
= ∂2Fc

∂t20

∂3Fc

∂t20∂tn−1
+ 1

2
∂3Fc

∂t30

∂2Fc

∂t0∂tn−1
+ 1

8
∂5Fc

∂t40∂tn−1
, n≥1. (1.3)

Moreover, Witten showed ([9]) that the KdV equations (1.3) together with the
string equation (1.2) and the initial condition Fc|t∗=0 = 0 uniquely determine the
power series Fc.

1.1.2. Virasoro equations

The Virasoro operators Ln,n≥−1 are defined as follows:

Ln :=
∑

i≥0

(2i +2n+1)!!
2n+1(2i −1)!! (ti − δi,1)

∂

∂ti+n
+ u2

2

n−1∑

i=0

(2i +1)!!(2n−2i −1)!!
2n+1

∂2

∂ti∂tn−1−i

+ δn,−1
t20
2u2

+ δn,0
1
16

.

They satisfy the commutation relation

[Ln, Lm]= (n−m)Ln+m . (1.4)

The Virasoro equations say that

Ln exp(Fc)=0, n≥−1. (1.5)

For n=−1, this equation is equivalent to the string equation (1.2).
Dijkgraaf, Verlinde and Verlinde ([4]) proved that Witten’s conjecture is equiva-

lent to the Virasoro equations. To be precise, they proved the following. Suppose
a power series F satisfies the string equation (1.2) and the KdV equations (1.3).
Then, F satisfies the Virasoro equations (1.5). We review the proof of this fact in
Appendix A.

1.2. MODULI OF RIEMANN SURFACES WITH BOUNDARY

Here, we briefly recall the basic definitions concerning the moduli space of Rie-
mann surfaces with boundary. We refer the reader to [8] for details.

Let �∈C be the open unit disk, and let � be its closure. An extendable embed-
ding of the open disk � in a closed Riemann surface f : �→C is a holomorphic
map which extends to a holomorphic embedding of an open neighborhood of �.
Two extendable embeddings are disjoint, if the images of � are disjoint.
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A Riemann surface with boundary (X,∂X) is obtained by removing a finite pos-
itive number of disjoint extendable open disks from a connected compact Riemann
surface. A compact Riemann surface is not viewed here as Riemann surface with
boundary.
Given a Riemann surface with boundary (X,∂X), we can canonically construct

the double via the Schwartz reflection through the boundary. The double D(X,∂X)

of (X,∂X) is a closed Riemann surface. The doubled genus of (X,∂X) is defined
to be the usual genus of D(X,∂X).

On a Riemann surface with boundary (X,∂X), we consider two types of marked
points. The markings of interior type are points of X\∂X . The markings of bound-
ary type are points of ∂X . Let Mg,k,l denote the moduli space of Riemann sur-
faces with boundary of doubled genus g with k distinct boundary markings and l
distinct interior markings. The moduli space Mg,k,l is defined to be empty unless
the stability condition 2g−2+ k+2l >0 is satisfied. The moduli space Mg,k,l is a
real orbifold of real dimension 3g−3+ k+2l.
The psi-classes ψi ∈ H2(Mg,k,l;C) are defined as the first Chern classes of the

cotangent line bundles for the interior markings. The authors of [8] do not con-
sider the cotangent lines at boundary points. Naively, open intersection numbers
are defined by

〈
τa1τa2 . . . τalσ

k
〉o

g
:=
∫

Mg,k,l

ψ
a1
1 ψ

a2
2 . . .ψ

al
l . (1.6)

To rigorously define the right-hand side of (1.6), at least three significant steps
must be taken:

• A natural compactification Mg,k,l ⊂Mg,k,l must be constructed. Candidates
for Mg,k,l are themselves real orbifolds with boundary ∂Mg,k,l .

• For integration over Mg,k,l to be well-defined, boundary conditions of the
integrand along ∂Mg,k,l must be specified.

• Problems with an orientation should be solved, since the moduli space Mg,k,l

is in general non-orientable.

The authors of [8] completed all these steps and rigorously defined open intersec-
tion numbers in genus 0. Moreover, they obtained a complete description of them.
In higher genera, even though open intersection numbers are not well-defined, the
authors of [8] proposed a beautiful conjectural description of them that we are
going to recall in the next section.

1.3. OPEN KDV AND OPEN VIRASORO EQUATIONS

In this section, we review the KdV and the Virasoro type equations from [8] for
the open intersection numbers (1.6).
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Introduce one more formal variable s and define the generating series Fo by

Fo(t0, t1, . . . , s;u) :=
∑

g,k,l≥0
2g−2+k+2l>0

ug−1

k!l!
∑

a1,...,al≥0

〈
τa1 . . . τalσ

k
〉o

g
ta1 . . . tan s

k .

First, the authors of [8] conjectured the following analog of the string equation
(1.2):

∂Fo

∂t0
=
∑

i≥0

ti+1
∂Fo

∂ti
+u−1s. (1.7)

They call it the open string equation. The authors also proved that the following
initial condition holds:

Fo
∣
∣
t≥1=0 =u−1

(
s3

6
+ t0s

)

. (1.8)

1.3.1. Open KdV equations

The authors of [8] conjectured that the generating series Fo satisfies the following
system of equations:

2n+1
2

∂Fo

∂tn
=u

∂Fo

∂s

∂Fo

∂tn−1
+u

∂2Fo

∂s∂tn−1
+ u2

2
∂Fo

∂t0

∂2Fc

∂t0∂tn−1
− u2

4
∂3Fc

∂t20∂tn−1
, n≥1.

(1.9)

They call these equations the open KdV equations. It is clear that the open KdV
equations (1.9), the initial condition (1.8) and the potential Fc uniquely determine
the series Fo. On the other hand, the existence of such a solution is completely
non-obvious and we will prove it in this paper.

1.3.2. Open Virasoro equations

In [8], the authors introduced the following operators:

Ln := Ln +
(

uns
∂n+1

∂sn+1
+ 3n+3

4
un

∂n

∂sn

)

, n≥−1.

These operators satisfy the same commutation relation as the operators Ln :

[Ln,Lm]= (n−m)Ln+m . (1.10)

In [8], the authors conjectured the following analog of the Virasoro equations
(1.5):

Ln exp(Fo + Fc)=0, n≥−1. (1.11)
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Clearly, equations (1.11), the initial condition Fo|t∗=0=u−1 s3
6 and the potential Fc

completely determine the series Fo.

1.4. MAIN RESULT

Here, we formulate two main results of the paper.

THEOREM 1.1. 1. The system of the open KdV equations (1.9) has a unique
solution that satisfies the initial condition (1.8).

2. This solution satisfies the following equation:

∂Fo

∂s
=u

(
1
2

(
∂Fo

∂t0

)2

+ 1
2

∂2Fo

∂t20
+ ∂2Fc

∂t20

)

. (1.12)

THEOREM 1.2. The series Fo determined by Theorem 1.1 satisfies the open Vira-
soro equations (1.11).

1.5. BURGERS–KDV HIERARCHY AND DESCENDANTS OF s

In Section 3, we will construct a certain system of evolutionary partial differential
equations with one spatial variable. It will be called the Burgers–KdV hierarchy.
We will prove that the series Fo determined by Theorem 1.1 satisfies the half of
the equations of this hierarchy. The remaining flows of the Burgers–KdV hierarchy
suggest a way to introduce new variables s1, s2, . . . in the open potential Fo. These
variables can be viewed as descendants of s. We hope that our idea can help to
give a geometrical construction of descendants of s, at least in genus 0.

1.6. OPEN KDV EQUATIONS AND THE WAVE FUNCTION OF THE KDV HIERARCHY

In the work [1], that appeared while this paper was under consideration in the
journal, we observed that the open KdV equations are closely related to the equa-
tions for the wave function of the KdV hierarchy. Using this observation our orig-
inal proof of Theorem 1.1 can be simplified. We discuss it in Section 3.7.

1.7. ORGANIZATION OF THE PAPER

In Section 2, we recall some basic facts about evolutionary PDEs with one spatial
variable and give a slight reformulation of Witten’s conjecture.
In Section 3, we construct the Burgers–KdV hierarchy and prove that it has a

solution for arbitrary polynomial initial conditions. We also construct a specific
solution of the half of the Burgers–KdV hierarchy that satisfies the open string
equation (1.7).
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Section 4 contains the proofs of Theorems 1.1 and 3.1.
In Section 5, we prove Theorem 1.2.
In Appendix A, we revisit the proof of the equivalence of the KdV and the Vira-

soro equations for the intersection numbers on the moduli space of stable curves.

2. Evolutionary Partial Differential Equations

In this section, we recall some basic facts about evolutionary PDEs with one spa-
tial variable. We also review the construction of the KdV hierarchy and give a
slight reformulation of Witten’s conjecture that will be useful in the subsequent sec-
tions. All this material is well-known. We refer the reader to the book [7] for the
details about this subject.

2.1. RING OF DIFFERENTIAL POLYNOMIALS

Let us fix an integer N ≥ 1. Consider variables vij , 1≤ i ≤ N , j ≥ 0. We will often
denote vi0 by vi and use an alternative notation for the variables vi1, v

i
2, . . .:

vix :=vi1, vixx :=vi2, . . . .

Denote by Av1,v2,...,vN the ring of polynomials in the variables u,u−1 and vij . The
elements of Av1,...,vN will be called differential polynomials.
An operator ∂x : Av1,...,vN →Av1,...,vN is defined as follows:

∂x :=
N∑

i=1

∑

s≥0

vis+1
∂

∂vis
.

Consider now a sequence of differential polynomials Pi
j (v, vx , . . . ;u)∈Av1,...,vN ,

1≤ i ≤ N , j ≥ 0. Consider the variables vi as formal power series in x, τ0, τ1, . . .
with the coefficients from C[u,u−1]. A system of evolutionary PDEs with one spa-
tial variable is a system of the form:

∂vi

∂τ j
= Pi

j (v, vx , . . . ;u), 1≤ i ≤ N , j ≥0. (2.1)

2.2. EXISTENCE OF A SOLUTION

Here, we give a sufficient condition for system (2.1) to have a solution. Let P1, . . . ,

PN ∈ Av1,...,vN be some differential polynomials. Define an operator VP1,...,PN :
Av1,...,vN →Av1,...,vN by

VP1,...,PN :=
N∑

i=1

∑

j≥0

(∂
j
x P

i )
∂

∂vij

.
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Denote the space of all these operators by Ev1,...,vN . It is a Lie algebra: for Q1,

Q2, . . . , QN ∈Av1,...,vN , we have

[VP1,...,PN ,VQ1,...,QN ]=VR1,...,RN , where Ri =VP1,...,PN Qi −VQ1,...,QN Pi .

Consider an operator O =∑i≥0 Oi∂
i
x , Oi ∈Av1,...,vN . We will use the following

notation:

VP1,...,PN ·O :=
∑

i≥0

(
VP1,...,PN Oi

)
∂ix .

Let us again consider system (2.1). The following Lemma is well-known (see,
e.g., [7]).

LEMMA 2.1. Suppose that, for any i, j≥0, we have [VP1
i ,...,PN

i
,VP1

j ,...,P
N
j
]=0. Then,

for an arbitrary initial condition vi
∣∣
τ j=0= f i (x,u), where f i (x,u)∈C[x,u,u−1], sys-

tem (2.1) has a unique solution.

2.3. KDV HIERARCHY

Consider a variable w and the ring Aw. Define differential polynomials Kn ∈Aw,
n≥0, by the following recursion:

K0 =w,

∂x Kn = 2u2

2n+1

(
w∂x + 1

2
wx + 1

8
∂3x

)
Kn−1, for n≥1. (2.2)

It is a non-trivial fact that the right-hand side of (2.2) lies in the image of the
operator ∂x (see, e.g., [6]). So the recursion (2.2) determines a differential polyno-
mial Kn up to a polynomial in u,u−1. This ambiguity should be fixed by the con-
dition Kn|wi=0 =0.
Consider now the variable w as a power series in variables x, t1, t2, . . . with the

coefficients from C[u,u−1]. The KdV hierarchy is the following system of partial
differential equations:

∂w

∂tn
=∂x Kn, n≥1. (2.3)

Another form of Witten’s conjecture says that the second derivative ∂2Fc

∂t20
is a

solution of the KdV hierarchy (2.3). Here, we identify x with t0. This form of Wit-
ten’s conjecture is equivalent to the form that was stated in Section 1.1 ([9]). Let
us formulate it precisely. Let w(x= t0, t1, t2, . . . ;u) be the solution of the KdV hier-
archy (2.3) specified by the initial condition w|t≥1=0 =u−2x . Let

S := ∂

∂t0
−
∑

n≥0

tn+1
∂

∂tn
.
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It is easy to show that Sw = u−2 and there exists a unique power series

F(t0, t1, . . . ;u) such that w= ∂2F
∂t20

, SF = t20
2u2

and F |t∗=0=0. Moreover, we have ([9])

∂2F

∂t0∂tn
= Kn|

wi= ∂i+2F
∂ti+2
0

and, therefore, F satisfies system (1.3).

3. Burgers–KdV Hierarchy

In this section, we construct the Burgers–KdV hierarchy and prove that its flows
satisfy the commutation relation from Lemma 2.1. This guarantees that the hier-
archy has a solution for arbitrary polynomial initial conditions. We also construct
a specific solution of the half of the Burgers–KdV hierarchy that satisfies the open
string equation (1.7). Finally, we discuss a relation of the Burgers–KdV hierarchy
to the equations for the wave function of the KdV hierarchy.

3.1. CONSTRUCTION

Consider an extra variable v and the ring Av,w. Define differential polynomials
Rn, Qn ∈Av,w, n≥0, as follows:

R0 =vx ,

Rn = 2u2

2n+1

[(
1
2
∂2x+vx∂x+v2x+vxx

2
+w

)

Rn−1+1
2
vx Kn−1+3

4
∂x Kn−1

]

, for n≥1;

Q0 =u

(
v2x +vxx

2
+w

)

,

Qn = u2

n+1

(
1
2
∂2x +vx∂x + v2x +vxx

2
+w

)

Qn−1, for n≥1.

We call the Burgers–pKdV hierarchy the following system:

∂v

∂tn
= Rn, n≥1; ∂w

∂tn
=∂x Kn, n≥1;

∂v

∂sn
= Qn, n≥0; ∂w

∂sn
=0, n≥0.

We see that w is just a solution of the KdV hierarchy. The simplest equation for
v is

∂v

∂s0
=u

(
v2x +vxx

2
+w

)

.
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If we put w=0, then it coincides with the potential Burgers equation (see, e.g., [7]).
In this case, the whole hierarchy reduces to the Burgers hierarchy (see, e.g., [7]).
This explains why we call the constructed hierarchy the Burgers–KdV hierarchy.
The system

∂v

∂tn
= Rn, n≥1; ∂w

∂tn
=∂x Kn, n≥1;

∂v

∂s
=u

(
v2x +vxx

2
+w

)

; ∂w

∂s
=0.

will be called the half of the Burgers–KdV hierarchy.
Another result of the paper is the following theorem.

THEOREM 3.1. Let Fo be the power series determined by Theorem 1.1. Then the
pair v = Fo,w = ∂2Fc

∂t20
satisfies the half of the Burgers–KdV hierarchy.

Here we again identify x with t0.

3.2. COMMUTATIVITY OF THE FLOWS

We are going to prove the following proposition.

PROPOSITION 3.2. All operators VRi ,∂x Ki and VQi ,0 commute with each other.

The proof of the proposition will occupy Sections 3.3–3.5. The plan is the fol-
lowing. First, we consider the differential polynomials R̃i := Ri |w j=0 , Q̃i := Qi |w j=0∈
Av and show that the operators VR̃i ,VQ̃i

∈Ev pairwise commute. We do it in Sec-
tion 3.3. Then in Section 3.4, we prove that the operators VRi ,∂x Ki and VQi ,0 com-
mute with VQ0,0. Finally, in Section 3.5 we deduce that all operators VRi ,∂x Ki and
VQi ,0 commute with each other.

3.3. BURGERS HIERARCHY

Define an operator B by B :=∂x +vx . It is easy to see that

1
2
B2 = 1

2
∂2x +vx∂x + v2x +vxx

2
.

Therefore, we have

R̃i = u2i

(2i +1)!! B
2ivx , Q̃i = u2i+1

2i (i +1)! B
2i v

2
x +vxx

2
.

We can easily recognize here the differential polynomials that describe the flows of
the Burgers hierarchy (see, e.g., [7]), up to multiplication by a constant. The fact
that the operators VR̃i ,VQ̃i

∈Ev commute with each other is well-known (see, e.g.,
[7]).
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3.4. COMMUTATORS [VQ0,0,VRn ,∂x Kn
] AND [VQ0,0,VQn ,0]

Let

P := v2x +vxx

2
, P∗ :=

∑ ∂P

∂vi
∂ix = 1

2
∂2x +vx∂x .

The following formulas will be very useful for us:

VQ0,0 · B=u[P∗, B]+uwx ,
1
2
B2 = P∗ + P.

Let us prove that [VQ0,0,VQn ,0]= 0 or, equivalently, VQ0,0Qn −VQn ,0Q0 = 0. We
have

(n+1)u−2 (VQ0,0Qn −VQn ,0Q0
)

=VQ0,0

((
1
2
B2 +w

)
Qn−1

)
−uP∗

((
1
2
B2 +w

)
Qn−1

)

= u

2
[P∗, B2]Qn−1 + u

2
(wx B+ B ◦wx ) Qn−1 +

(
1
2
B2 +w

)(
VQ0,0Qn−1

)

− u

2
(P∗ ◦ B2)Qn−1 −u (P∗w) Qn−1 −uwx∂x Qn−1 −uwP∗Qn−1

=
(
1
2
B2 +w

)(
VQ0,0Qn−1 −VQn−1,0Q0

)
.

Continuing in the same way, we get

VQ0,0Qn −VQn ,0Q0 = u2n

(n+1)!
(
1
2
B2 +w

)n (
VQ0,0Q0 −VQ0,0Q0

)=0.

Let us prove that [VQ0,0,VRn ,∂x Kn ]=0. Since Kn does not depend on vi , we have
VQ0,0∂x Kn = 0. Thus, it remains to prove that VQ0,0Rn − VRn ,∂x Kn Q0 = 0. We pro-
ceed by induction on n. So assume that VQ0,0Rn−1 −VRn−1,∂x Kn−1Q0 =0.
We have

u−3 2n+1
2

VQ0,0Rn

=u−1VQ0,0

[(
1
2
B2 +w

)
Rn−1 + 1

2
vx Kn−1 + 3

4
∂x Kn−1

]

= 1
2

(
[P∗, B2]+wx B+ B ◦wx

)
Rn−1 +u−1

(
1
2
B2 +w

)(
VQ0,0Rn−1

)

+ 1
2
(∂x P +wx )Kn−1

= 1
2
[P∗, B2]Rn−1 +wx BRn−1 + 1

2
wxx Rn−1

+
(
1
2
B2 +w

)
(P∗Rn−1 +∂x Kn−1)+ 1

2
(∂x P +wx )Kn−1

= P∗
((

1
2
B2 +w

)
Rn−1

)
+ 1

2
B2 (∂x Kn−1

)+w∂x Kn−1 + 1
2
(∂x P +wx )Kn−1.
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On the other hand, we have

u−3 2n+1
2

VRn ,∂x Kn Q0 = P∗
[(

1
2
B2 +w

)
Rn−1 + 1

2
vx Kn−1 + 3

4
∂x Kn−1

]

+2n+1
2

u−2∂x Kn .

Therefore, we get

u−3 2n+1
2

VQ0,0Rn −u−3 2n+1
2

VRn ,∂x Kn Q0

=w∂x Kn−1 + 1
2
wx Kn−1 + 1

8
∂3x Kn−1 − 2n+1

2
u−2∂x Kn =0.

This completes our proof.

3.5. ALL COMMUTATORS

Let V1 and V2 be any two operators from the set {VRi ,∂x Ki }i≥1 ∪ {VQi ,0}i≥0. We
have to prove that [V1,V2]=0. We begin with the following lemma.

LEMMA 3.3. Let [V1,V2]=VT1,T2 . Then T2 =0 and T1|w∗=0 =0.

Proof. Let us prove that T2 = 0. Clearly, we have to do it, only if V1,V2 ∈
{VRi ,∂x Ki }i≥1. Let V1 =VRi ,∂x Ki and V2 =VRj ,∂x K j . Since the differential polynomi-
als Kl do not depend on v∗, we have

T2 =VRi ,∂x Ki ∂x K j −VRj ,∂x K j ∂x Ki =V∂x Ki ∂x K j −V∂x K j ∂x Ki .

Here, we consider the operators V∂x Ki and V∂x K j as elements of the space Ew. The
last expression is equal to 0, because the differential polynomials ∂x Kl describe the
flows of the KdV hierarchy (see, e.g., [7]).
Let us prove that T1|w∗=0=0. Let R̃i := Ri |w∗=0 and Q̃i := Qi |w∗=0. We consider

the operators VR̃i and VQ̃i
as elements of Ev. Obviously, we have

(
VQi ,0R j

)∣∣
w∗=0 =VQ̃i

R̃ j and
(
VQi ,0Q j

)∣∣
w∗=0 =VQ̃i

Q̃ j .

Since ∂x Ki |w∗=0 =0, we get

(
VRi ,∂x Ki R j

)∣∣
w∗=0 =VR̃i R̃ j and

(
VRi ,∂x Ki Q j

)∣∣
w∗=0 =VR̃i Q̃ j .

In Section 3.3, we showed that the operators VR̃i and VQ̃ j
pairwise commute. Thus,

T1|w∗=0 =0. The lemma is proved.

From the Jacobi identity, it follows that
[
VQ0,0, [V1,V2]

]= 0. We have proved
that [V1,V2]=VT1,0, where T1|w∗=0. The following lemma obviously completes the
proof of Proposition 3.2.
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LEMMA 3.4. Suppose T ∈ Av,w is an arbitrary differential polynomial such that
T |w∗=0 =0 and [VQ0,0,VT,0]=0. Then T =0.

Proof. Before proving the lemma let us introduce several notations. A partition λ

is a sequence of non-negative integers λ1, . . . , λr such that λ1 ≥λ2 ≥· · ·≥λr . Note
that our terminology is slightly non-standard, because we allow zeroes in λ. Let
l(λ) := r and |λ| :=∑r

i=1 λi . The set of all partitions will be denoted by P . For a
partition λ let vλ :=∏l(λ)

i=1 vλi and wλ :=∏l(λ)

i=1 wλi .
Consider any differential polynomial Q∈Av,w. Let Q=∑λ,μ∈P dλ,μvλwμ, where

dλ,μ ∈C[u,u−1]. Let

Gri Q :=
∑

l(μ)=i

dλ,μvλwμ, Gr j
i Q :=

∑

l(μ)=i
|μ|= j

dλ,μvλwμ.

The equation [VQ0,0,VT,0]=0 means that VQ0,0T −VT,0Q0 =0. Let T =∑λ,μ∈P
l(μ)≥1

cλ,μvλwμ, where cλ,μ ∈C[u,u−1]. We have

VT,0Q0 =u

(
vx∂x T + 1

2
∂2x T

)
, (3.1)

VQ0,0T =u
∑

λ,μ∈P
l(μ)≥1

∑

i≥0

cλ,μ

∂vλ

∂vi
(∂ix P +wi )wμ. (3.2)

Suppose T 
=0. Let i0 be the minimal i such that Gri T 
=0. From the condition
T |w∗=0 = 0, it follows that i0 ≥ 1. Let j0 be the maximal j such that Gr j

i0
T 
= 0.

From (3.1) it is easy to see that

Gr j0+2
i0

(
VT,0Q0

)= u

2

∑

λ,μ∈P
l(μ)=i0,|μ|= j0

cλ,μvλ∂
2
x (wμ) 
=0.

On the other hand, from (3.2), it obviously follows that Gr j0+2
i0

(VQ0,0T )=0. This
contradiction proves the lemma.

3.6. STRING SOLUTION

In this section, we construct a specific solution of the half of the Burgers–KdV
hierarchy that satisfies the open string equation.

PROPOSITION 3.5. Consider the half of the Burgers–KdV hierarchy. Let us specify
the following initial data for the hierarchy:

v|t≥1=0,s=0 =0 and w|t≥1=0,s=0 =u−2x . (3.3)
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Then the solution of the hierarchy satisfies the open string equation

∂v

∂t0
=
∑

n≥0

tn+1
∂v

∂tn
+u−1s.

We remind the reader that we identify x with t0.

Proof. Recall that S := ∂
∂t0

−∑n≥0 tn+1
∂

∂tn
. We have to prove that Sv =u−1s. We

have Sw = u−2, w = ∂2F
∂t20

and Kn = ∂2F
∂t0∂tn

(see Section 2.3), therefore, SKn = Kn−1,

for n≥1. Let us put K−1 :=u−2, so the last equation is also valid for n=0.
It is easy to see that v|t≥1=0 =u−1 s3

6 +u−1t0s. Hence,

(Sv)|t≥1=0 =u−1s. (3.4)

For n≥1, we have

∂

∂tn
(Sv)= S

∂v

∂tn
− ∂v

∂tn−1

= 2u2

2n+1

[(
(Sv)x∂x + (Sv)xvx+1

2
(Sv)xx+u−2

)
∂v

∂tn−1
+
(
1
2
B2+w

)
S

∂v

∂tn−1

+ 1
2
(Sv)x Kn−1 + 1

2
vx Kn−2 + 3

4
∂x Kn−2

]
− ∂v

∂tn−1

= 2u2

2n+1

[(
(Sv)x∂x + (Sv)xvx + 1

2
(Sv)xx

)
∂v

∂tn−1

+
(
1
2
B2 +w

)
∂

∂tn−1
(Sv)+ 1

2
(Sv)x Kn−1

]
.

This system together with the initial condition (3.4) uniquely determines the power
series Sv. It is easy to see that Sv = u−1s satisfies the system. Proposition 3.5 is
proved.

3.7. RELATION TO THE WAVE FUNCTION OF THE KDV HIERARCHY

Consider the operator

L :=∂2x +2w.

Recall that the KdV hierarchy can be written in the so-called Lax form:

∂

∂tn
L = u2n

(2n+1)!!
[
(Ln+ 1

2 )+, L
]
, n≥1.

Here, we use the language of pseudo-differential operators. We briefly review it
in [1] and we refer the reader to the book [3] for a detailed introduction to this
subject. Introduce variables tn with n ∈ 1

2 +Z≥0 and let t 1
2+k = sk , k ∈Z≥0. In [1],
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we prove that the Burgers–KdV hierarchy is equivalent to the following system of
evolutionary PDEs for the functions w and φ = ev :

∂

∂tn
L = u2n

(2n+1)!!
[
(Ln+ 1

2 )+, L
]
, n∈ 1

2
Z≥1; (3.5)

∂

∂tn
φ = u2n

(2n+1)!! (L
n+ 1

2 )+φ, n∈ 1
2
Z≥1. (3.6)

Equations (3.6) coincide with the equations for the wave function of the KdV hier-
archy (see, e.g., [3]). The commutativity of the flows of the system (3.5), (3.6) is
actually well-known (see, e.g., [3]) and the proof is simple. Let us recall it. Con-
sider the ring Aφ,w. Let Tn := u2n

(2n+1)!! (L
n+ 1

2 )+φ ∈Aφ,w. We have to check that the
operators

VTn ,∂x Kn ∈Eφ,w, n∈ 1
2
Z≥1,

pairwise commute. Here we, by definition, put Kn = 0, for n ∈ 1
2 +Z≥0. Let m,n ∈

1
2Z≥1 and

[VTm ,∂x Km ,VTn ,∂x Kn ]=VP1,P2 .

The fact that P2 =0 follows from the commutativity of the flows of the KdV hier-
archy. For P1 we have

P1 =VTm ,∂x Km
Tn −VTn ,∂x Kn

Tm

= u2m+2n

(2m+1)!!(2n+1)!!
×
([

(Lm+ 1
2 )+, Ln+ 1

2

]

+ + (Ln+ 1
2 )+(Lm+ 1

2 )+ −
[
(Ln+ 1

2 )+, Lm+ 1
2

]

+ − (Lm+ 1
2 )+(Ln+ 1

2 )+
)

φ

= u2m+2n

(2m+1)!!(2n+1)!!
([

(Lm+ 1
2 )+, (Ln+ 1

2 )−
]

+ −
[
(Ln+ 1

2 )+, Lm+ 1
2

]

+

)
φ.

Since
[
(Ln+ 1

2 )+, Lm+ 1
2

]

+ =−
[
(Ln+ 1

2 )−, Lm+ 1
2

]

+ =−
[
(Ln+ 1

2 )−, (Lm+ 1
2 )+
]

+ ,

we conclude that P1=0. The commutativity of the flows of the Burgers–KdV hier-
archy is proved.

4. Proofs of Theorems 1.1 and 3.1

The proof of Theorems 1.1 and 3.1 goes as follows. Let a pair (v,w) be the solu-
tion of the half of the Burgers–KdV hierarchy with the initial condition (3.3). Let
us show that the series Fo = v is a solution of the open KdV equations (1.9).
Indeed, we have
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2n+1
2

∂v

∂tn
=u2

[(
1
2
∂2x +vx∂x + v2x +vxx

2
+w

)
∂v

∂tn−1
+ 1

2
vx Kn−1 + 3

4
∂x Kn−1

]

=u2
(

v2x +vxx

2
+w

)
∂v

∂tn−1
+u2

∂

∂tn−1

(
v2x +vxx

2
+w

)

+ u2

2
vx Kn−1 − u2

4
∂x Kn−1

=u
∂v

∂s

∂v

∂tn−1
+u

∂2v

∂s∂tn−1
+ u2

2
vx Kn−1 − u2

4
∂x Kn−1.

It remains to note that Kn = ∂2Fc

∂t0∂tn
and we see that Theorems 1.1 and 3.1 are

proved.

5. Proof of Theorem 1.2

Denote by ai, j the number (2i+1)!!(2 j+1)!!
2i+ j+2 . Let τ :=exp(Fo + Fc) and τ o :=exp(Fo).

To save some space we will use the subscript n for the partial derivative by tn and
the subscript s for the partial derivative by s. The proof of the theorem is based
on the following lemma.

LEMMA 5.1. We have

1. L0τ
τ

− (uFo
s +u∂s)

L−1τ
τ

=0.

2. If n≥0, then

Ln+1τ

τ
− (uFo

s +u∂s)
Lnτ

τ

= u2

4
(2n+1)!!

2n
Fc
0,n + u4

4

n−1∑

0

ai,n−1−i F
c
0,i F

c
0,n−1−i

+ u2

2
(2n+1)!!
2n+2

Fo
n F

o
0 + u2

2

n−1∑

0

ai,n−1−i F
o
i

(
u2

2
Fo
0 ∂x − u2

4
∂2x

)

Fc
n−1−i

+ u2

2
(2n+1)!!
2n+2

Fo
0,n + u4

4

n−1∑

0

ai,n−1−i F
o
0,i F

c
0,n−1−i

− un+1

4
∂n+1
s τ o

τ o
. (5.1)

Proof. Let us prove point 1. From the usual Virasoro equations (1.5) it follows
that

L−1τ

τ
=−∂Fo

∂t0
+
∑

n≥0

tn+1
∂Fo

∂tn
+u−1s,
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L0τ

τ
=−3

2
∂Fo

∂t1
+
∑

n≥0

2n+1
2

tn
∂Fo

∂tn
+ s

∂Fo

∂s
+ 3

4
.

Using the open KdV equations (1.9), we get

L0τ

τ
− (uFo

s +u∂s)
L−1τ

τ

=−u2

2
Fo
0 F

c
0,0 + u2

4
Fc
0,0,0 + 1

2
t0F

o
0 +

∑

n≥0

tn+1

(
u2

2
Fo
0 F

c
0,n − u2

4
Fc
0,0,n

)

+ sFo
s + 3

4
− (uFo

s +u∂s)u
−1s.

By the string equation (1.2), the last expression is equal to zero.
Let us prove point 2. Let

L(1)
n :=

∑

i≥0

(2i +2n+1)!!
2n+1(2i −1)!! (ti − δi,1)

∂

∂ti+n
,

L(2)
n := u2

2

n−1∑

i=0

ai,n−1−i
∂2

∂ti∂tn−1−i
,

L(3)
n :=uns

∂n+1

∂sn+1
+ 3n+3

4
un

∂n

∂sn
.

Using the Virasoro equations (1.5), we get

Ln+1τ

τ
− (uFo

s +u∂s)
Lnτ

τ

= L(1)
n+1τ

o

τ o
− (uFo

s +u∂s)
L(1)
n τ o

τ o
(A)

+ L(2)
n+1τ

o

τ o
− (uFo

s +u∂s)
L(2)
n τ o

τ o
(B)

+u2
n∑

0

ai,n−i F
c
i F

o
n−i −u2(uFo

s +u∂s)

n−1∑

0

ai,n−1−i F
c
i F

o
n−1−i (C)

+ L(3)
n+1τ

o

τ o
− (uFo

s +u∂s)
L(3)
n τ o

τ o
. (D)

Using the open KdV equations (1.9) and the Virasoro equations (1.5), we can
compute that

(A)=
∞∑

0

(2i +2n+1)!!
2n+1(2i −1)!! (ti − δi,1)

(
u2

2
Fo
0 ∂x − u2

4
∂2x

)

Fc
n+i

=−u2

2
(2n+1)!!
2n+1

Fo
0 F

c
n

︸ ︷︷ ︸
∗

−u4

4

n−1∑

0

ai,n−1−i F
o
0 (Fc

0,i,n−1−i︸ ︷︷ ︸
∗∗

+2Fc
0,i F

c
n−1−i︸ ︷︷ ︸

∗∗∗
)
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+ u2

4
(2n+1)!!

2n
Fc
0,n + u4

8

n−1∑

0

ai,n−1−i (F
c
0,0,i,n−1−i︸ ︷︷ ︸

••
+2Fc

0,i F
c
0,n−1−i +2Fc

0,0,i F
c
n−1−i︸ ︷︷ ︸

•
).

For expression (B), we have

(B)= u2

2

n∑

0

ai,n−i (F
o
i,n−i+Fo

i F
o
n−i )−

u2

2
(uFo

s +u∂s)

n−1∑

0

ai,n−1−i (F
o
i,n−1−i+Fo

i F
o
n−1−i )

= u2

2
(2n+1)!!
2n+2

Fo
0,n + u4

4

n−1∑

0

ai,n−1−i F
o
0,i F

c
0,n−1−i

+ u2

2

n−1∑

0

ai,n−1−i

⎛

⎜⎜
⎝
u2

2
Fo
0 ∂x

︸ ︷︷ ︸
∗∗

−u2

4
∂2x

︸ ︷︷ ︸
••

⎞

⎟⎟
⎠ Fc

i,n−1−i +
u2

2
(2n+1)!!
2n+2

Fo
n F

o
0

+ u2

2

n−1∑

0

ai,n−1−i F
o
i

(
u2

2
Fo
0 ∂x − u2

4
∂2x

)

Fc
n−1−i .

Computing (C) in a similar way we get

(C)=u2
(2n+1)!!
2n+2

Fc
n F

o
0

︸ ︷︷ ︸
∗

+u2
n−1∑

0

ai,n−1−i F
c
i

⎛

⎜
⎜
⎝
u2

2
Fo
0 ∂x

︸ ︷︷ ︸
∗∗∗

−u2

4
∂2x

︸ ︷︷ ︸
•

⎞

⎟
⎟
⎠ Fc

n−1−i .

It is easy to compute that

(D)=−un+1

4
∂n+1
s τ o

τ o
.

We have marked the terms that cancel each other in the total sum (A)+ (B)+
(C)+ (D). Collecting the remaining terms we get (5.1).

From the commutation relation (1.10) it follows that Ln = (−1)n−2

(n−2)! ad
n−2
L1

L2, for
n ≥ 3. Thus, it is sufficient to prove the open Virasoro equations (1.11) only for
n=−1,0,1,2.

By Theorem 3.1 and Proposition 3.5, the series Fo satisfies the open string equa-
tion (1.7). Thus, L−1τ =0. By Lemma 5.1, L0τ = τ(uFo

s +u∂s)
L−1τ

τ
=0.

Substituting n=0 in (5.1), we get

L1τ

τ
− (uFo

s +u∂s)
L0τ

τ
= u

4

[
u

(
Fc
0,0 + 1

2
(Fo

0 )2 + 1
2
Fo
0,0

)
− Fo

s

]
by Theorem 1.1= 0.

Therefore, L1τ =0.
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Finally, let us write equation (5.1) for n=1. We get

L2τ

τ
− (uFo

s +u∂s)
L1τ

τ

= 3u2

8
Fc
0,1 + u4

16
Fc
0,0F

c
0,0 + 3u2

16
Fo
1 F

o
0 + u2

8
Fo
0

(
u2

2
Fo
0 ∂x − u2

4
∂2x

)

Fc
0

+ 3u2

16
Fo
0,1 + u4

16
Fo
0,0F

c
0,0 − u2

4

(
(Fo

s )2 + Fo
s,s

)
. (5.2)

Denote ∂2Fc

∂t20
by w and Fo by v. We have Fc

0,1=K1= w2

2 + 1
12wxx . By the open KdV

equations (1.9), we have

Fo
1 =u2

(
v3x

3
+vxvxx + vxxx

3
+vxw + wx

2

)

.

By Theorem 1.1, Fo
s = u

(
v2x+vxx

2 +w
)
. Substituting these expressions in the right-

hand side of (5.2), after somewhat lengthy computations, we get zero. Hence,
L2τ =0. The theorem is proved.
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Appendix A. Virasoro Equations for the Moduli of Closed Riemann Surfaces

In this section, we revisit the proof of the equivalence of the usual KdV and the
Virasoro equations for the moduli space of stable curves. There is a reason to do
it. In all papers, that we found, the proof is presented in a way more suitable for
physicists. So we decided to rewrite it in a more mathematical style and also to
make it more elementary. We follow the idea from [4].

Let F be a power series in the variables t0, t1, t2, . . . with the coefficients from
C[u,u−1]. Suppose F satisfies the string equation (1.2), the condition F |t∗=0 = 0
and the second derivative ∂2F

∂t20
is a solution of the KdV hierarchy (2.3). Let us

prove that F satisfies the Virasoro equations (1.5).
Let D := F0,0∂x + 1

2 F0,0,0 + 1
8∂

3
x and w = ∂2F

∂t20
. We can rewrite the KdV equa-

tions (1.3) in the following way:
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u2DF0,n−1 = 2n+1
2

∂x F0,n . (A.1)

Let τ := exp (F).

LEMMA A.1. For any n≥−1, we have

u2D∂x
Lnτ

τ
=∂2x

Ln+1τ

τ
.

Proof. Suppose n=−1. We have

L−1τ

τ
=−F0 +

∑

n≥0

tn+1Fn + t20
2u2

,

L0τ

τ
=−3

2
F1 +

∑

n≥0

2n+1
2

tn Fn + 1
16

.

From the KdV equations (A.1), it follows that

u2D∂x
L−1τ

τ
−∂2x

L0τ

τ
= 1

2
D∂x (t

2
0 )− 1

2
∂2x (t0F0)=0.

Suppose n≥0. The operators L(1)
n and L(2)

n were defined in Section 5. Using the
KdV equations (A.1), we get

u2D∂x
L(1)
n τ

τ
−∂2x

L(1)
n+1τ

τ

= (2n+1)!!
2n+1

(

2u2F0,0F0,n + u2

2
F0,0,0,n − (2n+3)F0,n+1

)

+ (2n+1)!!
2n+2

u2F0,0,0Fn .

Now, let us compute u2D∂x
L(2)
n τ
τ

− ∂2x
L(2)
n+1τ

τ
. Recall that ai, j := (2i+1)!!(2 j+1)!!

2i+ j+2 . We
have

L(2)
n τ

τ
= u2

2

n−1∑

i=0

ai,n−i−1(Fi,n−1−i + Fi Fn−1−i ).

Using the KdV equations (A.1), it is easy to compute that

u2

2

[

u2
n−1∑

i=0

ai,n−i−1D∂x Fi,n−1−i −
n∑

i=0

ai,n−i∂
2
x Fi,n−i

]

=−u4

2

n−1∑

i=0

ai,n−i−1(F0,0,i F0,0,n−1−i + 1
2
F0,0,0,i F0,n−1−i )− u2

2
(2n+1)!!
2n+2

F0,0,0,n .
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By the KdV equations (A.1), we have

u2

2

[

u2D∂x

n−1∑

i=0

ai,n−1−i Fi Fn−1−i −∂2x

n∑

i=0

ai,n−i Fi Fn−i

]

= u4

2

n−1∑

i=0

ai,n−i−1(2F0,0F0,i F0,n−1−i + F0,i F0,0,0,n−1−i + 3
4
F0,0,i F0,0,n−1−i )

−u2
n∑

i=0

ai,n−i F0,i F0,n−i −u2
(2n+1)!!
2n+2

F0,0,0Fn .

Collecting all the terms, we get

u2D∂x
Lnτ

τ
−∂2x

Ln+1τ

τ

= (2n+1)!!
2n+1

(

2u2F0,0F0,n + u2

2
F0,0,0,n − (2n+3)F0,n+1

)

− u4

2

n−1∑

i=0

ai,n−i−1(F0,0,i F0,0,n−1−i + 1
2
F0,0,0,i F0,n−1−i )− u2

2
(2n+1)!!
2n+2

F0,0,0,n

+ u4

2

n−1∑

i=0

ai,n−i−1(2F0,0F0,i F0,n−1−i + F0,i F0,0,0,n−1−i + 3
4
F0,0,i F0,0,n−1−i )

−u2
n∑

i=0

ai,n−i F0,i F0,n−i

= (2n+1)!!
2n

(

u2F0,0F0,n + u2

8
F0,0,0,n − 2n+3

2
F0,n+1

)

+u4
n−1∑

i=0

ai,n−i−1

(
−1
8
F0,0,i F0,0,n−1−i + F0,0F0,i F0,n−1−i + 1

4
F0,i F0,0,0,n−1−i

)

−u2
n∑

i=0

ai,n−i F0,i F0,n−i =: Q.

Since Ki = ∂2F
∂t0∂ti

, the series Q can be expressed as a differential polynomial in
w,wx ,wxx , . . .. From the condition Ki |w∗=0=0 it follows that this polynomial does
not have a constant term. Using (2.2), it is easy to compute that ∂x Q = 0. Thus,
Q=0. The lemma is proved.

From the commutation relation (1.4), it follows that Ln = (−1)n−2

(n−2)! ad
n−2
L1

L2, for
n ≥ 3. Thus, it is sufficient to prove the Virasoro equations (1.1) only for n =
−1,0,1,2. Let us do it by induction on n.
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The case n = −1 follows from the string equation. Suppose n ≥ 0. Recall that
S := ∂

∂t0
−∑i≥0 ti+1

∂
∂ti

. Using the induction hypothesis, we get

S
Lnτ

τ
= S(Lnτ)

τ
− (Sτ)Lnτ

τ 2
=− L−1(Lnτ)

τ
= (n+1)

Ln−1τ

τ
− Ln(L−1τ)

τ
=0.

Therefore, S∂x
Lnτ
τ

= 0. By Lemma A.1 and the induction assumption, we have

∂2x
Lnτ
τ

= 0, hence,
(∑

i≥0 ti+1
∂
∂ti

)
∂x

Lnτ
τ

= 0. Therefore, ∂x
Lnτ
τ

∈ C[u,u−1]. Since

S Lnτ
τ

= 0, we have
(∑

i≥0 ti+1
∂
∂ti

)
Lnτ
τ

∈ C[u,u−1]. From this, we conclude that
Lnτ
τ

∈C[u,u−1]. Let 〈τa1 . . . τak
〉 := ∂k F

∂ta1 ...∂tak

∣∣∣
t∗=0

. We have

L0τ

τ

∣∣∣
∣
t∗=0

=−3
2

〈τ1〉+ 1
16

,

L1τ

τ

∣
∣∣∣
t∗=0

=−15
4

〈τ2〉+ u2

8
(
〈
τ 20

〉
+〈τ0〉2),

L2τ

τ

∣∣∣∣
t∗=0

=−105
8

〈τ3〉+ 3u2

8
(〈τ0τ1〉+〈τ0〉 〈τ1〉).

It is easy to check that all these expressions are equal to zero. The Virasoro equa-
tions are proved.
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