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1. Introduction: Infinite-Dimensional Schur–Weyl Duality and the Serpentine
Representation of SN

The serpentine representation is a remarkable representation of the infinite sym-
metric group SN, which has not yet been studied. Its importance is due to the
fact that it is very closely related to the basic representation of the affine Lie alge-
bra ̂sl2 and representations of the Virasoro algebra. This representation belongs to
the class of so-called Schur–Weyl representations. Recall that in [12] we suggested
an infinite-dimensional generalization of the classical Schur–Weyl duality for the
symmetric group SN and the special linear group SL(2,C) using a “dynamical”
approach. Namely, we started from the classical Schur–Weyl duality (for definite-
ness, assume that N =2n)

(C2)⊗N =
n

∑

k=0

M2k+1 ⊗ Hπk , (1)
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where Hπk is the space of the irreducible representation πk of the symmetric group
SN corresponding to the two-row Young diagram (n + k,n − k) and M2k+1 is the
(2k +1)-dimensional irreducible SL(2,C)-module, and considered isometric embed-
dings (C2)⊗N ↪→ (C2)⊗(N+2) that are equivariant with respect to both the actions of
SL(2,C) and SN , which we called Schur–Weyl embeddings. Given an infinite chain

(C2)⊗0 α0
↪→ (C2)⊗2 α2

↪→ (C2)⊗4 α4
↪→ . . . (2)

of Schur–Weyl embeddings, we can consider the corresponding inductive limit. The
class of all representations (called Schur–Weyl representations) that can be obtained
in this way is described in [12, Theorem 1]: Let �{αN } be the representation of
the infinite symmetric group SN obtained as the inductive limit of the standard
representations of SN in (C2)⊗N with respect to an infinite chain of Schur–Weyl
embeddings (2). Then it decomposes into a countable direct sum of primary rep-
resentations

�{αN } =
∞
∑

k=0

M2k+1 ⊗�{αN }
k , (3)

where �
{αN }
k is the inductive limit of the irreducible representations of S2k,

S2k+2, . . . corresponding to the Young diagrams (2k), (2k +1,1), (2k +2,2), . . ..
As an important example of such a representation, in [12] we considered the

unique infinite Schur–Weyl scheme that satisfies a natural additional condition,
namely, preserves the tensor structure of (C2)⊗N . The main goal of this paper is
to study another example of Schur–Weyl duality, namely, the unique Schur–Weyl
scheme that satisfies the following additional condition: it preserves the so-called sta-
ble major index of a Young tableau. We show that this particular representation
of the infinite symmetric group, which we call the serpentine representation, can
be naturally equipped with the structure of the basic representation of the affine
Lie algebra ̂sl2, with the irreducible SN -modules corresponding to the irreducible
Virasoro modules. This reveals new interrelations between the representation the-
ory of the infinite symmetric group and that of the affine Lie and Virasoro alge-
bras. The precise form of the underlying natural grading-preserving isomorphism
of sl2-modules is still unknown in the general case, and perhaps it is not a sim-
ple task to find it, but we present several properties of this isomorphism which are
corollaries of the main theorem.

Our approach uses the result of [2] that the level 1 irreducible highest weight
representations of ̂sl2 can be realized as certain inductive limits of tensor powers
(C2)⊗N of the two-dimensional irreducible representation of sl2. The construction
of [2] is based on the notion of the fusion product of representations, whose main
ingredient is, in turn, a special grading in the space (C2)⊗N . A key observation
underlying the results of this paper, which relies on the computation presented in
[7] of the q-characters of the multiplicity spaces of irreducible sl2-modules with
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respect to this grading, is that the fusion product under consideration can be real-
ized in an SN -module so that this special grading essentially coincides with a well-
known combinatorial characteristic of Young tableaux called the major index (see
Proposition 1). Thus our results provide, in particular, a kind of combinatorial
description of the fusion product and show that the combinatorial notion of the
major index of a Young tableau has a new representation-theoretic meaning. For
instance, Corollary 2 in Section 4 shows that the so-called stable major indices of
infinite Young tableaux are the eigenvalues of the Virasoro L0 operator, the Gelfand–
Tsetlin basis of the Schur–Weyl module being its eigenbasis.

The paper is organized as follows. In Section 2, we introduce our main object,
the so-called serpentine representation of the infinite symmetric group, as well as
the notion of the stable major index of an infinite Young tableau, and formulate
our main Theorem 1, which states that there is a grading-preserving isomorphism
of sl2-modules between the basic ̂sl2-module L0,1 and the space H� of the ser-
pentine representation. The theorem is proved in Section 3. In Section 4, we study
the above isomorphism in more detail, describing some of its properties and giving
examples.

For definiteness, in what follows we consider only the even case N = 2n. The odd
case can be treated in exactly the same way; instead of the basic representation L0,1,
it leads to the other level 1 highest weight representation L1,1 of ̂sl2.

2. The Main Theorem

Let TN be the set of all standard Young tableaux with N cells and at most two
rows. Consider the following natural embedding iN : TN → TN+2: given a standard
Young tableau τ with N cells, its image iN (τ ) is the standard Young tableau with
N +2 cells obtained from τ by adding the element N +1 to the first row and the
element N + 2 to the second row. As shown in [12], it determines a Schur–Weyl
embedding (C2)⊗N ↪→ (C2)⊗(N+2), which, by abuse of notation, we denote by the
same symbol iN .

DEFINITION 1. The Schur–Weyl representation � :=�(iN ) of the infinite sym-
metric group SN in the space H� = lim((C2)⊗N , iN ) will be called the serpentine
representation.

According to the theorem on Schur–Weyl representations (see the introduction),
we have

�=
∞
∑

k=0

M2k+1 ⊗�k, (4)

where the irreducible component �k , which will be called the k-serpentine repre-
sentation, is the representation of SN associated with the infinite tableau
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τk =
1 2 . . . 2k 2k +1 2k +3 . . .

2k +2 2k +4 . . .

(in particular, τ0 is the tableau with 1,3,5, . . . in the first row and 2,4,6, . . . in the
second row), which can be realized in the space H�k spanned by the set T k of infi-
nite two-row Young tableaux tail-equivalent to τk . It has a discrete spectrum with
respect to the Gelfand–Tsetlin algebra.

In what follows, the tableaux τk , k = 0,1, . . ., will be called principal, and a
tableau tail-equivalent to τk for some k will be called a serpentine tableau; denote
by T =∪Tk the set of all serpentine tableaux.

Now consider the well-known statistic on Young tableaux called the major index.
It is defined as follows (see [11, Sec. 7.19]):

maj(τ )=
∑

i∈des(τ )

i,

where, for τ ∈ TN ,

des(τ )={i ≤ N −1 : the element i +1 in τ lies lower than i}
is the descent set of τ .

Obviously,

maj(iN (τ ))=maj(τ )+ (N +1). (5)

This suggests the following important step. Given N = 2n and τ ∈ TN , denote
rN (τ ) = n2 − maj(τ ). Then rN+2(iN (τ )) = rN (τ ), so that we have a well-defined
index on all serpentine tableaux τ ∈T :

r(τ )= lim
n→∞ r2n([τ ]2n)= lim

n→∞(n
2 −maj([τ ]2n)), (6)

where [τ ]l is the tableau with l cells obtained from τ by removing all the cells with
entries k> l. Obviously, for the principal tableaux, we have r(τk)= k2.

DEFINITION 2. We call r(τ ) the stable major index of an infinite tableau τ ∈T .

The stable major index determines a grading on all the spaces H�k and hence
on the whole space H�: for w=u ⊗v∈ M2k+1 ⊗ H�k we just set degr (w)= r(v).

Now consider the affine Lie algebra ̂sl2 =sl2 ⊗C[t, t−1]⊕Cc⊕Cd, its basic mod-
ule L0,1 with the homogeneous grading degH , and the natural embedding sl2 ⊂ ̂sl2
given by sl2 ⊃ x �→ x ⊗1∈ ̂sl2. Our main theorem is the following.

THEOREM 1. There is a grading-preserving unitary isomorphism of sl2-modules
between (L0,1,degH ) and (H�,degr ). The serpentine representation is the unique
Schur–Weyl representation satisfying this condition.
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Remarks. 1. As mentioned in the introduction, we consider only the even case
just for simplicity of notation. Considering instead of (2) the chain (C2)⊗1 ↪→
(C2)⊗3 ↪→ (C2)⊗5 ↪→ . . . and reproducing exactly the same arguments, we will
obtain a grading-preserving isomorphism of the corresponding Schur–Weyl
module with the other level 1 highest weight module L1,1 of ̂sl2.

2. The conditions from the statement of Theorem 1 do not uniquely determine
the isomorphism, since there is a nontrivial group of transformations in H�
that commute with sl2 and preserve the grading. For more details, see the
remark after Corollary 2 in Section 4. To find an explicit form of this isomor-
phism is an intriguing problem.

3. Proof of the Main Theorem

1. Fusion product. Our proof relies on the result of Feigin and Feigin [2] on a
finite-dimensional approximation of the basic representation of ̂sl2, which, in turn,
uses the notion of the fusion product of representations introduced in [4]. Since the
corresponding construction is of importance for us, we describe it in some detail.

Given a representation ρ of sl2 and z ∈ C, let ρ(z) be the evaluation represen-
tation of the polynomial current algebra sl2 ⊗ C[t], defined as (x ⊗ t i )v= zi · xv.
Now, given a collection ρ1, . . ., ρN of irreducible representations of sl2 with lowest
weight vectors v1, . . ., vN , and a collection z1, . . ., zN of pairwise distinct complex
numbers, we consider the tensor product of the corresponding evaluation represen-
tations: ρ1(z1)⊗· · ·⊗ρN (zN ). The crucial step is introducing a special grading in
the space VN of this representation. Set V (m)

N =U (m)(e ⊗C[t])(v1 ⊗· · ·⊗ vN )⊂ VN ,
where e is the raising operator in sl2 and U (m) is spanned by homogeneous ele-
ments of degree m in t . In other words, U (m) is spanned by the monomials of the
form ei1 . . .eik with i1 +· · ·+ ik =m, where e j = e ⊗ t j . Then we consider the corre-
sponding filtration on VN : V (≤m)

N =∑

k≤m V (k)
N . The fusion product of ρ1, . . ., ρN is

the graded representation with respect to the above filtration, which is realized in
the space

V ∗
N =gr VN = V (≤0)

N ⊕ V (≤1)
N /V (≤0)

N ⊕ V (≤2)
N /V (≤1)

N ⊕ . . .. (7)

The space V ∗
N [k]= V (≤k)

N /V (≤k−1)
N is the subspace of elements of degree k, and ele-

ments of the form x ⊗ t l ∈sl2 ⊗C[t] send V ∗
N [k] to V ∗

N [k + l]. The degree of an ele-
ment with respect to this grading will be denoted by ˜deg. It is proved in [4] that
V ∗

N is an sl2 ⊗ (C[t]/t N )-module that does not depend on z1, . . ., zN provided that
they are pairwise distinct. Moreover, V ∗

N is isomorphic to ρ1 ⊗· · ·⊗ρN as an sl2-
module.

We apply this construction to the case where ρ1 =· · ·=ρN is the two-dimensional
irreducible representation of sl2 with the lowest weight vector v0. In this case, V ∗

N 
(C2)⊗N as an sl2-module. We equip V ∗

N with the inner product such that the cor-
responding representation of sl2 is unitary. It is proved in [2] that an inductive
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limit of V ∗
N is isomorphic to the basic representation L0,1 of ̂sl2, so that we first

establish a grading-preserving isomorphism of the finite-dimensional sl2-modules
V ∗

N and
∑n

k=0 M2k+1 ⊗ Hπk and then show that it can be extended to the induc-
tive limits of the corresponding spaces.

2. The q-character, major index, and the finite-dimensional result. Consider the decom-
position of V ∗

N into irreducible sl2-modules:

V ∗
N =

n
⊕

k=0

M2k+1 ⊗Mk .

By the classical Schur–Weyl duality (1), we know that the multiplicity space Mk

coincides with the space Hπk of the irreducible representation of SN with the
Young diagram (n + k,n − k). On the other hand, it inherits the grading from V ∗

N :

Mk =
⊕

i≥0

Mk[i], (8)

where Mk[i]=Mk ∩ V ∗[i]. Consider the corresponding q-character

chq Mk =
∑

i≥0

qi dim Mk[i].

It was proved by Kedem [7] that

chq Mk =q
N (N−1)

2 · K(n+k,n−k),1N (1/q), (9)

where Kλ,μ is the Kostka–Foulkes polynomial (see [9, Sec. III.6]).
Now we use the well-known combinatorial description of the Kostka–Foulkes

polynomial due to Lascoux and Schützenberger [8]. For a two-row diagram λ,
their formula reduces to

Kλ,1N (q)=
∑

τ∈[λ]
qc(τ ), (10)

where [λ] is the set of standard Young tableaux of shape λ and c(τ ) is the charge
of a tableau τ ∈ TN , defined as the sum of i ≤ N − 1 such that in τ the element
i + 1 lies to the right of i (see [9]). But, obviously, for τ ∈ TN we have maj(τ )=
N (N−1)

2 − c(τ ). Then it follows from (9) and (10) that

dim Mk[i]=#{τ ∈[(n + k,n − k)] :maj(τ )= i}. (11)

The major index defines a grading in the space Hπk (spanned by the stan-
dard Young tableaux of shape (n + k,n − k)), and hence in the whole space XN =
∑n

k=0 M2k+1 ⊗ Hπk , which we equip with the standard inner product. We obtain the
following finite-dimensional analog of Theorem 1.
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PROPOSITION 1. There is a grading-preserving unitary isomorphism of sl2-modules
between (V ∗

N ,
˜deg) and (XN ,maj) such that the multiplicity space Mk is spanned by

the standard Young tableaux τ of shape (n + k,n − k) (and hence Mk[i] is spanned
by τ with maj(τ )= i).

Proof. Follows from the fact that the fusion product V ∗
N is isomorphic to (C2)⊗N

as an sl2-module and Equation (11).

Remarks. 1. Observe that the isomorphism from Proposition 1 is not unique.
2. The isomorphism from Proposition 1 determines an action of the symmetric

group SN on the space V ∗
N . It does not coincide with the original action of

SN on (C2)
⊗N

.

3. Embeddings and the limit. It is proved in [2] that there is an embedding jN :
V ∗

N → V ∗
N+2 equivariant with respect to the action of sl2 ⊗ (C[t−1]/t−n), and the

corresponding inductive limit V = lim(V ∗
N , jN ) is isomorphic to the basic represen-

tation L0,1 of the affine Lie algebra ̂sl2. This embedding satisfies

˜deg( jN x)= ˜deg(x)− (N +1). (12)

Since we are now considering sl2 ⊗C[t−1] instead of sl2 ⊗C[t], we should slightly
modify the previous constructions to take the minus sign into account. Namely,
instead of (8) we now have Mk =⊕i≥0Mk[−i], and the isomorphism of Proposi-
tion 1 identifies Mk[−i] with the space spanned by the tableaux τ of shape (n +
k,n − k) such that maj(τ )= i . Denote this isomorphism between V ∗

N and XN by
ρN . Observe that the only conditions we impose on ρN are as follows: (a) ρN is a
unitary isomorphism of sl2-modules and (b) ρN ◦ ˜deg =−maj.

Now, since L0,1  lim(V ∗
N , jN ), H� = lim(XN , iN ), and Proposition 1 holds, to

prove Theorem 1 it suffices to show that we can choose a sequence of isomor-
phisms ρN such that the diagram

V ∗
N

ρN−−−−→ XN
⏐

⏐

�
jN

⏐

⏐

�
iN

V ∗
N+2

ρN+2−−−−→ XN+2

is commutative for all N . We use induction on N . The base being obvious, assume
that we have already constructed ρN , and let us construct ρN+2.

We have V ∗
N+2 = jN (V ∗

N )⊕ ( jN (V ∗
N ))

⊥. On the first subspace, we set ρN+2(x) :=
iN (ρN ( j−1

N+2(x))). On the second one, we define it in an arbitrary way to satisfy the
desired conditions (a) and (b). The fact that this definition is correct and provides
us with a desired isomorphism between V ∗

N+2 and XN+2 follows from (12) and (5).
The theorem is proved.
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4. The Key Isomorphism in More Detail

Our aim in this section is to study the isomorphism from Theorem 1 in more
detail. For this, we first give necessary background on the Fock space realization
of the basic ̂sl2-module.

4.1. THE FOCK SPACE REALIZATION OF THE BASIC ̂sl2-MODULE

Let F be the fermionic Fock space constructed as the infinite wedge space over
the linear space with basis {uk}k∈Z ∪ {vk}k∈Z. That is, F is spanned by the semi-
infinite forms ui1 ∧ · · · ∧ uik ∧ v j1 ∧ · · · ∧ v jl ∧ uN ∧ vN ∧ uN−1 ∧ vN−1 ∧ · · ·, N ∈ Z,
i1 > · · · > ik > N , j1 > · · · > jl > N , and is equipped with the inner product in
which such monomials are orthonormal. Let φk be the exterior multiplication by
uk and ψk be the exterior multiplication by vk , and denote by φ∗

k , ψ∗
k the cor-

responding adjoint operators. Then this family of operators satisfies the canoni-
cal anticommutation relations (CAR). We consider the generating functions φ(z)=
∑

i∈Z
φi z−(i+1), φ∗(z)=∑

i∈Z
φ∗

i zi , and the same for ψ and ψ∗.
Let aφn and aψn be the systems of bosons constructed from the fermions {φk} and

{ψk}, respectively: aφn =∑

k∈Z
φkφ

∗
k+n for n �=0 and aφ0 =∑∞

n=1 φnφ
∗
n −∑∞

n=0 φ
∗−nφ−n ,

and similarly for aψ . They satisfy the canonical commutation relations (CCR), i.e.,
form a representation of the Heisenberg algebra A. Denote aφ(z)=∑

n∈Z
aφn z−(n+1),

and similarly for aψ .
Let V be the operator in F that shifts the indices by 1:

V (wi1 ∧wi2 ∧ . . .)= V0(wi1)∧ V0(wi2)∧ . . ., V0(ui )=ui+1, V0(vi )=vi−1.

The vacuum vector in F is �=u−1 ∧v−1 ∧u−2 ∧v−2 ∧ . . .. We also consider the
family of vectors

�0 =�, �2n = V −n�0, n ∈Z.

In the space F , we have a canonical representation of the affine Lie algebra ̂sl2 =
sl2 ⊗ C[t, t−1]⊕ Cc ⊕ Cd, which is given by the following formulas. Given x ∈ sl2,
denote X (z)=∑

n∈Z
xnz−(n+1). Then

E(z)=ψ(z)φ∗(z), F(z)=φ(z)ψ∗(z),

hn =aψ−n −aφ−n, d = h2
0

2
+

∞
∑

n=1

h−nhn, c =1.

We have F = H0 ⊗ K0 + H1 ⊗ K1, where H0  L0,1 and H1  L1,1 are the irre-
ducible level 1 highest weight ̂sl2-modules and K0 and K1 are the multiplicity
spaces. Observe also that e−(N+1)�−N =�−(N+2).

Note that the operators an = 1√
2

hn satisfy the CCR, i.e., form a system of free
bosons, or generate the Heisenberg algebra Ah . The vectors {�2n}n∈Z introduced
above are exactly singular vectors for this Heisenberg algebra: hk�m =0 for k>0,
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h0�m = m�m . The representation of Ah in H0 breaks into a direct sum of irre-
ducible representations:

H0 =
⊕

k∈Z

H0[2k], (13)

where H0[2k] is the charge 2k subspace, i.e., the eigenspace of h0 with eigen-
value 2k:

H0[2k]= {v∈H0 :h0v=2kv}=C[h0,h1, . . .]�2k .

Now, given a representation of the affine Lie algebra ̂sl2, we can use the Sug-
awara construction to obtain the corresponding representation of the Virasoro
algebra Vir. It can also be described in the following way. As noted above, the
operators an = 1√

2
hn form a system of free bosons. Given such a system, a rep-

resentation of Vir can be constructed as follows ([13]; see also [6, Ex. 9.17]):

Ln = 1
2

∑

j∈Z

a− j a j+n, n �=0; L0 =
∞
∑

j=1

a− j a j . (14)

Thus we obtain a representation of Vir in F and, in particular, in H0. In this rep-
resentation, the algebras generated by the operators of Vir and sl2 ⊂̂sl2 are mutual
commutants, and we have the decomposition

H0 =
∞

⊕

k=0

M2k+1 ⊗ L(1, k2), (15)

where M2k+1 is the (2k +1)-dimensional irreducible sl2-module and L(1, k2) is the
irreducible Virasoro module with central charge 1 and conformal dimension k2.

The charge k subspace H0[k] contains a series of singular vectors ξk,m of Vir
with energy (k +m)2:

Lnξk,m =0 for n =1,2, . . ., L0ξk,m = (k +m)2.

Let us use the so-called homogeneous vertex operator construction of the basic
representation of ̂sl2 ([5], see also [6, Sec. 14.8]). In this realization,

E(z)=−(z)+(z)z−h0 V −1, F(z)=+(z)−(z)zh0 V, (16)

where

±(z)= exp

⎛

⎝∓
∞
∑

j=1

z± j

j
h± j

⎞

⎠

and the operators ±(z) satisfy the commutation relation

+(z)−(w)=−(w)+(z)
(

1− z

w

)2
. (17)
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Using the boson–fermion correspondence (see [6, Ch. 14]), we can identify H0

with the space �⊗C[q,q−1], where � is the algebra of symmetric functions (see
[9]). In particular, consider the charge 0 subspace H[0]=H0[0], which is identified
with �. We can use the following representation of the Heisenberg algebra gener-
ated by {hn}n∈Z:

hn ↔2n
∂

∂pn
, h−n = pn, n>0, (18)

where p j are Newton’s power sums. Note that the representation (18) of Ah , and
hence the corresponding representation (14) of Vir, are not unitary with respect to
the standard inner product in �. To make it unitary, we should consider the inner
product in � defined by

〈pλ, pμ〉= δλμ · zλ ·2l(λ), (19)

where pλ are the power sum symmetric functions, zλ=∏

i imi mi ! for a Young dia-
gram λ with mi parts of length i , and l(λ) is the number of nonzero rows in λ.

Denote the singular vectors of Vir in H[0] by ξm := ξ0,m . According to a result
by Segal [10], in the symmetric function realization (18),

ξn ↔ c · s(nn), (20)

where s(nn) is the Schur function indexed by the n ×n square Young diagram and
c is a numerical coefficient.

4.2. FURTHER ANALYSIS OF THE KEY ISOMORPHISM

Comparing the structure (4) of the serpentine representation with (15), we obtain
the following result.

COROLLARY 1. The space H�k of the k-serpentine representation of the infinite
symmetric group has a natural structure of the Virasoro module L(1, k2).

Our aim is to study this Virasoro representation in �k (or, which is equiva-
lent, the corresponding representation of the infinite symmetric group in the Fock
space). In particular, from the known theory of the basic module L0,1, we imme-
diately obtain the following result.

COROLLARY 2. In the above realization of the Virasoro module L(1, k2), the
Gelfand–Tsetlin basis of H�k (which consists of the infinite two-row Young tableaux
tail-equivalent to τk) is the eigenbasis of L0, and the eigenvalues are given by the sta-
ble major index r :

L0τ = r(τ )τ.
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Now we see that the isomorphism in Theorem 1 is in fact defined up to the
commutant of L0 in each �k .

Let ω−2k be the lowest vector in M2k+1. Then a natural basis of V is {em
0 ω−2k ⊗

τ : m = 0,1, . . .,2k, τ ∈ Tk}. Denoting Vk = M2k+1 ⊗ H�k and Vk[0] = {v ∈ Vk : h0v=
0}, we have Vk[0]= ek

0ω−2k ⊗ H�k , so that we may identify Vk[0] with H�k via the
correspondence

c(t) · ek
0ω−2k ⊗ t ↔ t,

where c(t) is a normalizing constant. On the other hand, it is shown in [2] that
V ∗

2n  C[e0, . . ., e−(2n−1)]�−2n ⊂ F as an sl2 ⊗ (C[t−1]/t−2n)-module, and the limit
space V coincides with H0. Under this correspondence, the charge 0 subspace H[0]
is identified with V[0]= {v∈V :h0v=0}. Thus we have

H[0] H�[0]=
∞

⊕

k=0

H�k , (21)

where H�[0] is the space spanned by all serpentine tableaux, which is the space of
the countable sum of the k-serpentine representations �k of SN without multiplic-
ities, and the following corollary holds.

COROLLARY 3. The space H�[0] has a structure of an irreducible representation
of the Heisenberg algebra A.

Now, using results of [2], one can easily prove the following lemma.

LEMMA 1. A basis in F2n =C[e0, . . ., e−(2n−1)]�−2n is

{ei0
0 ei1

−1. . .e
i2n−1
−(2n−1) :0≤ k ≤2n − (i0 +· · ·+ i2n−1)}�−2n .

In particular, a basis of F2n[0]= F2n ∩H[0] is

{
∏

ei0
0 ei1

−1. . .e
in−n : i0 + i1 +· · ·+ in =n

}

�−2n . (22)

On the other hand, as mentioned above, H[0] can be identified with the alge-
bra of symmetric functions � via (18). Denote by � the obtained isomorphism
between H�[0] and �, which thus associates with every serpentine tableau τ ∈ T
a symmetric function �(τ)∈� such that r(τ )=deg�(τ).

PROPOSITION 2. Under the isomorphism �, the principal tableaux correspond to
the Schur functions with square Young diagrams:

�(τk)= const · s(kk).

Proof. Follows from Segal’s [10] result (20), since it is not difficult to see that the
singular vector of Vir in Vk[0] is just ek

0ω−2k ⊗ τk .
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Denote by T (N ) the (finite) set of infinite two-row tableaux that coincide with
some τn , n =0,1, . . ., from the N th level.

PROPOSITION 3. Let H (N )
� be the subspace in H�[0] spanned by all τ ∈ T (N ).

Then

�(H (2k)
� )=�k×k,

where �k×k is the subspace in � spanned by the Schur functions indexed by Young
diagrams lying in the k × k square.

Proof. From all the above identifications, H (2k)
� ↔ F2k[0]. Now the claim follows

from the result proved in [3] that in the symmetric function realization F2k[0] cor-
responds to �k×k .

In the next theorem, we refine this result, giving an explicit formula for the
Schur basis in �k×k in terms of the basis (22) in H (2k)

�  F2k[0]. In fact, we would
like to have an explicit formula for � or �−1, expressing, say, a Schur function
in terms of serpentine tableaux. At the moment we cannot provide such a general
formula, but the theorem below is a step toward solving this problem, reducing it
to describing the action of the operators e−m in the space of serpentine tableaux.
Besides, Propositions 2 and 3 can easily be derived from formula (23), the former
by taking ν= (kk) and the latter by counting the dimensions.

THEOREM 2. In the symmetric function realization, the correspondence between
the Schur function basis in �k×k and the basis (22) in H (2k)

�  F2k[0] is given by

sν =
∑

μ=(0r0 1r1 2r2 ...)⊂(kk )

Kνμ
∏k

j=0 r j !
e−(k−μ1). . .e−(k−μk )�−2k, ν⊂ (kk), (23)

where Kλμ are Kostka numbers.

Proof. We generalize Wasserman’s [14] proof of Segal’s result (20) (a similar
computation is also given in an earlier paper [1]).

Let 0≤ i1, . . ., ik ≤ k. Then, obviously,

e−i1 . . .e−ik�−2k =
⎡

⎣

k
∏

j=1

z
i j −1
j

⎤

⎦ E(zk). . .E(z1)�−2k,

where by [monomial]F(z1, . . ., zm) we denote the coefficient of this monomial in
F(z1, . . ., zm) (in particular, [1]F(z1, . . ., zm) is the constant term of F). Now, using
the representation (16), the commutation relation (17), and the obvious facts that
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V −k�−2k =�0 and +(z)�0 =�0, we obtain

E(zk). . .E(z1)�−2k =
k

∏

j=1

z2(k− j)
j

∏

1≤ j<i≤k

(

1− zi

z j

)2

−(zk). . .−(z1)�0.

Observe that, in view of (18) and the well-known fact from the theory of symmet-
ric functions, −(z) is exactly the generating function of the complete symmetric
functions. Hence, expanding the product −(zk). . .−(z1)�0 by the Cauchy iden-
tity ([9, I.4.3]) and making simple transformations, we obtain

E(zk). . .E(z1)�−2k = (−1)k(k−1)/2
k

∏

j=1

zk−1
j aδ(z)aδ(z

−1)
∑

λ: l(λ)≤k

sλ(z
−1)sλ,

where

aδ(z)=
∏

1≤i< j≤k

(zi − z j )=det[zk− j
i ]1≤i, j,≤k

is the Vandermonde determinant, aδ(z−1) is the similar determinant for the vari-
ables z−1 = (z−1

1 , . . ., z−1
k ), l(λ) is the length of the diagram λ (the number of

nonzero rows), sλ(z−1) is the Schur function calculated at the variables z−1, and
sλ is the Schur function as an element of � identified with H[0]. Thus we have

e−i1 . . .e−ik�−2k = (−1)k(k−1)/2 · [1]
⎛

⎝

k
∏

j=1

z
k−i j
j aδ(z)aδ(z

−1)
∑

λ

sλ(z
−1)sλ

⎞

⎠ .

For convenience, set ẽp := e−(k−p), 0≤ p ≤ k. Given 0≤α1, . . ., αk ≤ k, we have

ẽα1 . . .̃eαk�−2k =[1]
⎛

⎝

k
∏

j=1

z
α j
j aδ(z)

∑

l(λ)≤k

aλ+δ(z−1)sλ

⎞

⎠ , (24)

where aλ+δ(x)= det[xλ j +k− j
i ]1≤i, j≤k = sλ(x)aδ(x). Consider a Young diagram μ=

(μ1, . . .,μk)= (0r0 1r1 2r2 . . .). Let us sum (24) over all different permutations α =
(α1, . . ., αk) of the sequence (μ1, . . .,μk). Note that the operators e j commute with
each other, so that the left-hand side does not depend on the order of the factors.
In the right-hand side,

∑

α

∏

z
α j
j = mμ(z), a monomial symmetric function. Thus

we have

k!
∏k

j=0 r j !
ẽμ1 . . .̃eμk =[1]

⎛

⎝mμ(z)aδ(z)
∑

l(λ)≤k

aλ+δ(z−1)sλ

⎞

⎠ . (25)

Let ν be a Young diagram with at most k rows and at most k columns, i.e., ν⊂
(kk). We have
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sν(z)=
∑

μ

Kνμmμ(z), (26)

where Kνμ are Kostka numbers. It is well known that Kνμ=0 unless μ≤ν, where
≤ is the standard ordering on partitions: μ≤ν ⇐⇒ μ1 +· · ·+μi ≤ν1 +· · ·+νi for
every i ≥ 1. In particular, μ1 ≤ ν1 ≤ k. Besides, since we consider only k nonzero
variables z1, . . ., zk , it also follows that mμ(z)= 0 unless l(μ)≤ k. Thus the sum
in (26) can be taken only over diagrams μ⊂ (kk), for which Equation (25) holds.
Multiplying this equation by Kνμ and summing over μ yields

∑

μ=(0r0 1r1 2r2 ...)⊂(kk )

k!
∏k

j=0 r j !
Kνμẽμ1 . . .̃eμk =[1]

⎛

⎝sν(z)aδ(z)
∑

l(λ)≤k

aλ+δ(z−1)sλ

⎞

⎠ .

By the orthogonality relations, the right-hand side is equal to k!sν , and the desired
formula (23) follows.

4.3. EXAMPLES

In this section, we present the results of computing �(τ) for the serpentine tableaux
with r(τ ) ≤ 4 (note that although the conditions of Theorem 1 do not deter-
mine the isomorphism uniquely, these relations hold for any isomorphism satisfy-
ing them) in terms of Newton’s power sums pk . We write down only the “non-
trivial” part of a tableau, meaning that it should be continued up to an infinite
tableau in the “serpentine” way. We also omit the normalizing coefficients of �(τ),
which are their norms in the inner product (19).

r(τ) τ Φ(τ) r(τ) τ Φ(τ)

up to a constant up to a constant

0 τ0 1 = s∅ 4 τ2 = 1 2 3 4 p4
1 + 3p2

2 − 4p1p3 = s(22)

1 τ1 = 1 2 p1 = s(1) 4
1 3 4
2 5 6 p4

1 − 3p2
2 + 2p1p3

2
1 2 4
3 p2 4

1 2 4 6
3 5 7 8 p4

1 + 12p2
2 + 32p1p3

2
1 2
3 4 p2

1 4
1 3 4 6
2 5 p2

1p2 − p4

3
1 2 3
4 p3

1 − p3 4
1 2 4 6 8
3 5 7 p2

1p2 + 4p4

3
1 2 4 6
3 5 p3

1 + 8p3

3
1 2 4
3 5 6 p1p2
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