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Abstract. We formulate an analog of Inverse Scattering Method for integrable systems on
noncommutative associative algebras. In particular, we define Hamilton flows, Casimir ele-
ments and noncommutative analog of the Lax matrix. The noncommutative Lax element
generates infinite family of commuting Hamilton flows on an associative algebra. The
proposed approach to integrable systems on associative algebras satisfies certain universal
property, in particular, it incorporates both classical and quantum integrable systems as
well as provides a basis for further generalization. We motivate our definition by explicit
construction of noncommutative analog of Lax matrix for a system of differential equa-
tions on associative algebra recently proposed by Kontsevich. First, we present these equa-
tions in the Hamilton form by defining a bracket of Loday type on the group algebra of
the free group with two generators. To make the definition more constructive, we utilize
(with certain generalizations) the Van den Bergh approach to Loday brackets via double
Poisson brackets. We show that there exists an infinite family of commuting flows gener-
ated by the noncommutative Lax element.
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1. Introduction

An idea of studying Integrable Systems on associative algebras was originated by
Gelfand school in the late 1970s [3,10]. There exist several different approaches to
noncommutative integrability (see, for example [4,5,12,13,15,22,24]). In this paper,
we use the approach developed by Mikhailov and Sokolov. In paper [18], they sug-
gested to consider Lax operator L of integrable system as an element of some non-
commutative associative algebra A instead of taking a matrix of a particular size.
In this approach, we can introduce the equation of the spectral curve as a polyno-
mial relation on L ∈A of the form P(L)= 0. Then the passage to the usual Lax
matrix is equivalent to represent a quotient of algebra A by the ideal generated by
the spectral curve P(L)=0, followed by the choice of representation of A/(P(L)).
In this paper, we show that the idea of integrability can be formulated in univer-
sal terms for associative algebra A itself, independently of the particular choice of
representation. This type of equations should naturally incorporate known classical
and quantum integrable systems as well as provide a basis for further generaliza-
tion.
Classical Lax matrix L(z) with a spectral parameter provides generating func-

tions Tr(L(z))k for Hamiltonians of the system, which in turn generate a com-
plete set of the first integrals of motion. So, to use all advantages of the power-
ful Inverse Scattering Method [8,9,19,25] in the noncommutative case one has to
define trace first. The proper candidate for the role of codomain of traces in the
case of associative algebras is the so-called 0-Hochschild homology. We know that
in the case of M ∈ Mat (N ,C), the trace of Mk is invariant under conjugation of
M by elements of GL(N ,C), so it seems natural to define the trace as an equiva-
lence class under conjugation with generators of associative algebra.1 The quotient
of the associative algebra modulo these equivalence relations we call a cyclic space.
The accurate definitions of the corresponding notions are given in Section 3.1. The
cyclic space has no longer a structure of associative algebra, however, it appears
that it can be endowed with a Lie bracket [1,2,13].

The latter brings us to the point that Hamiltonians of integrable systems on
associative algebras are elements of the cyclic space. To define the corresponding
Hamilton equations of motion

1More precisely, the set of TrMk , 1≤ k≤ N parameterizes generic orbit of the coadjoint action
of GL(N ,C). We can view this orbit as an equivalence class of matrices modulo conjugation which
motivates this definition.
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∀x ∈A,
d
dt

x ={H, x}.

we have to define { , }—a noncommutative analog of the Poisson bracket. The
above equation must define a derivation of A and thus { , } should satisfy the
Leibnitz rule in the second argument. However, the skew-symmetricity is no longer
a requirement, since the two arguments of { , } are the elements of two differ-
ent spaces. After some additional analysis in Section 3.2, we come to a conclusion
that the proper type of the bracket we need is actually the so-called Loday bracket
[16,17].
Loday bracket satisfies Leibnitz rule only in the second argument. The absence

of the Leibnitz rule in the first argument naively prevents us from defining the
bracket by its action on generators of associative algebra. To overcome this sub-
tlety we extend Van den Bergh approach to construction of a certain subclass of
Loday algebras via the double Poisson bracket [2]. The double Poisson bracket sat-
isfy some forms of the Leibnitz rule w.r.t. both arguments, which makes the defi-
nition more constructive.
We present the definition of double Poisson bracket by Van den Bergh in Sec-

tion 3.3, this original definition requires the bracket to be skew-symmetric in spe-
cific sense, which becomes crucial for derivation of Jacobi identity. However, for
our case we have to abandon the skew-symmetricity condition. It appears that the
Jacobi identity for the resulting Loday algebra can still be satisfied by the bracket
presented in Section 3.4. As a result, we present the bracket of Loday type which
describes the equation of motion for the Kontsevich system.
Finally, in Section 4, we formulate a notion of Liouville integrability for systems

on associative algebras and introduce the associative inverse scattering method.
With this approach the role of the Lax matrix is played by some element of the
associative algebra. The corresponding commuting Hamilton flows are generated
by noncommutative traces of powers of the Lax element.
The above notion of noncommutative integrability is an alternative to the one

introduced by Kontsevich in paper [14]. The relation between these two notions of
noncommutative integrability could be an interesting topic for further research.

2. Kontsevich System

Let A=C
〈
u±1, v±1

〉
denotes the associative group algebra over C of the free group

G =〈u, v〉 with two generators. Kontsevich proposed a noncommutative system of
ODE on this algebra

⎧
⎪⎪⎨

⎪⎪⎩

du
dt

=uv −uv−1 −v−1,

dv

dt
=−vu+vu−1 +u−1,

(1)
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which admits the following discrete symmetry

u→uvu−1, v →u−1 +v−1u−1. (2)

The latter can be viewed as a noncommutative analog of Bäcklund transforma-
tions. Based on this data, Kontsevich conjectured that (1) is integrable.

In paper [6], it was proved that system (1) admits the Lax representation

dL
dt

=[L , M] (3)

with the following Lax pair

L =
(

v−1 +u λv +v−1u−1 +u−1 +1
v−1 + 1

λ
u v +v−1u−1 +u−1 + 1

λ

)
, M =

(
v−1 −v +u λv

v−1 u

)
. (4)

This Lax pair gives a rise to an infinite number of Hamiltonians which cover all
independent first integrals of (1) as was conjectured in [6].

2.1. CLASSICAL OR COMMUTATIVE COUNTERPART

Note that in the commutative (classical) case the Equation (1) is Hamilton

du
dt

={h,u}, dv

dt
={h, v}

with respect to the Hamiltonian

h=u+v +u−1 +v−1 +u−1v−1 (5)

and Poisson bracket defined by

{v,u}=uv. (6)

This implies that the commutative counterpart of (1) is trivially integrable in the
Liouville sense.
Bracket (6) can be transformed to canonical one via change of variables u =

ep, v = eq , which gives {p,q} = 1. Then the Hamiltonian acquires the following
form:

h= ep + e−p + eq + e−q + e−p−q . (7)

2.2. HAMILTONIANS AND FIRST INTEGRALS

Equation (1) preserve the commutator of the underlying free group 〈u, v〉:
uvu−1v−1 = c. (8)

In particular, when c is central, the group algebra C
〈
u±1, v±1

〉
turns into a “quan-

tum group” and this restriction is consistent with Equation (1). Later, in the text,
we show that this is a noncommutative analog of the Casimir element [23].
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On the classical level, we have another integral of motion, namely Hamiltonian
(5). Consider its noncommutative analog2

h=u+v +u−1 +v−1 +u−1v−1. (9)

It is no longer a first integral of equations of motion. Indeed,

d
dt

h(t)=u−1 −vuv−1 +uv −vu+v−1u−1 −u−1v−1 +u−1v−1u−1 −u−2v−1 �=0.

However, if we consider a matrix representation ϕ : A→ Mat (N ,C) for any N we
get

d
dt

Trϕ(h)=0. (10)

Following terminology of [6,18] we call h a "trace" integral. Indeed, even more
interesting property holds: for any representation ϕ we have

d
dt

Trϕ(hk)=0. (11)

In other terms for all representations ϕ(h)(t) has adjoint dynamics under (1)

ϕ(h)(t)= g(t)ϕ(h)(0)g−1(t). (12)

3. Noncommutative Hamilton Equations of Motion for Kontsevich System

In this section, we present Equation (1) in the Hamilton form with Hamiltonian
(9).
In formulas (10) and (11), we pointed out that the noncommutative analog of

the classical Hamiltonian is not literally a first integral of equations of motion.
Here, we develop these ideas without using representations of A. This kind of
objects was called the “trace” integrals in paper [18]. This means that the proper
space for Hamiltonians is not an associative algebra itself, but certain quotient
space of it, which makes the derivative of hk to be an element of the zero equiva-
lence class. In particular, for this purpose, we use the so-called cyclic space
A/[A, A] defined in Section 3.1.
The idea of making the Hamiltonians to be the elements of the different space

ruins the anticommutativity of the possible noncommutative analog of the Pois-
son bracket. In Section 3.2, we analyze the necessary requirements for this bracket
and come to the conclusion that we should utilize the so-called left Loday bracket.
However, to provide a constructive definition for the particular Loday bracket, it is
necessary to employ some object which satisfies the Leibnitz identity in both argu-
ments.

2Note that the ordering in the last term does not matter, due to the trivial symmetry of equa-
tions of motion u↔v, t →−t .
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In Section 3.3, we remind the original definition of double Poisson bracket by
Van den Bergh [2]. The so-called double Poisson bracket uses the tensor square
of associative algebra as a codomain. Tensor square of associative algebra admits
two independent structures of bimodule. This allows one to define the bracket by
its action on generators which is not true for Loday brackets. Van den Bergh has
shown that double quasi-Poisson brackets can provide a Loday bracket after a
composition with multiplication map.
However, for our purpose, we are required to waive the very strict skew-

symmetricity condition used by Van den Bergh, so in Section 3.4, we define a mod-
ified double Poisson bracket.
We conclude this section with Hamilton equations and Lax formalism for Kont-

sevich system in Section 3.5 and its specialization to classical and quantum inte-
grable systems in Section 3.6.

3.1. CYCLIC SPACE

Take some group G (we do not impose any restrictions on this group throughout
Section 3.1, however we subsequently use the free group G =〈u, v〉 with two gen-
erators) and consider its group algebra A=C[G] over C. It has a structure of an
associative algebra over C.
We can view it as a vector space of dimension |G| (which in the case G=〈u, v〉

is clearly infinite) with the base elements exactly the elements of a group G. Now
we can form another linear space by taking the quotient of A as a vector space
by the commutant

[A,A]= span {ab−ba |a,b∈G} . (13)

Then, we immediately get that all cyclic permutations of product of generators xi
are equivalent modulo (13), for example xi x j xk ≡ x j xk xi ≡ xkxi x j mod [A,A] but in
general xi x j xk �≡ xi xk x j mod [A,A]. Easy to see that equivalence of all monomials
of generators under the cyclic permutations is a complete (which means sufficient)
set of additional relations we get after taking the quotient A� =A/[A,A] and this
fact motivates the name.
The resulting linear space A� is not an associative subalgebra of A, since the

equivalence class of a zero [A,A] is not an ideal in A. However, it appears that
this linear space A� can be endowed with symplectic structure [11].
Now, let π :A→A� denotes a natural projection map, then (11) can be rewritten

as

d
dt

π(hk)=0.

In Section 3.2, we show that it seems reasonable to understand the images π(hk)∈
A� as Hamiltonians, and the cyclic space A� = A/[A,A] as a natural space for
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them. At the same time h itself plays the same role as Lax matrix in classical inte-
grable systems.

3.2. HAMILTON FLOW FOR EQUATION (1)

To present equations of motion (1) in the Hamilton form

u={h,u}K , v ={h, v}K

with Hamiltonian (9), we must provide a bracket s.t. for each Hamiltonian it
defines a derivation of A=C〈u, v〉:

∀a∈ A
da
dt

={h,a}K

and thus should satisfy the Leibnitz rule in the second argument. On the other
hand, we already pointed out that in the case of noncommutative integrable sys-
tems the Hamiltonians are not literaly invariant under dynamics (12). The invari-
ant in this case is the image of π(h) in the cyclic space, so we should require the
bracket to be invariant under the cyclic permutations of monomials of the first
argument. Or, equivalently, we can say that the first argument of the bracket is
actually the element of the cyclic space.
Now, the bracket becomes a function of elements in two different spaces and the

exact anticommutativity cannot be imposed. Keeping this in mind, we immediately
have a lot of inequivalent forms of Jacobi identity, and to restore the proper order-
ing, we should go back to properties we want to be secured by it. From the point
of view of Integrable Systems, the Jacobi identity is used to ensure that the com-
mutator of the vector fields generated by two different Hamiltonians is the vector
field corresponding to their commutator:

∀H1, H2, x ∈ A {H1, {H2, x}}−{H2, {H1, x}}={{H1, H2}, x} (14)

The structure which satisfies this form of Jacobi identity and is not necessary anti-
symmetric is called a Loday algebra [16,17]. In what follows, we refer to (14) as
Jacobi identity of Loday type.
The Loday bracket satisfies the Leibnitz rule only in the second argument, which

makes it impossible to define its action on the whole associative algebra by its
action on the generators unless we impose some additional requirement. It appears
that the large class of Loday brackets can be constructed by means of the so-called
double quasi-Poisson brackets [2]. However, we need a further modification of this
structure for our purpose. Namely, we do not assume that the modified double
Poisson bracket has to satisfy the Anti-Symmetricity condition (Section 3.3, prop-
erty (3)). In Section 3.3, we present the Van den Bergh original definition for dou-
ble Poisson bracket and breifly sketch its relation to Loday brackets.
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3.3. DOUBLE POISSON BRACKET BY VAN DEN BERGH

In papers [1] and [2], the general approach to the symplectic structure on noncom-
mutative associative algebras was developed. It appears that the naive definition of
the Poisson bracket on associative algebra A as a map A×A→A which satisfies
the Jacobi and Leibnitz identities does not provide essential number of nontrivial
examples, since in most cases it is restricted to be proportional to the commuta-
tor [1,7]. To resolve this issue Van den Bergh replaced the codomain and intro-
duced the so-called double Poisson bracket, which was originally defined as a map
{{ }}: A×A→A⊗A which satisfies the following properties:

(1) Bilinearity {{ }} is bilinear, as a consequence by the universal property it extends
to the full tensor product

{{ }}: A⊗A→A⊗A.

In the rest of the Section 3.3, we imply this extension when use notation {{ }},
since it is more natural. Although, in almost all identities, we apply double
bracket to pure products of the form a⊗b.

(2) Leibnitz identity3

{{a⊗bc}}= {{a⊗b}}(1⊗ c)+ (b⊗1){{a⊗ c}}
{{ab⊗ c}}= {{a⊗ c}}(b⊗1)+ (1⊗a){{b⊗ c}}

(3) Anti-Symmetricity (Strong) {{a⊗ b}}=−{{b⊗ a}}◦ where ◦—denotes the oppo-
site of the tensor product, for pure products (a⊗b)◦ =b⊗a.

(4) Jacobi identity (Type I) To write the Jacobi identity, we first introduce some
useful notation. The double Poisson bracket from part 1 gives a rise to a map

Rm,n : A⊗A⊗· · ·⊗A︸ ︷︷ ︸
k times

→A⊗A⊗· · ·⊗A︸ ︷︷ ︸
k times

s.t. if {{a⊗b}}=∑
i xi (a,b)⊗ yi (a,b) then

Rm,n(a1 ⊗· · ·⊗ak)=
∑

i

a1 ⊗· · ·⊗ xi (am,an)⊗· · ·⊗ yi (am,an)⊗· · ·⊗ak

In particular, for k=2 we have {{ }}= R12. This is a noncommutative analog of
R-matrix. With this notation Jacobi identity reads

R12R23 + R31R12 + R23R31 =0 (15)

3The idea of using the tensor product as a proper codomain for the double Poisson bracket
allows us to endow A⊗A with two independent structures of A-bimodule. Namely, x ◦1 (a⊗b)◦1 y=
xa ⊗ by and x ◦2 (a ⊗ b) ◦2 y = ay ⊗ xb. This idea allowed Van den Bergh to combine Leibnitz and
Jacobi identities without being too restrictive. One can note that Leibnitz identity utilizes different
A-bimodule structures for the first and the second components.
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There is a natural multiplication map on a tensor product of copies of associative
algebra

μ : A⊗A→A, μ(a⊗b)=ab.

Define {a,b} = μ({{a⊗b}}) , ∀A, B ∈A. The following statements are due to Van
den Bergh.

LEMMA 1. [2] Bracket { } defined above have the following properties:

(i) Leibnitz identity in the second argument:

{a⊗bc}={a⊗b}c+b{a⊗ c}
(ii) Invariance under cyclic permutations of monomials in the first argument:

{ab⊗ c}={ba⊗ c}
(iii) skew-symmetricity modulo [A,A]:

{a⊗b}−{b⊗a} mod [A,A]
(iv) As a consequence of part (ii) bracket gives rise to a map (A/[A,A])⊗A→A.
(v) Moreover, from parts (ii)–(iii) we conclude that it induces a map A/[A,A] ⊗

A/[A,A]→A/[A,A].

However, the Jacobi identity (15) on A itself is neither required, nor guaran-
tees the desired properties. Here, we do not discuss modifications of Jacobi identity
presented by Van den Bergh to secure the Jacobi identity of Loday type (14) for
the resulting Loday algebra since they heavily rely on the strong version of Anti-
Symmetricity condition presented in part (3) of the properties list (Lemma 1).

Odesskii, Rubtsov, and Sokolov [20,21] carried out the complete classification
for linear and quadratic double Poisson brackets. In particular, from the necessary
requirement ((2.21)–(2.22) in [21]), we conclude that there is no double Poisson
bracket which has the classical counterpart (6). This leads us to the point that, for
our purpose, we need to weaken some restrictions in the definition of the Poisson
bracket. It appears that Bilinearity and Leibnitz identity are essential for us, how-
ever, the Anti-Symmetricity and Jacobi identity can be substantially modified. In
the next section, we present an explicit construction for modified double Poisson
bracket which helps to present Equation (1) in the Hamilton form.

3.4. MODIFIED DOUBLE POISSON BRACKET FOR KONTSEVICH SYSTEM

In this section, we construct a bracket on associative algebra A = C
〈
u±1, v±1

〉

which allows us to present Equation (1) in the Hamilton form. We define { }K :
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A× A→ A as a composition of modified double quasi-Poisson bracket and multi-
plication map μ

{a,b}K =μ({{a⊗b}}K ) (16)

Where the modified double quasi-Poisson bracket {{ }}K is defined by its action on
the generators

{{u, v}}K=−vu⊗1, {{v,u}}K=uv ⊗1, {{u,u}}K={{v, v}}K=0. (17)

along with the following requirements

(1) Bilinearity {{ }}K is bilinear and thus extends to

{{ }}K : A⊗ A→ A⊗ A

Again, we use further the same notation {{ }}K for extension of this bracket to
A⊗ A as well as for operation defined on A× A.

(2) Leibnitz identity

{{a⊗bc}}K={{a⊗b}}K (1⊗ c)+ (b⊗1){{a⊗ c}}K (18a)

{{ab⊗ c}}K={{a⊗ c}}K (b⊗1)+ (1⊗a){{b⊗ c}}K (18b)

Properties (1)–(2) along with formulae (17) define {{ }}K completely. Following [2],
we employ useful notation. Let x, y ∈ A then we define the components of the
bracket of their product via

({{x, y}}′K
)
i and

({{x, y}}′′K
)
i as below

{{x ⊗ y}}K=:
∑

i

({{x, y}}′K
)
i ⊗

({{x, y}}′′K
)
i .

In our case, the sum is actually redundant. Rewriting (17) we immediately get

{{u⊗v}}K =: {{u, v}}′K⊗{{u, v}}′′K=−vu⊗1,

{{v ⊗u}}K =: {{v,u}}′K⊗{{v,u}}′′K=uv ⊗1,

{{u⊗u}}K ={{v ⊗v}}K=0,

and then extend it to u±1, v±1 by Leibnitz identity (18)

{{u−1 ⊗v−1}}K=(v−1 ⊗u−1){{u⊗v}}K (u−1 ⊗v−1)=−1⊗u−1v−1,

{{v−1 ⊗u−1}}K=(u−1 ⊗v−1){{v ⊗u}}K (v−1 ⊗u−1)=1⊗v−1u−1,

{{u−1 ⊗v}}K=− (1⊗u−1){{u⊗v}}K (u−1 ⊗1)=v ⊗u−1,

{{v ⊗u−1}}K=− (u−1 ⊗1){{v ⊗u}}K (1⊗u−1)=−v ⊗u−1,

{{u⊗v−1}}K=− (v−1 ⊗1){{u⊗v}}K (1⊗v−1)=u⊗v−1,

{{v−1 ⊗u}}K=− (1⊗v−1){{v ⊗u}}K (v−1 ⊗1)=−u⊗v−1.



NONCOMMUTATIVE INVERSE SCATTERING 1233

If a,b∈ A are monomials, then we can present them in the following form

a=a1a2 . . .ak, ai =u±1, v±1, b=b1b2 . . .bm, b j =u±1, v±1.

With this notation we have

{{a⊗b}}K=
∑

i, j

(
b1 . . .b j−1{{ai ,b j }}′K ai+1 . . .ak

)⊗ (
a1a2 . . .ai−1{{ai ,b j }}′′K b j+1 . . .bm

)

(19)

and by linearity this formula extends to the full tensor product A⊗ A.
Now, recall (16): {x, y}K = μ({{x ⊗ y}}K ), this defines an operation { , }K : A×

A→ A.

PROPOSITION 2. { , }K satisfies the following properties:

(1) Bilinearity { , }K is bilinear and thus extends to

{ }K : A⊗ A→ A;
(2a) Leibnitz identity in the second argument

{a,bc}K ={a,b}K c+b{a, c}K ;
(2b) Invariance under cyclic permutations of monomials in the first argument

{ab, c}K ={ba, c}K ;
(3) Skew-symmetricity modulo [A, A]

{a,b}K ≡−{b,a}K mod [A, A];
(4) Jacobi identity

∀H1, H2, x ∈ A : {H1, {H2, x}K }K −{H2, {H1, x}K }K ={{H1, H2}K , x}K .

Proof. Part (1) is trivial. Part (2a) is provided by the outer bimodule structure of
the double bracket. Indeed, apply μ to both sides of (18a), this reads

{a,bc} := μ({{a⊗bc}}K )=μ({{a⊗b}}K (1⊗ c))+μ((b⊗1){{a⊗b}}K )

= μ({{a⊗b}}K ) c+bμ({{a⊗ c}}K )={a,b}K c+b{a, c}K .

Part (2b) is provided by the inner bimodule structure of the double bracket. Here,

{ab, c}K := μ({{ab⊗ c}}K )= by (18b)

= μ({{a⊗ c}}K (b⊗1))+μ((1⊗ c){{a⊗b}}K )

= μ((1⊗b){{a⊗ c}}K )+μ({{a⊗b}}K (c⊗1))

= μ({{ba, c}}K )=: {ba, c}K .
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The proof for parts (3) and (4) is quite technical and thus presented in Appen-
dix A. For the sake of brevity for part (4) (Jacobi identity) we present a proof for
C〈u, v〉⊂ A and then sketch the proof for the whole algebra A.

Using Proposition 2, we conclude that { , }K is well-defined on A/[A, A] × A
and provides a desired Loday bracket.

3.5. LAX MATRIX, HAMILTONIANS AND CASIMIR ELEMENTS

Note first that

d
dt

h={h,h}K =[h, v +u−1]. (20)

This equation was first presented in [6]. It is a noncommutative analog of the Lax
equation, where the role of the first Lax matrix is played by the element h, whereas
M = v + u−1 plays the role of the second Lax matrix. It was claimed in paper [6]
that Equation (20) cannot be considered as a Lax equation since this equation
does not solely define derivatives for generators of associative algebra A. However,
we point out that it is already enough to define a Loday bracket { , }K along with
h to completely define a derivation of A. From this point of view, the Lax equa-
tion (20) plays the role of the condition that secures π(hk) to be invariant.
Actually, even stronger statement is true, namely π(hk) is an infinite chain of

commuting Hamiltonians in A/[A, A]. This is shown by the following proposition.

PROPOSITION 3. For all N , M > 0 the corresponding Hamiltonians π(hN ) and
π(hM ) are in involution: {hN ,hM }K ≡0 mod [A, A].

Proof.

{hN ,hM }K =μ
(
{{hN ,hM }}K

)
=μ

⎛

⎝
N∑

j=0

M∑

k=0

(hk ⊗h j ){{h,h}}K
(
hN− j−1 ⊗hM−k−1

)
⎞

⎠.

(21)

On the other hand,

{{h,h}}K=1⊗a−h⊗b+ e⊗1, where

a=u−1 +v−1 −u−1v−1 +v−1u−1 +u−1v−1u−1 +v−1u−1v−1

+u−1v−1u−1v−1,

b=u−1v−1,

e=uv −vu. (22)
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Combining (21) with (22), we get

{hN ,hM }K =μ

⎛

⎝
N−1∑

j=0

M−1∑

k=0

(
hN+k− j−1 ⊗h jahM−k−1 −hN+k− j ⊗h jbhM−k−1

+hkehN− j−1 ⊗hM+ j−k−1
)

⎞

⎠

=
N−1∑

j=0

M−1∑

k=0

(
hN+k−1ahM−k−1 −hN+kbhM−k−1 +hkehN+M−k−2

)

≡MN (a+ e−hb)hM+N−2 mod [A, A]. (23)

But, for N =M =1, we have (20), so using the last but one line of (23) we get

(a+ e−hb)=[h, v +u−1].
And finally

{hN ,hM }K ≡MN [h, v +u−1]hM+N+2 mod [A, A]
≡0 mod [A, A].

COROLLARY 4. For all k>0, π(hk) is integral of a system of equations (1).

Proof. π
(

d
dt h

k
)

=π
([hk, v +u−1])=0.

Here, we should point out the fact that π(hk) as elements of the cyclic space are
independent, whereas all hk are generated by a single element. When we come to
the quotient space A/[A, A] it no longer has a natural multiplication. Or, in other
words, given an equivalence class π(h)∈ A/[A, A], we cannot pick a proper repre-
sentative h∈ A which generates the whole series. This makes π(h2) to be in princi-
ple unidentified by π(h). Namely, given the equivalence class π(h), we do not have
Lax equation (20) for each representative of each class in A.

LEMMA 5. The infinite series of commuting Hamiltonians π(hk) is linearly inde-
pendent over C.

Proof. It is enough to consider highest term in u in π(hk).

This brings us to conclusion that h is a noncommutative analog of the Lax
matrix. In each representation it has adjoint dynamics (12), as well as it generates
the infinite series of commuting Hamiltonians π(hk). Here, π is a projection to the
cyclic space which can be treated as noncommutative analog of Tr.
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Now, we left with the task to understand the meaning of Casimir functions. We
already pointed out that (8) is invariant under dynamics (1). However, it appears
that even stronger statement is true.

PROPOSITION 6. For each H ∈ A/[A, A], the corresponding Hamilton flow {H, }K
with respect to bracket (16) preserves the group commutator c=uvu−1v−1

Proof. Direct computation shows that

{{u⊗ c}}K=uv ⊗v−1 −uvu⊗u−1v−1 = (1⊗u)r − r(u⊗1), where r =uv ⊗u−1v−1

{{v ⊗ c}}K= = (1⊗v)r − r(v ⊗1),

the same holds for u−1, v−1. Now, we use the induction by Leibnitz identity (18b)
to prove that

∀a∈ A {{a⊗ c}}K= (1⊗a)r − r(a⊗1) (24)

Assume that this holds for a,b and prove this for ab:

{{ab⊗ c}}K={{a⊗ c}}K (b⊗1)+ (1⊗a){{b⊗ c}}K
= ((1⊗a)r − r(a⊗1)) (b⊗1)+ (1⊗a) ((1⊗b)r − r(b⊗1))

=(1⊗ab)r − r(ab⊗1).

This implies that (24) is valid. Note finally that by applying multiplication map μ

to both sides of (24) we always get zero. This finalizes the proof.

In other words, it is a right Casimir function for bracket (16) { , }K . But it is
not a left Casimir function, which means that π(c) does not generate the trivial
flow, like it was in the commutative case. Say,

{c,u}K =uvu−1v−1u−u2vu−1v−1 �=0. (25)

However, it satisfies an important property.

PROPOSITION 7. For all H ∈ A/[A, A] {H, c}K ≡0 mod [A, A]

Proof. Combine Proposition 6 and property (3) from Proposition 2.

Proposition 2 means that Casimir operator belongs to the center of the Lie
Algebra on a cyclic space (the natural space for Hamiltonians).
Discussion on generating set for all “trace” integrals.
Summarizing, we can conclude

COROLLARY 8. If x ∈ π(C〈h〉 + C〈c, c−1〉) for some x ∈ A/[A, A], then d
dt x =

{h, x}K ≡0 mod [A, A].
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In paper [6], Efimovskaya and Wolf considered possible “trace" integrals of Equa-
tion (1) up to degree 12 and conjectured that they are all generated by the usual
traces of powers of Lax matrix (4).

Another experimental comparison shows that π(Tr Lk), k≤3, the images of the
traces of powers of the Lax matrix in the cyclic space A/[A, A] generate the lin-
ear subspace of the image π

(
C〈h〉+C〈c, c−1〉). However, the π(Tr L4) is no longer

contained in the above space. It provides us an additional h2 ∈ A/[A, A] of the
form

h2 =uvu−1v−1u+uvvu−1v−1 +uvu−1u−1v−1 +uvu−1v−1v−1 +uvu−1v−1u−1v−1.

(26)

3.6. SPECIALIZATION TO QUANTUM AND CLASSICAL INTEGRABLE SYSTEM

The invariance of the Casimir element c = uvu−1v−1 under dynamics (8) allows
one to construct certain specializations of algebra A=C

〈
u±1, v±1

〉
consistent with

equations of motion. One can impose relation of the form c=ei� ∈C. This reduces
the algebra to the so-called "quantum group" (the word group is misleading here,
although widely accepted). This is the exponential form of the usual Heisenberg
algebra u=ep, v=eq , [p,q]=−i�. The latter makes the quantum version naturally
embedded in the associative case. However, the relation between the natural space
for noncommutative Hamiltonians, namely the cyclic space, and quantum Hamil-
tonians is still vague.
Finally, the particular case c= 1 corresponds to commutative algebra, here the

cyclic space coincides with algebra itself and the bracket turns into anticommuta-
tive. On the other hand, the fact that associative algebra coincides with its cyclic
space endows the latter with multiplication, which makes all Hamiltonians hk alge-
braically dependent.

4. General Approach to Integrable Systems on Associative Algebras

4.1. HAMILTON FLOW ON ASSOCIATIVE ALGEBRAS

One-dimensional flow on associative algebra A is defined by derivation d
dt which

satisfies the Leibnitz rule

∀a,b∈A,
d
dt

(ab)=a

(
d
dt

b

)
+

(
d
dt

a

)
b

To present this flow in the Hamilton form

∀a∈A da
dt

={h,a}

we must provide a bracket s.t. for each Hamiltonian h it defines a derivation of A
and thus should satisfy the Leibnitz rule in the second argument
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∀a,b, c∈A {a,bc}={a,b}c+b{a, c} (27)

On the other hand, we already pointed out that the case of Equation (1) the
candidate for Hamiltonian when treated as element of A is not literally invariant
under dynamics (10). What is invariant, is the image of π(h) in the cyclic space,
so we should require the bracket to be invariant under the cyclic permutations
of monomials of the first argument. This would guarantee us that for any x, y ∈
A s.t. the corresponding elements of the cyclic space are the same: π(x) = π(y)
the Hamilton flows {x, } and {y, } are also the same. Or equivalently, the above
bracket naturally defines a map

{ , }I : A/[A,A]×A→A

where the first argument is an element of the cyclic space—the natural space for
Hamiltonians.
Next, the Hamilton flows in classical integrable systems form a representation of

a Poisson Lie algebra of functions. This is secured by Jacobi identity, which means
that the commutator of the Hamilton vector fields generated by two different func-
tions f and g is the Hamilton vector field corresponding to their Poisson bracket
{ f, g}:

{ f, {g, x}}−{g, { f, x}}={{ f, g}, x} (28)

When we transfer to the case of associative algebras, this implicitly means that
there exists a Lie bracket on Hamiltonians

{ , }I I : A/[A,A]×A/[A,A]→A/[A,A]

which is skew-symmetric

∀a,b∈A/[A,A] {a,b}I I =−{b,a}I I (29)

and satisfies the Jacobi identity4

∀a,b, c∈A/[A,A] {a, {b, c}I I }I I +{b, {c,a}I I }I I +{c, {a,b}I I }I I =0 (30)

This means that { , }I I is a Lie bracket which enters the analog of Jacobi identity
for { , }I

∀ f, g∈A/[A,A], ∀x ∈A : { f, {g, x}I }I −{g, { f, x}I }I ={{ f, g}I I , x}I .

4One can note that from the existence of representation in DerA we immediately get that the
l.h.s. of the Jacobi identity (30) corresponds to trivial element in DerA. Then, if we quotient by
the ideal generated by all possible values of the result, we eliminate insufficient components of the
space for Hamiltonians. This motivates (30) to be the very natural condition to impose.
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where the order of arguments becomes essential. Note that the inner bracket on
the r.h.s. is of the different type. The skew-symmetricity (29) requires the following
form of skew-symmetricity for the first bracket

∀a,b∈A {π(a),b}I +{π(b),a}I ≡0 mod [A,A]. (31)

Thus, bracket { , }I is the so-called left Loday bracket [17].
Now, suppose we have a Hamilton dynamics ∀ f ∈A d

dt f ={h, f }.

DEFINITION 9. We call the space of Hamiltonians (or "trace" integrals) H ⊂
A/[A,A] s.t.

x ∈H⇔∀x ′ ∈A s.t.π(x ′)= x
d
dt

x ′ ≡0 mod [A,A] (32)

Or, equivalently, one can say that {h, x}I I =0.

As in the commutative case each Hamiltonian defines a Hamilton flow, s.t. all
other Hamiltonians (as elements of A/[A,A]) are invariant under this flow. This
can be presented in the following way

PROPOSITION 10. The H is a maximal commutative Lie subalgebra in A/[A,A]
with respect to bracket { , }I I .

Proof. Since h ∈H, maximality follows directly from definition. Next, if h1,h2 ∈
H then from (30) {h1,h2}I I ∈H.

4.2. CASIMIR FUNCTIONS

The analog of the classical Casimir functions is the right Casimir of bracket { , }I .
DEFINITION 11. We call c ∈ A to be the Casimir element of bracket { , }I if
∀a∈A/[A,A] {a, c}I =0.

The latter implies only that any element in A/[A,A] defines a derivation of A
which fixes c. But π(c) does not have to define a trivial Hamilton flow, the coun-
terexample was presented in (25).
However, we can formulate the following

PROPOSITION 12. If c is a Casimir in a sense of Definition 11, then its image in
the cyclic space π(c) necessary belongs to the center of the Lie bracket { , }I I on
Hamiltonians.

Proof. Apply π to both sides of (31).
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4.3. LAX ELEMENTS

Suppose the space of Hamiltonians H from (32) can be constructed as an image
of the finitely generated subalgebra L of A under the noncommutative trace map
π . Say

H=π(L) where L=C 〈l1, . . . , ln〉 , l j ∈A. (33)

Without loss of generality, we can assume that h = π(l1) is the Hamiltonian
of the system which generates the flow corresponding to the equation of motion.
Now, for any representation ϕ : A→Mat (N ,C) of A in particular we have that

d
dt

Trϕ(l j )
k =0,

or, equivalently,

ϕ(l j )(t)= g j (t)ϕ(l j )(t)g
−1
j (t).

Thus, ϕ(l j )(t) satisfies Lax equation. The latter motivates us to call l1, . . . , ln uni-
versal Lax elements. The property of their images ϕ(l j ) to have an adjoint dynam-
ics does not depend on a particular choice of the representation or a spectral
curve.
Indeed, (33) is a very strict condition, which is not valid for generic Hamiltonian

system on A. In formula (20) we presented a particular form of sufficient condition
for l1 to be the Lax element of the Hamiltonian hierarchy. Restrict ourselves to the
simplest case

H1 =π(L) where L=C〈L〉, L ∈A

which corresponds to the Lax matrix without a spectral parameter. Then, assume
that there exist such M ∈A that

d
dt

L ={π(L), L}I =[L , M]

where the commutator is taken in the associative algebra A. This guarantees that
π(Lk) generate the commuting Hamilton flows.
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Appendix A. Proof of Proposition 2

In this section, we provide a proof of skew-symmetricity of bracket { , }K pro-
posed in Section 3.4 modulo [A, A]

{a,b}K ≡{b,a}K mod [A, A].
We also prove Jacobi identity for subalgebra C〈u, v〉⊂ A

∀H1, H2, x ∈C〈u, v〉 : {H1, {H2, x}K }K −{H2, {H1, x}K }K ={{H1, H2}K , x}K .

(34)

Finally, we sketch the proof of the Jacobi identity for the whole algebra A

∀H1, H2, x ∈ A : {H1, {H2, x}K }K −{H2, {H1, x}K }K ={{H1, H2}K , x}K
which appears to be quite technical.

Unlike the double brackets proposed by Van den Bergh we no longer have an
Anti-Symmetricity requirement along with Associative Yang–Baxter equation satis-
fied by double bracket which used to guarantee the corresponding Jacobi identity.
However, it appears that bracket { , }K defined in (17) (Section 3.4) can still pro-
vide a Loday bracket after composition with multiplication map.

It is worth noticing that this proof is by no means natural and does not reveal
possible internal structure of the proposed generalization of double brackets.

Note that {{H1 ⊗ H2 ⊗ S}}K satisfy the Leibnitz rule in the last argument S, so
it is enough to prove the Jacobi identity for {{H1⊗H2 ⊗u}}K and {{H1⊗H2 ⊗v}}K .

Denote

H1 =a1a2a3 . . .aN , H2 =b1b2b3 . . .bM , ai ,b j ∈{u, v}
Then, we have

{H1, H2}=
N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

(b1 . . .bl)(−vu)(ak+2 . . .ak)(bl+2 . . .bN )

+
N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u

(b1 . . .bl)(uv)(ak+2 . . .ak)(bl+2 . . .bN ). (35)

Hereinafter, we employ the following short notation for the “cyclic” product

(ai . . .a j )=
⎧
⎨

⎩

aiai+1ai+2 . . .a j , j ≥ i,
aiai+2 . . .aNa1a2 . . .a j , j < i −1,
1, j = i −1.

Although the last part looks unnatural it is very convenient modification for our
case, since we never encounter a complete cyclic permutation of monomial.
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Now, using (35), we get

{{H1, H2}K ,u}K

=uv

N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

M−1∑

m=0
m �=l

bm+1=v

(bm+2 . . .bl)(−vu)(ak+2 . . .ak)(bl+2 . . .bm) (36a)

−uvu
N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

(ak+2 . . .ak)(bl+2 . . .bl) (36b)

+uv

N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

N−1∑

n=0
an+1=v

(an+2 . . .ak)(bl+2 . . .bl)(−vu)(ak+2 . . .an) (36c)

+uv

N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u

M−1∑

m=0
bm+1=v

(bm+2 . . .bl)(uv)(ak+2 . . .ak)(bl+2 . . .bm) (36d)

+uv

N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u

(ak+2 . . .ak)(bl+2 . . .bl)u (36e)

+uv

N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u

N−1∑

n=0
n �=k

an+1=v

(an+2 . . .ak)(bl+2 . . .bl)(uv)(ak+2 . . .an). (36f)

Next, the second term on the l.h.s. of Jacobi identity of type (34) reads here

{H2, {H1,u}K }K

=uv

M−1∑

l=0
bl+1=v

N−1∑

k=0
ak+1=v

(bl+2 . . .bl)v(ak+2 . . .ak) (37a)

−uvu
M−1∑

l=0
bl+1=u

N−1∑

k=0
ak+1=v

(bl+2 . . .bl)(ak+2 . . .ak) (37b)

+uv

M−1∑

l=0
bl+1=u

N−1∑

k=0
ak+1=v

∑

n=0
n �=k

an+1=v

(ak+2 . . .an)(−vu)(bl+2 . . .bl)(an+2 . . .ak) (37c)

+uv

M−1∑

l=0
bl+1=v

N−1∑

k=0
ak+1=v

N−1∑

n=0
an+1=u

(ak+2 . . .an)(uv)(bl+2 . . .bl)(an+2 . . .ak). (37d)
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For the last term, we have

{H1, {H2,u}}

=uv

N−1∑

k=0
ak+1=v

M∑

l=0
bl+1=v

(ak+2 . . .ak)v(bl+1 . . .bl) (38a)

−uvu
N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

(ak+2 . . .ak)(bl+2 . . .bl) (38b)

+uv

N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

M−1∑

m=0
m �=l

bm+1=v

(bl+2 . . .bm)(−vu)(ak+2 . . .ak)(bm+2 . . .bl) (38c)

+uv

N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u

M−1∑

m=0
bm+1=v

(bm+2 . . .bl)(uv)(ak+2 . . .ak)(bl+2 . . .bm). (38d)

Combining (36), (37), and (38), we get the Jacobi identity. Indeed, first we note
that (36a) cancels with (38c). The same happens for pairs (36d), (38d) and (36b),
(38b). So, we left with 8 terms.

Next, we note that (36e) can be absorbed in (36f) if we allow n= k. The same
happens with (37b), which is absorbed in (37c). So for now, there are 6 terms left
which cancel due to less trivial reason.

(36c) : −u(

v↓
a a a a)(b b b

v↓
b)(

u↓
a a a)

(36e)+ (36 f ) : u(

v↓
a a a a)(b b b

u↓
b)(

v↓
a a a)

(37a) : u(

v↓
b b b b)(

v↓
a a a a)

(37b)+ (37c) : −u(

v↓
a a a

v↓
a)(

u↓
b b b b)(a a a)

(37d) : u(

v↓
a a a

u↓
a)(

v↓
b b b b)(a a a)

(38a) : −u(

v↓
a a a a)(

v↓
b b b b)

All remaining terms have the similar structure. They start with u on the left
followed by the cyclic permutation of H1, with cyclic permutation of H2 inserted
inside. Our goal is to prove that each particular monomial x =uc1c2 . . . cM+N will
enter the answer with coefficient 0. Of course in general there are multiple ways of
presenting each monomial in the form described above for a given H1 and H2.
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Each coefficient in the Jacobi identity comes as a weighted (by the correspond-
ing coefficients) sum over all presentations of the particular monomial in the forms
(36c), (36e), (36f), (37a), (37b), (37c), (37d), or (38a). Moreover, in general each
monomial can be presented in the same form listed above several times, depending
on which part of u−1x = c1c2 . . . cM+N we consider as a cyclic permutation of H2

and which as H1. Say we treat u−1x = (c1c2 . . . ci )(ci+1 . . . ci+M )(ci+M+1 . . . cN+M )

so that ci+1 . . . ci+M ≡H2 mod [A, A] and c1 . . . ci ci+M+1 . . . cN+M ≡H1 mod [A, A].
Then if ci+M+1 = ci+1 we can shift i → i + 1 to get another presentation of the
same monomial. Analogously, if ci+M−1 =ci−1 we can make an opposite shift i →
i −1.

For a given monomial, we can fix the value of i , then given a quadruple ci , ci+1,

ci+M , ci+M+1 one can determine how many sums can generate such expression.
Taking a sum over all possible i we get the coefficient of the monomial uc1 . . . cN+M

in the Jacobi identity. Essentially, we sum over quadruples ci , ci+1, ci+M , ci+M+1.
Moreover, since this quadruples are related for different i it puts certain restric-
tions on a sum.

Namely, if for i we have quadruple is ci , ci+1, ci+M , ci+M+1, then the quadruple
for i +1 is of the form ci+1,∗, ci+M+1,∗. The similar applies to i −1. We construct
an oriented graph, where the vertices correspond to all possible quadruples and an
oriented edge connects a pair of quadruples if and only if there exists a monomial
c1 . . . cN+M s.t. the first quadruple corresponds to i while the second to i +1. We
also introduce triples and denote them as quadruple with an empty set as one of
the elements. This implies that we reached any end of monomial.

There are 24 = 16 quadruples involved along with 16 triples of the form ∅∗∗∗
and ∗ ∗ ∗∅. We connect the quadruple/triple with boldface 0 if an only if there is
no quadruples/triples which can be constructed by the corresponding shift of i .

Say, if we take u,u, v, v as a quadruple, then both shifts i → i ±1 have no cor-
responding presentations so we have

0→uuvv →0

0→uvvu→0

0→vuuv →0

0→vvuu→0

as a separate connected components of the graph. For the main connected com-
ponent, we have:
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Here, by u ∗ u∅, we combined two identical vertices uvu∅ and uuu∅. The same
applies to ∅v ∗v. To simplify the graph, we omitted 0→u ∗u, since we do not need
this part further.

Now assume the l.h.s. of Jacobi identity (34) is nonzero. Then it has at least
one nonzero monomial, which we denote by αuc1 . . . cN+M where α∈C and c1, . . . ,
cN+M ∈{u, v}. Now take the smallest value of i s.t. any of the mentioned six sums
contribute to the l.h.s. Consider subsequent i + 1, i + 2 and so on until we reach
the last value of i +k for which at least one sum contributes to the l.h.s. In terms
of quadruples ci ci+1ci+Mci+M+1 this corresponds to some path on graph (39) from
0 to 0.

The coefficient α constructed as a sum over contributions corresponding to dif-
ferent values i . . . i + k. Where each contribution is in one-to-one correspondence
to the quadruple. Below, we calculate a contribution for a given value of i of any
quadruple

(1) uuuu does not enter a single sum in remaining parts, so the contributing coef-
ficient for a given value of i is 0.

(2) vvvv The same argument as for uuuu. The coefficient is 0.
(3) ∅v ∗v For ∅v ∗v we have the corresponding entry in (37a) only. So the coef-

ficient is 1.
(4) u ∗u∅ For uvu∅ we have (36e)+(36f), (37d), and (38a), so the coefficient is 1.

For uuu∅ we have (36e)+(36f) only, so the coefficient is also 1. Thus we can
combine them into u ∗u∅ on the graph.

(5) vuvu enters (36c), (37b)+(37c). So the coefficient is −2.
(6) uvuv enters (36f) and (37d), so the coefficient is +2.
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(7) v ∗v∅ enters (38a) only, so coefficient is −1.
(8) uvvv enters (37d) only, so coefficient is 1.
(9) vvuv enters (36f) only, so coefficient is 1.

(10) vuvv enters (37b)+(37c) only, so coefficient is −1.
(11) vvvu enters (36c) only, so coefficient is −1.
(12) uuuv enters (36f) only, so coefficient is 1.
(13) uvuu enters (37d) only, so coefficient is 1.
(14) uuvu enters (36c) only, so coefficient is −1.
(15) vuuu enters (37b)+(37c) only, so coefficient is −1.

Now, we claim that for any closed path in (39), the sum of the correspond-
ing contributions is 0. Which is enough to prove that α = 0. Indeed, replace the
quadruples with the corresponding coefficients:
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One can note that vertices with the zero coefficient can be eliminated by the fol-
lowing rule

A

���
��

��
��

B

0

����������

���
��

��
��

�

C

���������
D

 A ��

���
��

��
��

��
��

��
��

� B

C ��

������������������
D

So, we left with

One can see that in the graph above there is no way from bold 0 to another 0
without sum of coefficients to be nonzero.

The latter is equivalent to the statement that we can introduce a function f :
V →Z on vertexes of the graph which is a sum of all coefficients on the way from
0 to the vertex. Then, for f , we have the following table
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value of f +1 0 −1

list of quadruples vvuv vvuu vuuu
uvvv vuuv vuvu
vvvv uvvu uuuu
uvuv uuvv uuvu

vvvu
vuvv

uvuu
uuuv

(40)

One can note that f is nonzero iff the second and forth element coincide. If we
assign the grading deg u = −1, deg v = 1 then the value of f is the degree of the
second element in the quadruple whenever it coincides with the fourth element.

Now, our goal is to prove that

{H1, H2}+{H2, H1}≡0 mod [A, A]. (41)

Denote

H1 =a1a2a3 . . .aN , H2 =b1b2b3 . . .bM , ai ,b j ∈{u±, v±}
Then, we have

{H1, H2}=−
N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v

(b1 . . .bl)(vu)(ak+2 . . .ak)(bl+2 . . .bM ) (42a)

+
N−1∑

k=0
ak+1=u

M−1∑

l=0
bl+1=v−1

(b1 . . .bl)u(ak+2 . . .ak)v
−1(bl+2 . . .bM ) (42b)

+
N−1∑

k=0
ak+1=u−1

M−1∑

l=0
bl+1=v

(b1 . . .bl)v(ak+2 . . .ak)u
−1(bl+2 . . .bM ) (42c)

−
N−1∑

k=0
ak+1=u−1

M−1∑

l=0
bl+1=v−1

(b1 . . .bl)(ak+2 . . .ak)u
−1v−1(bl+2 . . .bM ) (42d)

+
N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u

(b1 . . .bl)uv(ak+2 . . .ak)(bl+2 . . .bM ) (42e)

−
N−1∑

k=0
ak+1=v

M−1∑

l=0
bl+1=u−1

(b1 . . .bl)v(ak+2 . . .ak)u
−1(bl+2 . . .bM ) (42f)
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−
N−1∑

k=0
ak+1=v−1

M−1∑

l=0
bl+1=u

(b1 . . .bl)u(ak+2 . . .ak)v
−1(bl+2 . . .bM ) (42g)

+
N−1∑

k=0
ak+1=v−1

M−1∑

l=0
bl+1=u−1

(b1 . . .bl)(ak+2 . . .ak)v
−1u−1(bl+2 . . .bM ) (42h)

All sums above again represent the cyclic permutations of H1 inserted into H1. As
before, we can represent them schematically

(42a) : − (b b

v↓
b)(

u↓
a a a a)(b b b)

(42b) : (b b b)(

u↓
a a a a)(

v−1

↓
b b b)

(42c) : (b b

v↓
b)(a a a

u−1

↓
a )(b b b)

(42d) : − (b b b)(a a a

u−1

↓
a )(

v−1

↓
b b b)

(42e) : (b b

u↓
b)(

v↓
a a a a)(b b b)

(42 f ) : − (b b b)(

v↓
a a a a)(

u−1

↓
b b b)

(42g) : − (b b

u↓
b)(a a a

v−1

↓
a )(b b b)

(42h) : (b b b)(a a a

v−1

↓
a )(

u−1

↓
b b b)

So, in total, there are 16 sums which contribute to (41). Again, we will prove
that coefficient with any monomial is zero. To do so, construct a graph similar to
one described in (39). In this case, we should also take care of relations uu−1 =
u−1u=1 and vv−1 = v−1v =1 which appears to be quite simple. First, we assume
that H1 and H2 are already reduced as elements of the cyclic space. So, in particu-
lar, they do not contain neighboring v and v−1. Next, we should connect quadru-
ples of the form (∗,∗, v, v−1) and (v−1, v,∗,∗) with an edge as well as similar pairs
for (∗,∗, v−1, v), (∗,∗,u−1,u), and (∗,∗,u,u−1).

Indeed, say we encounter a1a2 . . .a jbk . . .bk−2bk−1a j+1 . . .aN with bk−1 = v−1

and a j+1 = v. Since bk−1a j+1 = v−1v = vv−1 = a j+1bk−1 the same monomial is
given by the following combination a1a2 . . .a j+1bk−1bk . . .bk−2a j+1 . . .aN . Here, it
is important that this flip is always possible when there is no regular edge, indeed,



1250 SEMEON ARTHAMONOV

this would imply that bk = a j+1 = b−1
k−1 which contradicts the assumption that H1

and H2 are presented in reduced form.
The graph for this case consists of 792 edges, so we do not present it here. How-

ever, it still satisfies the property that the sum of contributing coefficients over each
loop is equal to zero.

Finally, it is worth noticing that one can define a function f on the vertices of
the above graph by taking the sum of the coefficients on any path from 0 to the
given vertex. (Like in (40)). There is a nice formula for this function

f (x1, x2, x3, x4)=
⎧
⎨

⎩

deg x2, x2 = x4,
deg x3, x3x4 =1,
0, otherwise.

Here, we assume deg v =deg u−1 =+1 while deg u=deg v−1 =−1.
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