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Abstract. Two methods of constructing 2D Toda t-functions that are generating functions
for certain geometrical invariants of a combinatorial nature are related. The first involves
generation of paths in the Cayley graph of the symmetric group S, by multiplication of
the conjugacy class sums C, € C[S,] in the group algebra by elements of an abelian group
of central elements. Extending the characteristic map to the tensor product C[S,]® C[S;]
leads to double expansions in terms of power sum symmetric functions, in which the
coefficients count the number of such paths. Applying the same map to sums over the
orthogonal idempotents leads to diagonal double Schur function expansions that are iden-
tified as t-functions of hypergeometric type. The second method is the standard construc-
tion of r-functions as vacuum-state matrix elements of products of vertex operators in
a fermionic Fock space with elements of the abelian group of convolution symmetries. A
homomorphism between these two group actions is derived and shown to be intertwined
by the characteristic map composed with fermionization. Applications include Okounkov’s
generating function for double Hurwitz numbers, which count branched coverings of the
Riemann sphere with specified ramification profiles at two branch points, and only simple
branching at all the others, and various analogous combinatorial counting functions.

Mathematics Subject Classification. 5, 14, 20, 51.

Keywords. Hurwitz numbers, Tau functions, combinatorics, branched coverings,
Cayley graph.

1. Introduction

Many of the known generating functions for various combinatorial invariants
related to Riemann surfaces have been shown to be KP z-functions, and hence to
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satisfy the infinite set of Hirota bilinear equations defining the KP hierarchy, or
some reduction thereof. These include the Kontsevich matrix integral [29], which
is a KdV r-function, the generator for Hodge invariants [27], the matrix inte-
grals that generate single Hurwitz numbers [4,10,32,37], and the ones for Belyi
curves and dessins d'enfants [2,28,41]. Other generating functions are known to
be t-functions of the 2D Toda hierarchy, some of which are also representable as
matrix integrals. Examples are the Itzykson—Zuber 2-matrix integral [25,42], which
generates the enumeration of ribbon graphs, Okounkov’s generating function for
double Hurwitz numbers, counting branched covers of the Riemann sphere with
fixed nonminimal branching at a pair of specified points [35], and the Harish-
Chandra—Itzykson—Zuber (HCIZ) integral [16,25], which generates the monotone
double Hurwitz numbers [14].

The purpose of this work is to relate two different methods of constructing
2D Toda t-functions [38-40] as generating functions for geometrical-topological
invariants that have combinatorial interpretations involving counting of paths in
the symmetric group. These include the double Hurwitz numbers [35], which may
be viewed equivalently as counting paths in the Cayley graph from one conjugacy
class to another, the monotone double Hurwitz numbers [14], generated by the
HCIZ integral in the N — oo limit, which count weakly monotone paths, and the
mixed double Hurwitz numbers [15], which count a combination of both. To these,
we add a new family defined by matrix integrals [22, Appendix A] that are vari-
ants of the HCIZ integral, which count combinations of weakly monotone and
strictly monotone paths. In each case, the generating function can be interpreted
as a t-function of the 2D Toda integrable hierarchy that is of hypergeometric type
[20-22,36]. The first method is based on combining Frobenius’ characteristic map,
from the center Z(C[S,]) of the group algebra C[S,] to the algebra A of symmet-
ric functions, with automorphisms of Z(C[S,]) defined by multiplication by ele-
ments of a certain abelian group within Z(C[S,]). The second is based on the
usual construction of r-functions [21,22,36,39] as vacuum-state matrix elements of
products of vertex operators and operators from the Clifford group acting on a
fermionic Fock space F.

Under the characteristic map, extended to C[S,,]® C[S,], the sum de 5, ng®g
over all diagonal elements maps to the diagonal double Schur function expansion
given by the Cauchy-Littlewood formula or, equivalently, to a diagonal sum of
products of the power sum symmetric functions. This may be interpreted as the
restriction of the vacuum 2D Toda t-function to flow variables given by power
sums. Certain homomorphisms of the group algebra, defined by multiplication by
central elements consisting of exponentials of linear combinations of power sums
in the special set of commuting elements {71, 7>, J3, ...} introduced by Jucys [26]
and Murphy [31], give rise to a “twisting” of the expansions in symmetric func-
tions which, depending on the choice of the specific element, produce t-functions
of hypergeometric type [21,22,36] that may be interpreted as combinatorial gener-
ating functions. The usual way to construct r-functions of this type is by evaluat-
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ing the vacuum-state matrix elements with a group element that is diagonal in the
standard fermionic basis. The abelian group of such diagonal elements is identified
as the group C of convolution symmetries [23].

In Section 2.5, we define a homomorphism Z: Ap — C from the group Ap of
central elements of the form {er-’io Py where the P;’s are the power sums in the
Jucys—Murphy elements, to the group C of convolution symmetries. The elements
of Ap act on Z(C[S,]) by multiplication, and are diagonal in the basis of orthog-
onal idempotents {F,}, labeled by partitions A corresponding to irreducible repre-
sentations. The elements of C act on F and similarly are diagonal in the standard
orthonormal basis {|A; N)} within each charge N sector Fy C F. Composing the
characteristic map with the one defining the Bose—Fermi equivalence [8] gives an
injection §,: Z(C[S,]) - F of the center of the group algebra into the fermionic
Fock space that maps the basis of orthogonal idempotents {F;} to the orthonor-
mal basis {|A;0)}. The main result, stated in Theorem 2.2, is that this map inter-
twines the action of the group Ap on Z(C[S,]) with that of C on F.

The action of Ap on Z(C[S,]), when expressed in another basis {C,} consist-
ing of the sums over elements of the conjugacy class with cycle type A, provides
combinatorial coefficients that count paths in the Cayley graph of S,, starting from
an element in the conjugacy class with cycle type A and ending on one with type
. These are just the matrix elements of the Ap group element in the {C,} basis.
The image of these basis elements under the characteristic map are, up to nor-
malization, the power sum symmetric functions P;. Applying an element of Ap
to the diagonal sum deSn n!g® g introduces a “twist” that is interpretable as a
sum over various classes of paths in the Cayley graph. Applying the map ch®ch
to this new element provides a double sum over the power sum symmetric func-
tions Py ([x]) P, ([y]), with coefficients given by the matrix elements of .Ap which
count the number of such paths or, equivalently, a double Schur function expan-
sion of a t-function of hypergeometric type, corresponding to a specific element of
the group C of convolution symmetries. This can be viewed as a method for con-
structing identities between double sums over the power sum symmetric functions
and diagonal double Schur function expansions without involving the usual sums
over irreducible characters of S,.

Several examples of this construction are provided in Section 3, starting with
the generating function for the double Hurwitz numbers first studied by Okounkov
[35]. In this case, the convolution group element is given by an elliptic 6-function.
In the case of weakly monotone double Hurwitz numbers, which count paths in
the Cayley graph between a pair of elements in given conjugacy classes consist-
ing of sequences of transpositions that are weakly monotonically increasing, it cor-
responds to convolution with the exponential function. Choosing the expansion
parameter that counts the number of steps in a path as z=—1/N, the resulting
sequence of 2D Toda t-functions is just the large N limit of the HCIZ matrix inte-
gral [14,15]. The mixed double Hurwitz numbers, consisting of a combination of
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weakly monotonically increasing sequences and unordered ones, are obtained by
multiplying the two Ap group elements.

A fourth example is introduced, in which the generating 2D Toda r-function is
also interpretable as a matrix integral analogous to the HCIZ integral, but with
the exponential trace product coupling replaced by a noninteger power of the char-
acteristic polynomial of the product, as discussed in [22, Appendix A]. This is
shown to be a generating function for paths in the Cayley graph consisting of a
sequence of weakly monotonically increasing transpositions followed by a sequence
of strongly monotonically increasing ones. The identification of the combinatorial
meaning of such matrix integrals is a novel feature. This type of coupling has also
been considered in the study of the spectral statistics of 2-matrix models [5,6]. A
final case considered here is the family of hypergeometric t-functions introduced
recently in [1] as examples of r-functions having a similar structure to the Hur-
witz generating functions. These are shown to be generating functions for the num-
ber of multiple sequences of strictly monotonically increasing paths in the Cayley
graph connecting elements in a pair of conjugacy classes. The combinatorial sig-
nificance of this family of r-unctions has never previously been derived.

In a sequel to this work [24], a broader class of generating functions is consid-
ered, in which the underlying “twist” homomorphism is generated by an arbitrary
rational function, leading to Hurwitz numbers of multiparametric type, grouped
into “coloured” branch points, in which the total ramification in each group is
fixed, and a signed counting is introduced, corresponding to the parity of the
number of branch points within each group. A further generalization consists of
assigning an arbitrary l-parameter family of weightings to the branched cover-
ings, and to the paths in the Cayley graph. This includes, as special cases, all pre-
viously studied examples and allows for an infinite variety of further classes of
weighted Hurwitz numbers, including a natural notion of quantum Hurwotz num-
bers, in which the weighting may be related to the energy distribution of a quan-
tum Bosonic gas [12].

2. The Characteristic Map, Twisting Homomorphisms and Convolution
Symmetries

2.1. THE CHARACTERISTIC MAP AND THE CAUCHY-LITTLEWOOD FORMULA

Let A=C[Py, P,,...] be the ring of symmetric functions, equipped with the usual
projection homomorphism

evpx: A=Ay,

n
P~ > xh 2.1)
a=1
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onto the ring A, of symmetric polynomials in n variables for each n. The two
bases of A relevant for our purposes will be the power sum symmetric functions
[30]

Ppi=Pu Puy -+ P

() 2.2)

and the Schur symmetric functions S;, both labeled by integer partitions A =21 >
<oy >0, w=p1>--- e >0. These are related by the Frobenius formula,

P

Pu= 20 08 $i= 3 nwt (23)
L

IMZIM méw l

where y; () are the irreducible characters of the symmetric groups (with u denot-
ing the conjugacy class consisting of elements with cycle lengths w;) and, denoting
the number of parts of A equal to i by m;,

Zy =] [miti™. 24
i

The irreducible characters y, also appear in the change of basis formula
between two important bases of the center Z(C[S,]) of the symmetric group alge-
bra, namely the conjugacy class sums C,, which consist of sums of all permutation
with a fixed cycle type wu,

Cui=> 3. (2.5)

8ESH
cyc(g)=u

and the orthogonal idempotents {F;}, corresponding to the irreducible representa-
tions of §,, which have the useful computational property that

F)LF)V=F)L, FXF/L=0 for )L#,u,. (26)

These are similarly related by

1 1
Cu=s 2, mwE. Fi=— 3 xCpu (2.7)
Ko a =1 A, =1

where £, is the product of the hook lengths of the partition A, also given by the
formulae

h_lzw:det ;
» IA|! (A —i 4 ))!

Frobenius’s characteristic map is a linear map that intertwines these changes of
bases in Z(C[S,]) and A, defined by

(2.8)

I=<i,j=<t®)

ch,: Z(C[S,)— A
Cu—~P,/Z, (2.9)
Fyr— S/ hy.
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In fact this map is a linear isomorphism if we restrict its codomain to the space
of homogeneous symmetric functions of degree n. It will be useful to extend the
map ch, to the whole group algebra C[S,] by defining

chy, (g) == Peye(g)/n! (2.10)

for a permutation g € S,. Extending the tensor product map ch, ® ch,, bilinearly to
the direct sum @@, N+ CIS,]1® C[S,]

ch®ch: @ CIS,1@CIS,] > A®A (2.11)

neN+

then gives

1
chech (P D nlg®@g | =2 —— PulxXDPullyD
"

n gesS, 14

1
= S S = , 2.12
; WxDS YD =] 7 - (2.12)

ab a)

where we have identified A ® A with the ring of symmetric functions in two infinite
sets of variables x = (x,x2,...) and y=(y;, y2,...). The last equality is just the
Cauchy-Littlewood formula ([30]). Restricting the 2D Toda flow variables

t=(,0,...), S=(s1,52,...) (2.13)

to the power sum values

l o l o
ti:lTZxé si:lTZy;), (2.14)
a=1 b=1
we have
| o
[15 = Xm0, (2.15)
ab —XaYb

which is the vacuum 2D Toda t-function, restricted to the values (2.14).

2.2. “TWISTING” HOMOMORPHISMS: MULTIPLICATION BY POWER SUMS IN THE
JUCYS-MURPHY ELEMENTS

The map (2.12) can be “twisted” by elements of an abelian group Ap, acting on
the center Z(C[S,]) to obtain other 2D Toda z-functions of interest as follows.
The Jucys—Murphy elements {7, € C[S,1}=1..., are defined as sums of transposi-
tions,

b—1
Jp:= (ab). (2.16)
a=1
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They are easily seen to generate a commutative subalgebra of C[S,], and any sym-
metric polynomial in them is in the center Z(C[S,]). We can adjoin to the ring of
symmetric functions A a “trivial” element Py, taking value n under the extended
evaluation map

evp, 7 AlPyl— Z(C[S,])
G G(J)

Pi—> Pu(J) =D T
b=1
Py— Py(J) :=nld. (2.17)
Remark 2.1. While the trivial element Py acts like a scalar for any fixed n, it allows

us to write down expressions for conjugacy classes C, which hold uniformly for all
n (see [7,9]), such as

Pi(J)=Cypns, Py(J) — S Po(T) (Po(J) — 1) = C30-3
1=Cpn, IPU(T) = 3 Pa(T) + 3 Py (Po(T) = 1) = Coppus. (2.18)

From these follow equations for products of conjugacy classes such as
C21n—2 . C21n—2 = 3C31n—3 +2C221n—4 + (;)Cln (219)

In this way, the ring A[Py] can be seen as an inverse limit of the centers Z(C[S,])
for all neN, sometimes called the Farahat-Higman algebra [11].

Endomorphisms of Z(C[S,]) consisting of multiplication by a central element
are diagonal in the basis {F,} of orthogonal idempotents. For elements of the form
G(J), the result of Jucys [26] and Murphy [31] gives the eigenvalues as

G(J)F.=G(cont())F, (2.20)

where cont(A) is the multiset (possibly with repeated values) of contents of the
boxes (i, j) appearing in the Young diagram for the partition A,

cont(A):={j—i:(i, j)eAr}. (2.21)
If G e A[Py] is expressible in the form of a product

G=fP) [[Fea), Pi=D xi, (2.22)
a=1

a=1

the eigenvalue G(cont(k)) is expressible as a content product:

G(cont() = f(IA) H F(j—i). (2.23)

(@, J)ex
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Our “twisting” of the map ch®ch is defined to act on the second tensor factor
only through multiplication by a symmetric function G(J) for G € A[Py] before
applying the Frobenius characteristic map:

ch®(choG(7)): Z(C[S,]) ® Z(C[Sy]) > AQA. (2.24)

Using (2.20), it is easy to compute the result of applying the twisted homomor-
phism (2.24) to the element (2.11) in the basis {Sy([x])S,([y])} in three steps. First,
we apply the map ch to the left tensor factor

ch®ld: > nlg®@gr> > Pu(xXD®Cu= D mS, (X))@ Fy (2.25)
8ESn M |l=n Ay [Al=n
by Equations (2.3), (2.7). Then we multiply the right tensor factor by G(J)
d®G(T): D S, (XD ® Fi> > G(cont(1))h; S.(Ix]) ® F. (2.26)
X, |A|=n A, |A|=n
And finally, we apply the map ch to the right tensor factor
Id®ch: ZG(cont(k))h;\Sk([x])(@F;\H ZG(cont(A))S,\([x])Sk([y]). (2.27)
Ay |A|=n Ay |A|=n

As will be seen in Section 2.4, this is the restriction of a 2-KP t-function of hyper-
geometric type to the values (2.14) of the flow parameters which, by suitable nor-
malization, can be extended to a Z-lattice of 2D Toda r-functions.

We can perform the same computation in the basis {P,([x])P,([y])} instead.
Multiplying the basis elements C, by G(J) gives a linear combination

G(I)Cr= GiuCp, (2.28)
"
where the coefficients G, are given in general by the character sum
1
Grn=7- > G(cont(v)) xu (M) xw (). (2.29)
%

As will be seen below, in many cases, G, is a combinatorial number, counting
certain types of paths in the Cayley graph of S, from an element in the conju-
gacy class of type C, to one in the class C,. Applying the twisted homomor-
phism (2.24) to the element (2.11) in three steps again gives

ch@ld: > nlg@gr D P(XN®C; (2.30)
g€S, A, |A|=n
d®G(T): D PXD®Crr> D Gy P(X)®Cp (2.31)
Ay [Al=n Ao p [M|=lnl=n
Id®ch: Z GiuP (XD ®Cp i~ Z 2, G P (XD Pu(ly)). (2.32)

Aoy |A=[pl=n Aoy s [A|=|p|=n



2D TODA z-FUNCTIONS 835

Comparing (2.27) and (2.32), we get a twisted version of (2.12):

ch@ch | > nlg®(G()g) | =D GruPrIXD) Pu(lyD)

8E€SH A
[Al=|p|=n

=" G(cont(1)) Sy (IX])Sx([y]). (2.33)

A, [A|=n

2.3. INTERPRETATION AS GENERATING FUNCTIONS

We now consider the combinatorial meaning of the coefficients G,,,. If the opera-
tor G(J) is taken to be the power series in a formal parameter z given by

00 k
Z
Ge(e, )= = 3 P L (2.34)
k=0
then the coefficient of z€/k! in G.(z, J) is the element
k

n

P =D @by | =(Coa)” (2.35)

a<b
b=1

This acts on the group algebra C[S,] by multiplication by every possible product

(a1b1)(az b2) - - - (ax by) (2.36)

of k (not necessarily disjoint, nor even distinct) transpositions. Thus, for any pair
of permutations g,k € S,, the coefficient of g®hz¥/k! in the element

> n'g®(Gelz, Dg) (2.37)

2ESn

is the number of solutions in S, of the equation
h=(ayb1)(a2bs) - (ar br)g., (2.38)

which is precisely the number of k-step walks from the vertex g to the vertex 4 in
the Cayley graph of S, generated by all transpositions. If we then apply the char-
acteristic map ch®ch to this element, as in (2.33), we see that the coefficient G;,,
in this case is the generating function for k-step walks in the Cayley graph from
any vertex g with cycle type A to any vertex i with cycle type w.

As another example, take the operator G to be the generating function H(z) for
the complete symmetric functions. Then G(J) is the power series

n 1 o0
H(Z,J):Hl_zjb:ZZk Z Toy Ty +++ Ty - (2.39)
b1 k=0

by <by<---<by
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The eigenvalue of this operator acting on the basis elements Fj is given by

H(z, NF. =ri (D)F (2.40)
where
o= ] a-zGg-in~". (2.41)
@ij)er

The coefficient of z* in H(z, J) is the operator on C[S,] which acts by multipli-
cation by every possible product (2.36) subject to the restriction that

by <by<-- <, (2.42)

where a; < b; by convention. The corresponding walks in the Cayley graph are
called (weakly) monotone walks, and for this choice of operator G(7), the coef-
ficient G, in (2.33) is the generating function for k-step weakly monotone walks
in the Cayley graph from any permutation with cycle type A to any permutation
with cycle type u. These are precisely the (nonconnected) monotone double Hur-
witz numbers [14].

As a final example, we can choose G to be the generating function E(z) of the
elementary symmetric functions to obtain an operator G(J) with combinatorial
meaning:

Ew, N =[]0+wdd=>w" D" ToTbp-Tp. (2.43)
a=1 k=0

by<by<---<by

The eigenvalue of E(w, J) acting on the basis elements F) is given by

Ew, )F.=rf@)F, (2.44)
where
rEw)= [ d+wi—i). (2.45)
(ijer

The inner summation in (2.43) is now over strictly increasing sequences of b;’s
instead of weakly increasing sequences. The corresponding walks in the Cayley
graph are called strictly monotone walks, and the coefficient G,, becomes the gen-
erating function for these walks.

2.4. FERMIONIC CONSTRUCTION OF 2-TODA t-FUNCTIONS

In the following, F denotes the full Fermionic Fock space, Fn the charge N sec-
tor, N € Z, with orthonormal basis elements {|1; N)} labeled by partitions A. The
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vacuum vector in the Fy sector is denoted |N):=|0; N). The Fermi creation and
annihilation operators, v;, ‘ﬁ;, satisfy the usual anticommutation relations

Vi vl | =8y, [wi ] =0, |yl vl| =0, (2.46)
+

+
and the vanishing relations

YjIN)=0 for j<N—1,  ¢[IN)=0 for j=N. (2.47)

The normal ordered product : 01O, --- Oy : of Fermionic operators is defined so
that their matrix elements in the vacuum state |0) vanish. The KP or 2D Toda flow
parameters are denoted t=(¢1,1,...) and s=(sy,s2,...) and

t:=[Al, f = l tr(A)) (2.48)
l

denotes their specialization to the trace invariants of a matrix A. The vertex oper-
ators generating the KP and 2D Toda flows are defined as

P (t) i= e Xim1 i (2.49)
where
Ji=> v, (2.50)
JEZ

More generally,
gt
8 ZeZi.jeZ Aijpive (2.51)

denotes the GL(co) group element determining a Z-lattice of t-functions as vac-
uum expectation values

T PN ) = (N|P4 (DZIN), (2.52)
2D AN t,5) = (NP4 (D8 7-(S)IN), (2.53)

In particular, we have the abelian subgroup C C GL(occ) consisting of diagonal
operators of the form

g, — ép — ereZ Tj:‘ﬁj‘/’_;' : , (2.54)
where
pi=eli. (2.55)

These are referred to as convolution symmetries in [23], since in a basis consisting
of monomials in a complex variable z, the p;’s may be viewedas Fourier coefficients
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of a function p(z) € L?(S"), that acts by convolution product. Defining r; as the
ratio of consecutive elements,

ri= Pi =eliTi-1, (2.56)
Pi—1

we have [23]

Cplhs NY=r(N)|A; N), (2.57)
where
r.(N)=ro(N) H FN4j—is (2.58)

(i,j)exr

H?,:_ol p;j if N>0,
ro(N)=141 if N=0, (2.59)
Hj_le ,oj_l if N<O.

Since the convolution symmetry operators C » are diagonal in the orthonormal
basis |A; N) and

(A; N|p-10) = (0[p4]A; N) = Si(b), (2.60)

the corresponding t-functions have Schur function expansions

&V (N = (N7 (OC,IN) =D (V) Si () (2.61)
A
2> PR, £,5) = (N7 (OC,7-©)IN) = D 1 (N)Si(1)S(5)- (2.62)
A

This class of t-functions is referred to in [36] as being of hypergeometric type, since
it includes various multivariable generalizations of hypergeometric functions.
Equivalently, we may define the N-shifted operator

Co(N)y = RN E RN = eZier Tronibivy: (2.63)
where R is the shift operator defined by

RIA; NYy=|r; N+1). (2.64)
Then rgpP(N ,t) and rng Toda( Nt s) may equivalently be expressed as

TEF (N, ) = (0174 (0., (N)]0) (2.65)
w2y TN, £,9) = (0174 (O C, (N)7-(5)[0). (2.66)
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2.5. THE ABELIAN GROUP Ap AND THE INTERTWINING HOMOMORPHISM T

If we choose the “twisting” homomorphism G(J) from Section 2.2 to be the gen-
erating function H(z, J) for complete symmetric polynomials in Jucys—Murphy
elements, as in (2.39), it is ecasily verified that the eigenvalues are given by

H(z, J)F=r0)F, (2.67)
where
1
[z] — [z] [z]._
ri0) = H R (2.68)
@, j)exr

Forming a product of such elements, with the parameter z replaced by a sequence
of distinct values

2:={Za}a=1,...m (2.69)

and defining

l - .
:;ZZ&, (2.70)
a=1

it follows that

eZ?ileiPi(j):HH(Za“j), (2.71)

a=1

and hence this operator has eigenvalues

eZioil 0; Pi(TJ) F = r)[LZ] (0)F, (2.72)
where
r}EZ] (0) H r[zoz (0) — H H — (—_ l)z . (273)
a=1 (i, ])e)» J

Extending this to include the trivial element Py(J)=n=|xr|, we have
eZin0 0P o elol)nlr)[\z] (0)F;. (2.74)

Let Ap denote the abelian group within A[Py] consisting of elements of the form

m
Xzt P — 0P []H G . (2.75)

a=1
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which acts on each center Z(C[S,]) via the evaluation at Jucys—Murphy elements
as (2.74). Applying the characteristic map ch®ch to the “twisted” sum corre-
sponding to multiplication by the element (2.75) gives

chech [ > nig@ (X200 (D) )= 3 AHA0)s, (xS, (IyD. (2.76)
g€Sh A A|=n

Note that, since the 6;’s may be viewed as the trace invariants of diagonal matri-
ces having the z,’s as eigenvalues, the first m of these {0;,...,6,} are indepen-
dent, while the others are determined in terms of these by the solution of poly-
nomial equations. However, if we let m — oo and extend {z4}e=1....m to an infinite
sequence of distinct complex parameters that avoid reciprocals of integers and sat-
isfy the convergence property

o0
D lzal <00, 2.77)
a=1

it follows that the infinite product

ﬁ I1 — (2.78)

a=1(i,j)er I=(=Dza

converges, and the 7;’s are functionally independent.

Since the image under the characteristic map ch of the center Z(C[S,]) is pre-
cisely the homogeneous degree n part of the ring A of symmetric functions, the
map ch can be extended to a linear isomorphism

ch: €P Z(CIS,]) — A, (2.79)
n>0

which we can compose with the Fermionization map

A —)f()
Sy > |A; 0) (2.80)

to get a linear isomorphism

5: Pz —~F
nz0 | (2.81)
F; HEM; 0).

The linear action of the group Ap on each of the summands Z(C[S,]) extends
to a diagonal action on the domain of the map §. We also have an action of the
group of convolution symmetries C on the codomain of the map §. We now define
a map Z: Ap — C between these actions for which F is the intertwining map.
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Restricting ourselves to a set of parameters {zq}q=1._» With

1

—¢Z, (2.82)

Za
we can define the homomorphism by

T: Ap—C
0o eyt N

ez,':o i Py ereZ Tjyjv;: = Cp (i) (2.83)

where
AN | Hl{:l ﬁ ifj >0,
p;([z])=eli =1 eif ifj =0, (2.84)
eI oy H2=j+1(1 —kzo) 1fj <O,
Jo— 30 > In(l—kze) ifj >0,
T;:=1j6 ifj =0, (2.85)
JO0+ X S In(l —kze) ifj <0,
m
i PjzD) 0 1

I pj-1(lzD E 1—jza
It follows that

Cptap2: 0) =e®1r7(0)12: 0), (2.87)

where r&z] (0) is defined in (2.73).
We then have the following:

THEOREM 2.2. The map §: @nzo Z(C[S,]) = Fo intertwines the multiplicative
action of the group Ap on @, Z(CLS,]) with the linear action of the group C on
Fo via the homomorphism T: Ap — C.

Proof. This follows from the fact that, up to scaling, the linear map § takes
F, into [A;0) and these are, respectively, eigenvectors of the automorphism of
Z(C[S,]) defined by multiplication by eZi=o’"i and T (eZ?ioti Fi) which, as given
by (2.74) and (2.87), have the same eigenvalue e’(’wriz] (0). O

Remark 2.3. Note that in the intermediate space A of the composition

§: P 2CISih — A— R (2.88)

n>0

multiplication by Py(J) € Ap corresponds to the Eulerian operator

ad d 9
kP —— =  —, 2.89
l; kaPk ;X ax,' ( )
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while multiplication by P;(J) € Ap corresponds to the cut-and-join operator
of [13-15,27],

a &

Remark 2.4. Alternatively, the homomorphism Z: Ap — c may be defined by
X200 P L  Ter (E200 S K ) v, (2.91)

where the sum Zi:l k' is defined for j <0 by interpreting it as a polynomial in
j of degree i + 1. Thus, multiplication by P;(J) € Ap corresponds, on C, to the
operator

00 J
> (k) v (2.92)
jeZ k=1

3. Examples
3.1. DOUBLE HURWITZ NUMBERS

Following Okounkov [35], for a pair of parameters (8, ¢g), we choose

i - ~ 1B
:qejﬂ, pqu]eZ-/(H'l), Iojzp]qzeS

(3.1
(The choice p; is used in [35]; the choice p; fits more naturally with the con-
ventions of Theorem 2.2. For N =0, which is the only case needed, the two 7-
functions coincide. The relationship between the two for general N is indicated
below.) It follows that

m(N)_qu(N D, N(N2 1)qm BN|A| ﬁcontx (3.2)

where
)
cont, _P1 cont(k) Z (G—-i== ZA (A —2i+1), 3.3)
(i, j)er

or

AN =r(N)ges . (3.4)
Defining

1 . T e ¥
:EZ]k:wﬂpJ.: for keNT, N::Z:lpjwj : (3.5)

JEZ JEZ
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the convolution symmetry elements corresponding to p and p are
C, —qFleﬂqu Ne_?ﬁ,éﬁzqﬁleﬂﬁz. (3.6)

The function p(z) with which the convolution product is taken has Fourier coeffi-
cients given by (3.1). Using the monomial basis {e; :=z_-j_l}jez and summing, we
obtain an elliptic ®-function

p(z)=Zz—f—1eﬂnq+§f<f+l>:1 (il ( ) —| ) (3.7)
= q 2mi
where the modular parameter is

_B
= (3.8)

Under the homomorphism (2.83), the element of .Ap mapping to C » 1s thus
I:emaPothh ¢ (3.9)

The corresponding 2D Toda t-functions are

oD TR(N, t,8) = (N7 ) C,p P (9)IN) (3.10)
2D Toda(N t, s)—(N|y+(t)Cp)/(S)|N) % ’%Télp) Toda(py ¢ ). (3.11)

The generating function for the double Hurwitz numbers [35],

Fc,(t,s)= E q" E E Hur, (X, w) P (t) P, (s), (3.12)
n=1 A, 1L
[A=lpl=n

which counts only connected branched coverings of CP!, is then the logarithm

Fe,(t,s)=In (rzD T"da(O,t,s)) (3.13)
of
rgf TOda(O,t,s):Zq"z ZCovb(/\ 1) Py () Py (s), (3.14)
n=1 b= 0
[Al= ml—n

where n is the number of sheets in the covering, b is the number of simple branch
points in the base, A and u are the ramification types at 0 and oo, and Covy (A, 1)
is the total number of such coverings.



844 MATHIEU GUAY-PAQUET AND J. HARNAD

3.2. MONOTONE DOUBLE HURWITZ NUMBERS

Consider the Harish-Chandra—Itzykson—Zuber (HCIZ) integral

. N—1 det (e*ZNLlibj) o
T A.B)= —zNtr(UAU'B) — ' 1<i,j<N
v A s /e du@)=\ [] & A@A(b)

UeU(N) k=0

(3.15)

where du(U) is the Haar measure on U(N), A and B are a pair of diagonal matri-
ces with eigenvalues a=(ay,...,ay), b=(b1, ..., by), respectively, and A(a), A(b)
are the Vandermonde determinants. Defining

1
Fy =5 In(In. A, B)). (3.16)

it was shown in [14] that this admits an expansion

[o.olNe ]
(=2)" > P.([AD P ([B])
TN ZZ ! ZHg(A’M)(_N)2g+€()»)+€(ﬂ)’ (.17
g=0n=0 A,
[A|=[pl=n
L), L) =N

where ﬁg (A, ) is a monotone double Hurwitz number, which equals the number
of transitive r-step monotone walks in the Cayley graph of S, from a permutation
with cycle type A to one with cycle type p and

r=2g—2+4L0) +LE(n). (3.18)

It is also well known that the HCIZ integral Zy(z, A, B) is within the normaliza-
tion factor

1
5o &t
equal to the 2D Toda t-function rHCIZ(N ,t,s) with double Schur function expan-
sion [22, Appendix A]

rSXp(N) — (319)

ro P(INIn(z, A, B)=t"YA(N t,9) =D " r P (N)S,.(0)S:.(5), (3.20)
Z()L;LSN
where
—zN)M ..
ooy = T W= [T W+i-. @y
(M &) Vo .o

evaluated at the parameter values

t=[A],  s=[Bl. (3.22)
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This may be expressed as the fermionic vacuum-state expectation value

TCop (N, [A], [B)) = (N[94 [AD) Cexp - ([BDIN)

= (0174 ([A]) Cexp(N)P—([B])|0) (3.23)

where
éexp — eZ?o:o(j In(=zN)=In(jH):¢; W;i (3.24)
éexp(N) — eZﬁ,N((HN)ln(—zN)—ln((j+N)!)):¢fjw;:‘ (3.25)

The convolution group element é’exp(N ) is the image, under the homomorphism
Z: Ap— C, of the element

¢~ PD) 2 S P(T) _ =M gy (1N, ) (3.26)
I(e—ln(—zN)Po(J) H(—1/N, J)elna PoT)+pP (J)) = Coxp(N). (3.27)

3.3. MIXED DOUBLE HURWITZ NUMBERS

The mixed monotone Hurwitz numbers are defined in [15] as the number of r-
step walks in the Cayley graph of S, from a permutation with cycle type A to one
with cycle type w, subject to the restriction that the first p <r steps form a weakly
monotone walk, and the last r — p steps are unrestricted. This case has a generat-
ing function that is obtained by composing the group element (3.9) in Ap corre-
sponding to the ordinary double Hurwitz numbers with the one (3.26) correspond-
ing to the monotone ones. Applying the homomorphism .4p to the product there-
fore gives the product of the convolution group elements

I(elnq Po(J)+/3P1(J)e—ln(—zN)Po(J)H(_l/N7 j)) —na ﬁ1+ﬁﬁzéexp(N)_ (3.28)

It follows that the factor r,(N) that enters in the double Schur function expansion
of the corresponding mixed double Hurwitz number generating function is given
by the product of the ones for these two cases,

A
|4 zBNIA| ,B cont;, —(_ZN)l | (3.29)

N—1 ’
(szo k !) Ny

1 B
() ijN(N—l)egN(Nz—l)q

3.4. DETERMINANTAL MATRIX INTEGRALS AS GENERATING FUNCTIONS

Following [22, Appendix A], we can obtain a new class of combinatorial gener-
ating functions that generalize the case of the HCIZ integralas follows. Choose
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a pair (a,q) of (real or complex) parameters, with « not a positive integer, and

define
S q’(lj_"“)/ ifj>1,
/ 1 ifj <0,

where

(@j=a@+1)---(a+j—1)

is the (rising) Pochhammer symbol. Then

(et.q) q(j—a) o
r(.a,q) — ’Oj _ 7 lfJ >1,
Y L ifj <0,

and

T(a,q) — lIl,O(-a’q) _ jll’lq +1n(1 _a)j _ln(]') lf] = 17
/ / 0 ifj <0.

For any N eN, let
Clag) (N = e T TN V¥

be the corresponding shifted convolution symmetry group element.
We then have, for £(A) <N,

é(a,q)(N)M; 0) =V§a’q)(N)|)»; 0)
where

, , , , (N —a),
r}(\ot q)(N):r(()a q)(N) H r](\(lx_;,_(ij)_i:réa q)(N)QMIW’
(i,j)er

with
(@) T @ L (-,
a.q W aq) _  LNWN=1) —)j
re PNy =T o " =42 I1 —
j=0 j=

and
200)

(@s=[J@—i+1y,

i=1

the extended Pochhammer symbol corresponding to the partition A= (Al, .

For N eN*, we have the 2D Toda chain of t-functions

Ty (N, £.9) = {0174 (0 Claqy (N Y- ©)10) = D 1P (N)8,.(4) S3.(5).
A

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

. k[(k)).

(3.39)
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evaluated at the parameter values (3.22). As shown in [22], this is just the matrix
integral

Ty (N, TAL B =1 (N) / det(ly —qUAUB* Ndu(U) (3.40)
UeU(N)
_ (det(l —qaibj)lfi,jSN)a_l (3.41)
A(a)A(b)

We now use the other construction to derive an interpretation of this as a com-
binatorial generating function. Evaluating the generating function for the elemen-
tary symmetric polynomials at the Jucys—Murphy elements

Ew,J)=[]0+wd) (3.42)

a=1

defines an element of Ap. Applying the product

P
(-L)" He DEwW.D (3.43)
w
to the orthogonal idempotent F;, we obtain
1
(‘%) H(e, DEw, 7)F, =g L% (3.44)
w (=1/2)
Specializing to the values
1
z=—1/N, w=——, t=[A], s=[B] (3.45)
N —«

and choosing £(1) <N, we obtain the same eigenvalue, within a normalization fac-
tor, as in (3.35), namely

N
(4 (%—1)) H(=1/N, DE(~1/(N —a), ) F,=¢q Ml%ﬂ
(e,q)
=—’§a )(N ) E. (3.46)
ro P (N)
Under the homomorphism Z: Ap — C‘, we thus have
o Py Cla.q)(N)
——1 H(—=1/N,E(=1/(N —a), J)r> —2D" ~ 3.47
(a(5-1)) HEYNDE/N=a).) Sy (3.47)

Applying the product ¢ H(z, 7)E(w, J) to the conjugacy class sum C; therefore
gives

o0
G H @ DEw, NC= S Ful > g6 0, (3.48)
k,1=0 13
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where, similarly to the mixed double Hurwitz numbers, Ej ;(, n) is the number of
(k+1)-step walks in the Cayley graph of S, starting at a permutation with cycle
type A and ending at a permutation of cycle type u which obey the condition that
the first k steps form a weakly monotone walk, and the last / steps form a strictly
monotone walk.

Applying the map ch®ch to > g, nlg® (qMH @z, J)Ew, J)g) gives

> nlg®(¢MHGE DEwW, Jg) > > Fw' D M E i, ) Pt Pus)

8ESh k,1=0 [X|=|pl=n
= > ¢z w)Si 1S, (3.49)
|A|=n
where
(i
nw= [ S2Y=0w (3.50)
Lo 1= =Dz
(i,j)er
and hence
o 1] 11 r D (N
OG0 (3 ) - o
o rg T (N)

Therefore, in the limit N — oo, the matrix integral (3.40) is the generating func-
tion for the number of weakly monotonic-then-strictly monotonic double Hurwitz
numbers.

3.5. A FURTHER EXAMPLE: MULTIMONOTONE PATHS

In a recent paper by Alexandrov et al [1], a further class of functions, denoted
Zoemy (s, uts s um[pD, ..., p®), with structure similar to the generating function
for Hurwitz numbers was studied. These depend on a set of m 4+ 1 parameters
(s,uy,...,un), and are expressible as sums over k-fold products of Schur functions
T, $.(p®), whose coefficients are products of functions of the individual para-
meters (s, up,...,Uy), which are themselves content products of the type (2.23).
For k=1 or 2, it follows from their definition that these are KP and 2D Toda z-
functions of hypergeometric type; for k> 2 they have no such interpretation.
The k=2 case is defined by the double Schur function expansion

Zom (510 nlpD p@) = D r s, ), (), (3.52)
A
where
m
r}is,ul ,,,,, m) . _ IAl H H (Ug +i— ). (3.53)

a=1(ij)er
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and the k=1 case is obtained by setting p® =(1,0,0,...). Although similar in
form to the simple and double Hurwitz number generating functions, no combina-
torial interpretation of these was given in [1]. The case Z(; 1) is just the well-known
HCIZ integral (3.15) treated above when evaluated at the special values (3.22).

The combinatorial significance of Z ) for all m e NT is very easily understood
in our approach. To express this example in the notational conventions above, it is
convenient to define slightly different expansion parameters

m
g:=D"s [Ja. wor=—1/ug, a=1.....m, (3.54)
and denote
Z(z,m) (q,wl,...,wm|p(l) p(2)) —Z(z (s,ul,...,um|p(1),p(2)). (3.55)
The diagonal double Schur function expansions for Z (g, wi, ..., w,[p, p@)

may then be re-expressed as a double series over products P;(p")P,(p?) of
power sum symmetric functions via the Frobenius character formula (2.3), and fur-
ther developed as multiple Taylor series in the variables (p, wi, ..., wy):

9] m
Z(zﬁm)(q,wl,...,w (1) (2)) Zq Z Z (ng")x

b dydy,..dy=0 \a=1
[A|=lpl=n

XE(n‘dl’“'dm)()\, 7 PA(P(I))PM(p(Z))' (3.56)

The coefficients Ed1-dn) () 1) in this series have a simple combinatorial
meaning. They are the number of paths in the Cayley graph of S, generated by
transpositions (ab), a < b, starting from an element in the class sum C; and end-
ing at one in the class sum C,, related by multiplication by a product of transpo-
sitions of the form

(@iby)---(agba), d:=) d;, (3.57)

in which the b;’s are strictly monotonically increasing within each successive seg-
ment of length d;, starting at (a;by).

To see this, just note that the reparametrized content product riq W Wim)
appearing in the diagonal double Schur function expansion

Zow (@ wi. ..., walp®) = Z*(q“’l """ s, ()8, (p?), (3.58)
is

m
) — g M TT (0 +waG =) (3.59)

a=1(ij)er
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From the discussion in Section 2.3, this is just the product of the eigenvalues of the
generating functions of the elementary symmetric functions, expressed in terms of
the Jucys—Murphy elements,

n
E(wa, ) =[]0 +waa), (3.60)
a=1
and each of these generates strictly monotonic paths. The element G(J) € A[Py]
used to define the “twist” in this case is therefore the product g0 [T"_, E(wy, J),

a=1

whose eigenvalues Fiq’w"”"w’”) in the F, basis
m
g [ Ewa, DF =", (3.61)

a=1

are given by (3.59). The multimonotone Cayley path interpretation follows from
the discussion of the last example in Section 2.3.

Bibliographical update. This paper was posted as arXiv:1405.6303 in May 2014
and submitted at that time to Lett. Math. Phys. for publication. No substantive
changes have been made since then, but in the intervening time several further
papers have appeared on related matters [1-3,17-19,33,34], some of which have
since been published. Not all recent contributions give due reference to the present
work, but for the sake of completeness, we mention all known related works,
whether they appeared prior to, or subsequent to the present one.
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