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Abstract. We introduce a homomorphism from the quantum affine algebras Uq (D(2)
n+1),Uq

(A(2)
2n ), Uq (C(1)

n ) to the n-fold tensor product of the q-oscillator algebra Aq . Their action
commutes with the solutions of the Yang–Baxter equation obtained by reducing the solu-
tions of the tetrahedron equation associated with the modular and the Fock representations
of Aq . In the former case, the commutativity is enhanced to the modular double of these
quantum affine algebras.
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1. Introduction

The tetrahedron equation [24] is a three-dimensional (3D) generalization of the
Yang–Baxter equation [1]. Among its several versions, the basic one adapted to
homogeneous 3D vertex models has the form

R1,2,4 R1,3,5 R2,3,6 R4,5,6 = R4,5,6 R2,3,6 R1,3,5 R1,2,4, (1.1)

where R is a linear operator on the tensor cube of some vector space. The equal-
ity holds for the operators on its sixfold tensor product, where the indices specify
the components on which R acts nontrivially. We call a solution to the tetrahedron
equation a 3D R.

Several solutions have been found until now with some important clues to the
relevant algebraic structures such as the quantized coordinate ring of SL3 [14],
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PBW basis of the nilpotent subalgebra of Uq(sl3) [20], the q-oscillator algebra Aq

[3,5] and so forth. It is known [16] that the 3D R associated with the Fock repre-
sentation of Aq [5] coincides with the one in [14].

The tetrahedron equation reduces to the Yang–Baxter equation

R1,2 R1,3 R2,3 = R2,3 R1,3 R1,2

if the spaces 4,5,6 are evaluated away suitably [15,21]. In [17,18], such a reduction
was achieved by taking the matrix elements with respect to certain boundary vec-
tors. The resulting solutions to the Yang–Baxter equation were identified with the
quantum R matrices of various quantum affine algebras Uq(g) and their represen-
tations.

In this paper, we exploit further aspects of the 3D R associated with what we
call the modular and the Fock representations of the q-oscillator algebra Aq . We
use the two boundary vectors to generate four families of solutions to the Yang–
Baxter equation for each representation. Our first result, Theorem 4.1, is that they
commute with the quantum affine algebras Uq(g) with g= D(2)

n+1,C (1)
n , A(2)

2n and Ã(2)

2n
(see Section 2.1 for the definition). The essential ingredient for this statement is
a new homomorphism from Uq(g) to A⊗n

q in Proposition 2.1. The two boundary
vectors correspond to the short and the long simple roots of g at the two ends of
the Dynkin diagram.

Our second result, Theorem 5.3, is obtained by applying Theorem 4.1 to the
modular representation of the pair (Aq ,Aq̃) such that (log q)(log q̃) = −π2. We
find that the symmetry of the relevant solutions of the Yang–Baxter equation is
enhanced naturally from Uq(g) to its modular double Uq(g)⊗Uq̃(Lg) where Lg is
the Langlands dual of g. The key to this result is Proposition 5.2 showing that the
two boundary vectors interchange their role when passing to the modular dual. An
analogous feature has been observed in [11]. For general background on modular
double, we refer to [8,9].

The layout of the paper is as follows. In Section 2, the algebra homomorphism
from Uq(g) to A⊗n

q is presented in Proposition 2.1. In Section 3, the 3D R [3,5]
and the characterization of the boundary vectors [18] are recapitulated. In Section
4, reduction to the Yang–Baxter equation [17,18] is explained and the symmetry
of the consequent solution is described in Theorem 4.1. All the arguments until
this point are valid either for the modular or the Fock representations of Aq . They
systematize the proof of the commutativity significantly. In Section 5, the general
construction in the preceding sections are embodied in the modular representation.
The boundary vectors in this representation are new and described explicitly in
terms of their wave functions. They lead to our main result, Theorem 5.3. In Sec-
tion 6, it is explained how the specialization of the general results in Sections 2,
3, 4 to the Fock representation covers an essential part of the earlier result [17].
Appendix A contains identities involving the boundary wave function χb(σ ) and
the quantum dilogarithm.
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2. Quantum Affine Algebras and q-Oscillator Algebra

2.1. QUANTUM AFFINE ALGEBRAS

We assume that q is generic except in Section 5 and Appendix A. (The basic
parameter is q

1
2 rather than q in our convention.) The Drinfeld–Jimbo quantum

affine algebras (without derivation operator) Uq =Uq(A(2)

2n ),Uq( Ã(2)

2n ), Uq(C (1)
n ) and

Uq(D(2)

n+1) are the Hopf algebras generated by ei , fi , k±1
i (0 ≤ i ≤ n) satisfying the

relations [7,12]

ki k
−1
i = k−1

i ki =1, [ki , k j ]=0,

ki e j k
−1
i =q

ai j
i e j , ki f j k

−1
i =q

−ai j
i f j , [ei , f j ]= δi j

ki − k−1
i

qi −q−1
i

, (2.1)

1−ai j∑

ν=0

(−1)νe
(1−ai j −ν)

i e j e
(ν)
i =0,

1−ai j∑

ν=0

(−1)ν f
(1−ai j −ν)

i f j f (ν)
i =0 (i �= j),

where e(ν)
i = eν

i /[ν]qi !, f (ν)
i = f ν

i /[ν]qi ! and [m]q ! = ∏m
k=1[k]q with [m]q = qm−q−m

q−q−1 .
The Cartan matrix (ai j )0≤i, j≤n [13] is given by

ai, j =2δi, j −max
(
(log q j )/(log qi ),1

)
δ|i− j |,1.

The data qi are specified above the corresponding vertex i (0 ≤ i ≤ n) in the
Dynkin diagrams:

1,1 = D
(2)
n+1

< >
0 1 2 n−1 n

q
1
2 q q q q

1
2

2,2 = C
(1)
n

> <
0 1 2 n−1 n

q2 q q q q2

1,2 = A
(2)
2n

< <
0 1 2 n−1 n

q
1
2 q q q q2

2,1 = Ã
(2)
2n

> >
0 1 2 n−1 n

q2 q q q q
1
2

We also let gs,t
(
s, t ∈{1,2}) denote the relevant affine Lie algebras as above. g2,1 =

Ã(2)

2n is isomorphic to g1,2 = A(2)

2n and their difference is only the enumeration of
vertices. The Langlands dual of gs,t is given by Lgs,t = g3−s,3−t . Note that q0 =
qs2/2, qn =qt2/2 and qi =q for 0< i <n.

The coproduct � has the form

�k±1
i = k±1

i ⊗ k±1
i , �ei =1⊗ ei + ei ⊗ ki , � fi = fi ⊗1+ k−1

i ⊗ fi . (2.2)

The opposite coproduct is denoted by �′ = P ◦ �, where P(u ⊗ v) = v ⊗ u is the
exchange of the components.
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2.2. HOMOMORPHISM FROM Uq TO q-OSCILLATOR ALGEBRA

Let Aq be the algebra over C(q
1
2 ) generated by a+,a−,k and k−1 obeying the rela-

tions

k k−1 =k−1 k =1, k a± =q±1a± k, a± a∓ =1−q∓1k2. (2.3)

The algebra Aq , which we call the q-oscillator algebra, plays a central role in this
paper. Set

d = q

(q −q−1)2
, d1 =d|q→q1/2 , d2 =d|q→q2 .

In what follows an element a+ ⊗ 1 ⊗ k ⊗ a− ∈A⊗4
q for example will be denoted by

a+
1 k3a−

4 etc. Thus the q-oscillator generators with different indices are commuting.

PROPOSITION 2.1. For a parameter z the following map defines an algebra homo-
morphism πz :Uq(gs,t )→A⊗n

q [z, z−1]. (On the left-hand side, πz(g) is denoted by g
for simplicity.)

e0 = zsds(a+
1 )s, f0 = z−s is

2
(a−

1 )sk−s
1 , k0 = (ik1)

s,

ei =d a−
i a+

i+1k−1
i , fi =a+

i a−
i+1k−1

i+1, ki =k−1
i ki+1 (0< i <n),

en = it
2
dt (a−

n )t k−t
n , fn = (a+

n )t , kn = (−ik−1
n )t .

The proposition can be shown by directly checking the relations (2.1). The con-
vention z±s rather than z±1 is just to avoid zh3/s in the forthcoming formula (4.1).

Remark 2.2. If the formulas for ei , fi , ki with 0< i <n are interpreted with i ∈Zn ,
then Proposition 2.1 gives an algebra homomorphism Uq(A(1)

n−1)→A⊗n
q [z, z−1]. For

this case and Uq(gs,t ) without e0, f0 and k0, the homomorphism πz was essentially
known in [10]. For type A with q roots of unity, similar homomorphisms and their
applications have been studied in [2,4,6,10,22,23].

3. 3 Dimensional R and Boundary Vectors

In Sections 5 and 6, we will consider the modular representation and the Fock
representation of the q-oscillator algebra Aq . Let M uniformly denote the left
Aq module therein. Then there is a unique (up to sign) involutive operator R ∈
End(M⊗3) [3,5] such that
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R k2a+
1 = (k3a+

1 +k1a+
2 a−

3 )R, R k2a−
1 = (k3a−

1 +k1a−
2 a+

3 )R, (3.1)

R a+
2 = (a+

1 a+
3 −k1k3a+

2 )R, R a−
2 = (a−

1 a−
3 −k1k3a−

2 )R, (3.2)

R k2a+
3 = (k1a+

3 +k3a−
1 a+

2 )R, R k2a−
3 = (k1a−

3 +k3a+
1 a−

2 )R, (3.3)

R k1k2 =k1k2 R, R k2k3 =k2k3 R. (3.4)

Moreover, it satisfies the tetrahedron equation (1.1) in End(M⊗6). We simply call
it the 3D R. It is customary to depict R = R1,2,3 as the intersection of the three
arrows 1,2 and 3:

R1,2,3 =

2

31

Let M (resp. M∗) be a left (resp. right) Aq module. Suppose they are equipped
with the bilinear pairing 〈 | 〉 : M∗ × M → C such that 〈m̃′|m〉 = 〈m′|m̃〉 (〈m̃′| :=
〈m′|g, |m̃〉 := g|m〉) for any g ∈Aq .

Consider the vectors |χ(s)〉∈ M and 〈χ(s)| ∈ M∗ for s =1,2 satisfying

a±|χ(1)〉= (1∓q∓ 1
2 k)|χ(1)〉, 〈χ(1)|a± =〈χ(1)|(1±q± 1

2 k), (3.5)

a+|χ(2)〉=a−|χ(2)〉, 〈χ(2)|a+ =〈χ(2)|a−. (3.6)

PROPOSITION 3.1. [18, Prop. 4.1] The following equalities in M⊗3 and M∗⊗3 are
valid for s =1,2:

R
(
|χ(s)〉⊗ |χ(s)〉⊗ |χ(s)〉

)
=|χ(s)〉⊗ |χ(s)〉⊗ |χ(s)〉,

(
〈χ(s)|⊗ 〈χ(s)|⊗ 〈χ(s)|

)
R =〈χ(s)|⊗ 〈χ(s)|⊗ 〈χ(s)|.

We call these vectors boundary vectors. In the representations considered in Sec-
tions 5 and 6, the generator k is expressed as const ·qh using some operator h. It
satisfies [h,a±]=±a± according to (2.3). Moreover, the relation (3.4) implies

[R,h1 +h2]= [R,h2 +h3]=0 (3.7)

for R = R1,2,3. It is an analog of the ice rule for the 6 vertex model [1] and will be
referred to as the conservation law.

4. Solution of Yang–Baxter Equation

4.1. GENERAL CONSTRUCTION

The 3D R and the boundary vectors enable one to construct a family of solutions
of the Yang–Baxter equation labeled with n ≥1 [17,18]. Consider 3n +3 copies of
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M labeled with α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn and 4,5,6. Composing the tetrahe-
dron equation (1.1) with the spaces 1,2,3 relabeled as αi , βi , γi , we get

xh4(xy)h5 yh6
(
Rα1,β1,4 Rα1,γ1,5 Rβ1,γ1,6

) · · · (Rαn ,βn ,4 Rαn ,γn ,5 Rβn ,γn ,6
)
R4,5,6

= R4,5,6xh4(xy)h5 yh6
(
Rβ1,γ1,6 Rα1,γ1,5 Rα1,β1,4

) · · · (Rβn ,γn ,6 Rαn ,γn ,5 Rαn ,βn ,4
)
,

where we have multiplied xh4+h5 yh5+h6 from the left and used (3.7) on the right-
hand side. Regard the boundary vectors in Proposition 3.1 as belonging to the
spaces 4,5,6. Then evaluating the above relation between the boundary vectors
one obtains the Yang–Baxter equation

Sα,β(x)Sα,γ (xy)Sβ,γ (y)= Sβ,γ (y)Sα,γ (xy)Sα,β(x),

where α = (α1, . . . , αn) etc. The solution Sα,β(z) takes a matrix product form with
the boundary “magnetic field” zh3 :

Sα,β(z)=〈χ(s)|zh3 Rα1,β1,3 Rα2,β2,3 · · · Rαn ,βn ,3|χ(t)〉. (4.1)

The composition of the 3D R and the evaluation by bra and ket vectors in (4.1)
are taken with respect to the space M signified by 3. Plainly S(z) ∈ End(M⊗n ⊗
M⊗n) suppressing the dummy labels. We will denote S(z) by Ss,t (z) when the
dependence on s, t ∈{1,2} should be emphasized. The formula (4.1) is depicted as

χ(s)|zh3

α1

β1

α2

β2

.......
αn

βn

3 |χ(t)

4.2. QUANTUM GROUP SYMMETRY

We supplement the q-oscillator algebra A⊗n
q or its representation End(M⊗n) with

an invertible element K satisfying the relations

K k j =k j K , K a±
j = (iq

1
2 )±1a±

j K (1≤ j ≤n). (4.2)

Introduce a slightly modified Ss,t (z) by the so-called “zig-zag transformation”:

Ŝs,t (z)= (K ⊗1)Ss,t (z)(1⊗ K −1). (4.3)

In view of k a± =q±1a k in (2.3) one can formally realize K as K = (k1 . . .kn)ν for
some ν. From this fact and (3.4), it follows that [Ss,t (z), K ⊗ K ]= 0. Using these
properties one can show that Ŝs,t (z) also satisfies the Yang–Baxter equation.

Given parameters x, y and g ∈Uq , let �′(g) and �(g) simply mean the image of
(πx ⊗πy)

(
�′(g)

)
and (πx ⊗πy) (�(g)) in End(M⊗n ⊗ M⊗n) by the representation

of Aq . The following theorem, which is the main result of this section, shows the
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Uq -symmetry of Ŝs,t (z). The statement and the proof given in Section 4.3 are valid
irrespectively of the representations of Aq .

THEOREM 4.1. With the choice z = x/y, the following commutativity holds for
s, t ∈{1,2}:

�′(g)Ŝs,t (z)= Ŝs,t (z)�(g) ∀g ∈Uq(gs,t ). (4.4)

4.3. PROOF OF THEOREM 4.1

It suffices to show it for g = ki , ei and fi (0≤ i ≤ n). The case g = ki follows easily
from the first relation of (2.2), Proposition 2.1 and (3.4). Let us present a proof
for g = ei . In terms of Ss,t (z) the relation (4.4) with g = ei takes the form

(ẽi ⊗1+ ki ⊗ ei )Ss,t (z)− Ss,t (z)(1⊗ ẽi + ei ⊗ ki )=0. (4.5)

Here ẽi = K −1ei K and the symbol πx ⊗πy is again omitted.
(i) Case 0 < i < n. From Proposition 2.1 and (4.2) we find ẽi = ei . Moreover ei

and ki act nontrivially only on the factors Rαi ,βi ,3 Rαi+1,βi+1,3 constituting Ss,t (z) in
(4.1). We rename the spaces αi , αi+1, βi , βi+1 as 1,1′,2,2′, respectively. Accordingly
Rαi ,βi ,3 Rαi+1,βi+1,3 = R1,2,3 R1′,2′,3 will simply be denoted by R R′ with the product to
be understood in the space 3. From Proposition 2.1 the proof of (4.5) is reduced
to showing

(a−
1 a+

1′ k−1
1 +k−1

1 k1′a−
2 a+

2′k−1
2 )R R′ − R R′(a−

2 a+
2′k−1

2 +a−
1 a+

1′ k−1
1 k−1

2 k2′)=0.

All the terms here are transformed into the form R(· · · )R′ using the defining rela-
tions (3.1), (3.2), (3.3), (3.4) and their alternative forms via R = R−1 as follows.

a−
1 a+

1′ k−1
1 R R′ =k2a−

1 Rk−1
1 k−1

2 a+
1′ R′ = R(k3a−

1 +k1a−
2 a+

3 )k−1
1 k−1

2 a+
1′ R′,

k−1
1 k1′a−

2 a+
2′k−1

2 R R′ =a−
2 Rk−1

1 k−1
2 k1′a+

2′ R′ = R(a−
1 a−

3 −k1k3a−
2 )k−1

1 k−1
2 k1′a+

2′ R′,
R R′a−

2 a+
2′k−1

2 = Ra−
2 k−1

2 R′a+
2′ = Ra−

2 k−1
2 (a+

1′ a+
3 −k1′k3a+

2′)R′,
R R′a−

1 a+
1′ k−1

1 k−1
2 k2′ = Ra−

1 k−1
1 k−1

2 R′k2′a+
1′ = Ra−

1 k−1
1 k−1

2 (k3a+
1′ +k1′a+

2′a−
3 )R′.

To see the cancelation of these terms is now straightforward.
(ii) Case i =0 and s =1. e0 and k0 act nontrivially only on the factor R = Rα1,β1,3

in (4.1). From Proposition 2.1 and (4.2), we find ẽ0 = −iq− 1
2 e0. Renaming the

spaces α1 and β1 as 1 and 2, we see that (4.5) is reduced to 0=〈χ(1)|zh3(−iq− 1
2 xa+

1

+ yik1a+
2 )R − 〈χ(1)|zh3 R(−iq− 1

2 ya+
2 + xa+

1 ik2). Up to an overall factor the last
quantity is calculated as
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〈χ(1)|zh3
(

q− 1
2 za+

1 R −k1a+
2 R −q− 1

2 Ra+
2 + z Rk2a+

1

)

=〈χ(1)|zh3
(

q− 1
2 za+

1 −k1a+
2 −q− 1

2 (a+
1 a+

3 −k1k3a+
2 )+ z(k3a+

1 +k1a+
2 a−

3 )
)

R.

Due to 〈χ(1)|zh3a±
3 = z±1〈χ(1)|zh3(1±q± 1

2 k3) by (3.5), this vanishes.
(iii) Case i =0 and s =2. We have ẽ0 =−q−1e0 and (4.5) is reduced to

0=〈χ(2)|zh3
(

q−1z2(a+
1 )2 R +k2

1(a
+
2 )2 R −q−1 R(a+

2 )2 − z2 R(a+
1 )2k2

2

)

=〈χ(2)|zh3
(

q−1z2(a+
1 )2 +k2

1(a
+
2 )2 −q−1(a+

1 a+
3 −k1k3a+

2 )2

−z2(k3a+
1 +k1a+

2 a−
3 )2

)
R.

Due to (2.3) and 〈χ(2)|zh3a+
3 = z2〈χ(2)|zh3a−

3 by (3.6), this vanishes. We remark that
z appearing in πz is linked to the z-commuting relation zh3a±

3 = z±1a±
3 zh3 relevant

to i =0, i.e., Case (ii) and Case (iii).
(iv) Case i = n and t = 1. en and kn act nontrivially only on the factor R =

Rαn ,βn ,3 in (4.1). From Proposition 2.1 and (4.2), we find ẽn = iq
1
2 en . Renaming the

spaces αn and βn as 1 and 2, we see that (4.5) is reduced to

0=
(

q
1
2 a−

1 k−1
1 −k−1

1 a−
2 k−1

2

)
R|χ(1)〉− R

(
q

1
2 a−

2 k−1
2 −a−

1 k−1
1 k−1

2

)
|χ(1)〉

=
(

q
1
2 k2a−

1 −a−
2

)
Rk−1

1 k−1
2 |χ(1)〉− R

(
q

1
2 a−

2 k−1
2 −a−

1 k−1
1 k−1

2

)
|χ(1)〉

= R
((

q
1
2 (k3a−

1 +k1a−
2 a+

3 )− (a−
1 a−

3 −k1k3a−
2 )

)
k−1

1 k−1
2

−q
1
2 a−

2 k−1
2 +a−

1 k−1
1 k−1

2

)
|χ(1)〉.

Due to a±
3 |χ(1)〉= (1∓q∓ 1

2 k3)|χ(1)〉 by (3.5), this vanishes.
(v) Case i =n and t =2. We have ẽn =−qen and (4.5) is reduced to

0=
(

q(a−
1 )2k−2

1 +k−2
1 (a−

2 )2k−2
2

)
R|χ(2)〉− R

(
(a−

2 )2k−2
2 + (a−

1 )2k−2
1 k−2

2

)
|χ(2)〉

= R
((

q(k3a−
1 +k1a−

2 a+
3 )2 + (a−

1 a−
3 −k1k3a−

2 )2)k−2
1 k−2

2

−(a−
2 )2k−2

2 − (a−
1 )2k−2

1 k−2
2

)
|χ(2)〉.

Due to (2.3) and a+
3 |χ(2)〉 = a−

3 |χ(2)〉 by (3.6), this vanishes. This completes the
proof of (4.4) for all g = ei . The case g = fi can be verified similarly.

5. Example: Modular Representation

5.1. MODULAR REPRESENTATION OF q-OSCILLATOR ALGEBRA

Let σ , p be the generators of the Heisenberg algebra [σ , p]= i
2π

. We introduce a
modular pair of the Weyl algebras, the exponential form of the Heisenberg algebra,
by



TETRAHEDRON EQUATION AND MODULAR DOUBLE 455

k =−ieπbσ , w = e2πb p , kw =qwk , q = eiπb2
,

k̃ =−ieπb−1σ , w̃ = e2πb−1 p , k̃w̃ = q̃w̃k̃ , q̃ = eiπb−2
.

(5.1)

It also satisfies kw̃=−w̃k, k̃w=−wk̃, [k, k̃]=[w, w̃]=0. The “tilde” transformation
just means the replacement b →b−1. We set η= 1

2 (b +b−1) and concentrate on the
so-called strong coupling regime 0 < η < 1 in this section. This implies that |b| =
1,Re(b)=Re(b−1)=η.

Recall that Aq =〈a±,k±〉 is the q-oscillator algebra (2.3). We call the q-oscillator
algebra Aq̃ =〈ã±, k̃±〉 the modular dual of Aq . Identifying the generators k, k̃ in
Aq ,Aq̃ with those in the Weyl algebras, it is easy to see that

a+ = (1−q−1k2)1/2w , a− = (1−qk2)1/2w−1,

ã+ = (1− q̃−1k̃2)1/2w̃ , ã− = (1− q̃k̃2)1/2w̃−1 (5.2)

satisfy the defining relations of Aq and Aq̃ . The modular pair of the Heisen-
berg/Weyl algebras has the coordinate representations on the bra and ket vectors1

as

〈σ |σ =σ 〈σ |, 〈σ |w =〈σ − ib|, 〈σ |w̃ =〈σ − ib−1|,
σ |σ 〉=σ |σ 〉, w|σ 〉= |σ + ib〉, w̃|σ 〉= |σ + ib−1〉 (〈σ |σ ′〉= δ(σ −σ ′)

)
.

(5.3)

The composition of (5.2) and (5.3) will be referred to as modular representation of
the pair (Aq ,Aq̃).

The relevant 3D R is given by the integral kernel [3]

〈σ1, σ2, σ3|R|σ ′
1, σ

′
2, σ

′
3〉= δσ1+σ2,σ

′
1+σ ′

2
δσ2+σ3,σ

′
2+σ ′

3

√
ϕ(σ1)ϕ(σ2)ϕ(σ3)

ϕ(σ ′
1)ϕ(σ ′

2)ϕ(σ ′
3)

×e−iπ(σ1σ3−iη(σ1+σ3−σ ′
2))

∫

R

due2π iu(σ ′
2−iη)

ϕ(u + σ ′
1+σ ′

3+iη
2 )ϕ(u+−σ1−σ3+iη

2 )

ϕ(u+σ1−σ3−iη
2 )ϕ(u+−σ1+σ3−iη

2 )
, (5.4)

where δσ,σ ′ = δ(σ −σ ′) and 〈σ1, σ2, σ3|= 〈σ1|⊗ 〈σ2|⊗ 〈σ3| etc. The integral is con-
vergent for σi , σ

′
i ∈R [3]. The function ϕ is the quantum dilogarithm

ϕ(z)= exp

(
1
4

∫

R+i0

e−2izw

sinh(wb) sinh(w/b)

dw

w

)
,

which is manifestly symmetric under the exchange b ↔ b−1. Its main difference
property is

ϕ(z − ib±1/2)

ϕ(z + ib±1/2)
=1+ e2π zb±1

.

1In terms of wave functions, it is a representation in the space of square integrable functions of
σ ∈R admitting an analytical continuation into an appropriate horizontal strip. See [19] for further
details.
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In fact this enables one to establish the formula (5.4) by checking the defining
relations (3.1), (3.2), (3.3), (3.4).

Remark 5.1. The defining relations (3.1), (3.2), (3.3), (3.4) of R are based on Aq

but do not involve q explicitly. Moreover (5.4) is symmetric under b ↔ b−1. It
follows that the R also satisfies (3.1), (3.2), (3.3), (3.4) with 〈a±

i ,k±
i 〉 replaced

by 〈ã±
i , k̃±

i 〉. In this sense (5.4) is the 3D R for the modular representation of
(Aq ,Aq̃). This fact will further be utilized in Theorem 5.3.

5.2. BOUNDARY VECTORS

Consider the boundary ket vectors |χ(s)〉 satisfying the left conditions in (3.5) and
(3.6). In the spirit of quantum mechanics we denote its wave function 〈σ |χ(s)〉 by
χ(s)(σ ). Then the conditions read

χ(1)(σ − i b
2 )

χ(1)(σ + i b
2 )

=
√

1+ ieπbσ

1− ieπbσ
,

χ(2)(σ − ib)

χ(2)(σ + ib)
=

√√√√1+ e2πb(σ+i b
2 )

1+ e2πb(σ−i b
2 )

. (5.5)

We may also set χ(s)(σ )=〈χ(s)|σ 〉 for the boundary bra vectors 〈χ(s)| since 〈χ(s)|σ 〉
obeys the same difference equations as (5.5).

As we are concerned with the modular representation of (Aq ,Aq̃), it is natural
to also consider the boundary vectors 〈χ̃ (s)| and |χ̃ (s)〉 obeying (3.5) and (3.6) with
Aq =〈a±,k±〉 replaced by Aq̃ =〈ã±, k̃±〉. Their wave functions χ̃ (s)(σ )=〈σ |χ̃ (s)〉=
〈χ̃ (s)|σ 〉 are to satisfy (5.5) with b replaced by b−1:

χ̃ (1)(σ − i b−1

2 )

χ̃ (1)(σ + i b−1

2 )
=

√
1+ ieπb−1σ

1− ieπb−1σ
,

χ̃ (2)(σ − ib−1)

χ̃ (2)(σ + ib−1)
=

√√√√1+ e2πb−1(σ+i b−1
2 )

1+ e2πb−1(σ−i b−1
2 )

.

(5.6)

Introduce the function

χb(σ )= exp

(
1
8

∫

R+i0

e−2iσw

sinh(wb) cosh(w/b)

dw

w

)
. (5.7)

It is analytic in the strip −η < Im(σ ) < η but not symmetric under the exchange
b ↔ b−1. See Appendix A for more properties. Now we present our key observa-
tion.

PROPOSITION 5.2. The following provides a solution to (5.5) and (5.6):

χ(1)(σ )= χ̃ (2)(σ )=χb(σ ), χ(2)(σ )= χ̃ (1)(σ )=χb−1(σ ).

The statement can be verified by a direct calculation. For example for χ(1)(σ ),
taking the log of the difference equation (5.5), making Fourier transformation
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assuming analyticity in the strip − 1
2 Re(b) < Im(σ ) < 1

2 Re(b) leads to the result.
Proposition 5.2 demonstrates a curious feature of the vectors |χ(1)〉 and |χ(2)〉.
They are transformed to each other simply by the interchange b ↔b−1.

5.3. MODULAR DOUBLE FOR QUANTUM GROUPS

The operator h in (3.7) and its modular dual h̃ satisfying [h,a±]=±a± and [h̃, ã±]=
±ã± can be taken as −ib−1σ and −ibσ . See (5.1) and (5.2). Thus in (4.1) we may
choose zh = e2π iλσ so that 〈σ |zh|σ ′〉 = δσ,σ ′e2π iλσ with λ being the (additive) spec-
tral parameter. Let us denote the resulting object (4.1) by Ss,t (λ). It is given by the
integral kernel

〈α,β|Ss,t (λ)|α′,β ′〉
=

∫ n∏

k=0

dσkχ
(s)(σ0)e2π iλσ0

(
n∏

k=1

〈αk, βk, σk−1|R|α′
k, β

′
k, σk〉

)
χ(t)(σn), (5.8)

where 〈α,β|= 〈α|⊗ 〈β| with 〈α|= 〈α1|⊗ · · ·⊗ 〈αn|, 〈β|= 〈β1|⊗ · · ·⊗ 〈βn| (αi , βi ∈R)

and similarly for |α′,β ′〉.2 The boundary wave function χ(s)(σ ) is the one specified
in Proposition 5.2. Due to the conservation law [δ factors in (5.4)], (5.8) is propor-
tional to

∏n
k=1 δαk+βk ,α

′
k+β ′

k
and the integrals over σ0, . . . , σn ∈R actually reduce to

a single one.
Introduce Ŝs,t (λ)= (Kd ⊗1)Ss,t (λ)(1⊗ K −1

d ) generalizing (4.3). The operator Kd

simultaneously obeying (4.2) and its modular counterpart, i.e., Kd k̃ j = k̃ j Kd , Kd ã±
j =

(iq̃
1
2 )±1ã±

j Kd (1≤ j≤n), is realized as 〈α|Kd |α′〉=∏n
k=1 δαk ,α

′
k
eπηαk .

Let us describe the quantum group symmetry of the solution Ŝs,t (λ) of the
Yang–Baxter equation. We prepare the representation ρλ of Uq(gs,t ) obtained by
combining πz : Uq(gs,t ) → A⊗n

q in Proposition 2.1 with z = e−2πbλ and the mod-
ular representation of (Aq ,Aq̃). This choice of z stems from zha± = e2π iλσ a± =
e∓2πbλa±zh and the remark at the end of (iii) in the proof of Theorem 4.1.

Similarly let ρ̃λ be the representation of Uq̃(Lgs,t ) consisting of πz̃ :Uq̃(Lgs,t )→
A⊗n

q̃ with z̃ = e−2πb−1λ and the modular representation of (Aq ,Aq̃). Here Lgs,t =
g3−s,3−t is the Langlands dual of gs,t as mentioned in Section 2.1.

Given parameters μ,ν, let �(g) and �′(g) simply mean (ρμ ⊗ ρν)(�(g)) and
(ρμ ⊗ρν)(�

′(g)) for g ∈Uq(gs,t ). Similarly let they mean (ρ̃μ ⊗ ρ̃ν)(�(g)) and (ρ̃μ ⊗
ρ̃ν)(�

′(g)) for g ∈Uq̃(Lgs,t ). The following theorem, which is the main result in this
section, states that the symmetry of Ŝs,t (λ) implied by Theorem 4.1 is enhanced
naturally to the modular double.

2The symbols α etc. that appeared as labels of the spaces in (4.1) are used here as variables.
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THEOREM 5.3. For μ,ν such that λ=μ−ν, the following commutativity is valid:

�′(g)Ŝs,t (λ)= Ŝs,t (λ)�(g) ∀g ∈Uq(gs,t ),

�′(g)Ŝs,t (λ)= Ŝs,t (λ)�(g) ∀g ∈Uq̃(Lgs,t ).

Proof. The first relation is due to Theorem 4.1. The second relation is due to the
first relation, Remark 5.1 and Proposition 5.2.

Let Uq,q̃(gs,t ) denote the modular double of quantum affine algebras in the
sense of Uq,q̃(gR) [11, eq. (1.8)] with gR formally replaced by gs,t .3 Set Šs,t (λ) =
P Ŝs,t (λ), where P is defined after (2.2). By writing the coproduct action �(Uq,q̃)

just as Uq,q̃ , Theorem 5.3 may be rephrased symbolically as

[Š1,1(λ), Uq,q̃(D(2)

n+1)]=0, [Š2,2(λ), Uq,q̃(C (1)
n )]=0,

[Š1,2(λ), Uq,q̃(A(2)

2n )]=0, [Š2,1(λ), Uq,q̃( Ã(2)

2n )]=0.

6. Example: Fock Representation

Here we explain that the specialization of the results in Proposition 2.1–Theorem
4.1 to the Fock representation of the q-oscillator algebra Aq reproduces the earlier
result in [17]. We assume q is generic. By the Fock representation of Aq (2.3) we
mean the following on F =⊕m≥0C(q

1
2 )|m〉:

a+|m〉= |m +1〉, a−|m〉= (1−q2m)|m −1〉, k±1|m〉=q±(m+ 1
2 )|m〉.

Combining this with πz in Proposition 2.1 yields an irreducible representation of
Uq(gs,t ) on F⊗n[z, z−1] except s = t = 2. In the latter case, F⊗n[z, z−1] splits into
two irreducible Uq(C (1)

n ) modules. They were obtained in [17, Prop. 1–3] without
factoring through A⊗n

q via πz , and called “q-oscillator representations”.
The 3D R associated with the Fock representation is given by

R(|i〉⊗ | j〉⊗ |k〉)=
∑

a,b,c≥0

Ra,b,c
i, j,k |a〉⊗ |b〉⊗ |c〉,

Ra,b,c
i, j,k = δa+b,i+ jδb+c, j+k

∑

λ+μ=b

(−1)λqi(c− j)+(k+1)λ+μ(μ−k) (q
2)c+μ

(q2)c

(
i

μ

)

q2

(
j

λ

)

q2
,

where
(m

k

)
q = (q)m

(q)k(q)m−k
, (q)m = (q;q)m and (z;q)m =∏m

k=1(1− zqk−1). The sum over
λ,μ is taken under the conditions λ+μ=b, 0≤μ≤ i and 0≤λ≤ j .

This solution of the tetrahedron equation was obtained as the intertwiner of
the quantum coordinate ring Aq(sl3) [14].4 It was also found from a quantum

3Uq (gs,t ) and Uq̃ (Lgs,t ) actually commute only up to sign in general. See e.g., [11, Prop. 9.1]
for the positive principal series representations. The so-called transcendental relations therein are not
considered here.

4The formula for it on p194 in [14] contains a misprint unfortunately.
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geometry consideration in a different gauge including square roots [3,5]. They were
shown to be the same object constituting a solution of the 3D reflection equation
in [16]. The 3D R can also be identified with the transition matrix of the PBW
bases of the nilpotent subalgebra of Uq(sl3) [20].

Let F∗ =⊕m≥0C(q
1
2 )〈m| be the right Aq module defined by

〈m|a+ = (1−q2m)〈m −1|, 〈m|a− =〈m +1|, 〈m|k±1 =q±(m+ 1
2 )〈m|.

The bilinear pairing of F∗ and F is specified by 〈m|m′〉= (q2)mδm,m′ . The operator
h argued around (3.7) can be defined by 〈m|h =m〈m| and h|m〉=m|m〉.

The boundary vectors satisfying the postulates in Section 3 are given by [18]

〈χ(s)|=
∑

m≥0

1

(qs2
)m

〈sm|, |χ(s)〉=
∑

m≥0

1

(qs2
)m

|sm〉 (s =1,2).

In [17], Theorem 4.1 was proved for the present setting of the Fock represen-
tation. It was also shown that F⊗n[x, x−1] ⊗ F⊗n[y, y−1] with generic x, y is an
irreducible Uq(gs,t ) module except s = t = 2. (In the latter case it splits into four
irreducible Uq(C (1)

n ) modules.) Thus the commutativity with Uq provides a charac-
terization of Ss,t (z) up to normalization.
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Appendix A. Properties of χb(σ )

Let us collect some properties of the function χb(σ ) in (5.7) which are derived by
residue analyses. In what follows, we will also use the Jacobi modular partner q =
e−iπb−2

to q.

χb(σ )

χb(−σ)
= e− 1

2 πb−1σ , χb(σ )χb−1(σ )= ϕ(
σ+iη

2 )

ϕ(
σ−iη

2 )
.

Set w=e2πbσ , w=e2πb−1σ . In the regime |q|<1 one has the infinite product rep-
resentations

χb(σ )=
√

(−iq1/2w1/2;q)∞
(iq1/2w1/2;q)∞

(−q3w;q4)∞
(−q w;q4)∞

,

√
ϕ(σ)χb(σ )= (−iq1/2w1/2;q)∞

(−q w;q4)∞
,

1√
ϕ(σ)

χb(σ )= (−q3w;q4)∞
(iq1/2w1/2;q)∞

.
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The following integral identities hold:

∫

R

χb(σ )2e−2π iσλdσ = e− π
2 b−1(2λ−iη) χb(iη−2λ)2

cosh πbλ
,

∫

R

χb(σ )χb−1(σ )e−2π iσλdσ =2e−iπη2/2 ϕ(2λ)

ϕ(2λ− iη)
e2πλη.

Remark A.1. In [18], reduction of the 3D L operators was studied by boundary
vectors in the Fock representation leading to the quantum R matrices for the
spin representations of Uq(D(2)

n+1),Uq(B(1)
n ) and Uq(D(1)

n ). Formulas in this appen-
dix enable one to calculate the reduction in the modular representation and give
exactly the same R-matrices.
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