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Abstract. In this note, we introduce the generalization of opers (superopers) for a certain
class of superalgebras with a root system, which admits a basis of odd roots. We study in
detail S P L2-superopers and in particular derive the corresponding Bethe ansatz equations,
which describe the spectrum of the osp(1|2) Gaudin model.
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1. Introduction

Opers are necessary ingredients in the study of the geometric Langlands correspon-
dence (see e.g. [13]). They also play important role in many aspects of mathemati-
cal physics. For example, opers are very important in the theory of integrable sys-
tems, and recently, became a necessary component even in the modern quantum
field theory approaches to the knot theory (see e.g. [28]).

Originally, opers were studied locally in the seminal paper of Drinfeld and
Sokolov [9] as gauge equivalence classes of certain differential operators with val-
ues in some simple Lie algebra, which are the L-operators of the generalized
Korteweg-de Vries (KdV) integrable models. Later, Beilinson and Drinfeld general-
ized this local object making it coordinate independent [2]. Namely, a G-oper on
a smooth curve �, where G is a simple algebraic group of the adjoint type with
the Lie algebra g, is a triple (F ,FB,∇), where F is a G-bundle over �, FB is its
B-reduction with respect to Borel subgroup B, and ∇ is a flat connection, which
behaves in a certain way with respect to FB . For example, in the case of PGL2-
oper, this condition just means that the reduction FB is nowhere preserved by this
connection. Moreover, it appears, following the results of Drinfeld and Sokolov,
that the space of G-opers is equivalent to a certain space of scalar pseudodiffer-
ential operators. In the PGL2 case, the resulting space of scalar operators is just
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a family of Sturm–Liouville operators and the connection transformation proper-
ties allow to consider them on all � as projective connections.

A really interesting story starts when we allow opers to have regular singular-
ities. It turns out that the opers on the projective line can be described via the
Bethe ansatz equations for the Gaudin model corresponding to the Langlands dual
Lie algebra [12,14]. An important object on the way to understand this relation
is the so-called Miura oper, which was introduced by E. Frenkel [14]. A Miura
oper is an oper with one extra constraint: the connection preserves another B-
reduction of F , which we call F ′

B . The space of the Miura opers, associated to
a given G-oper with trivial monodromy, is isomorphic to the flag manifold G/B.
If the reduction F ′

B corresponds to the point in a big cell of G/B, then such a
Miura oper is called generic. It was shown by E. Frenkel that any Miura oper is
generic on the punctured disc and that there is an isomorphism between the space
of generic Miura opers on the open neighbourhood with certain H -bundle connec-
tions (H = B/[B, B]) [14]. The map from H -connections to G-opers is just a gen-
eralization of the standard Miura transformation in the theory of KdV integrable
models.

By means of the above relation with the H -connections, it was proved for
PGL2-oper in [12] and then generalized to the higher rank in [10,14] that the
eigenvalues of the Gaudin model for a Langlands dual Lie algebra gL can be
described by the G-opers on CP1 with given regular singularities and trivial mon-
odromy. Namely, the consistency conditions for the H -connections underlying such
opers coincide with the Bethe ansatz equations for the Gaudin Model.

In this article, we are trying to generalize some of the above notions and results
to the case of superalgebras. We define an analogue of the oper in the case of
supergroups which allow the pure fermionic family of simple roots on a super
Riemann surface, following some local considerations of [8,16] and [18]. We call
such objects superopers, and in some sense they turn out to be “square roots”
of standard opers. Unfortunately for all other superalgebras, the resulting for-
malism allows only locally defined objects (on a formal superdisc). We study in
detail the simplest nontrivial case of superoper, related to the group S P L2 (see e.g.
[6]), related to superprojective transformations, and explicitly establish the relation
between the osp(1|2) Gaudin model studied in [17] and the S P L2-oper on super
Riemann sphere with given regular singularities.

In Section 2 we explain the relation between super projective structures on super
Riemann surface and the supersymmetric version of the Sturm–Liouville operator.
Then, we relate it to the flat connection on S P L2-bundle which will give us the
first example of superoper.

In Section 3 we use this experience to generalize the notion of superoper to
the case of higher rank simple supergroups. However, only the supergroups which
permit a pure fermionic system of simple roots allow us to construct a glob-
ally defined object on a super Riemann surface. We define Miura superopers and
superopers with regular singularities in Section 4. There we study the consistency
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conditions for the superopers on the superconformal sphere and derive the corre-
sponding Bethe equations. We compare the results with the osp(1|2) Gaudin model
and find that the Bethe ansatz equations coincide with the “body” part of the con-
sistency condition for corresponding S P L2 Miura superopers.

Some remarks and open questions are given in Section 5.

2. Superprojective Structures, Super Sturm–Liouville Operator
and Osp(1|2) Superoper

2.1. SUPER RIEMANN SURFACES AND SUPERCONFORMAL TRANSFORMATIONS

For the general information about supermanifolds and superschemes one should
consult [21] and [22]. The definition of supercurve we are using in this article fol-
lows [5].

We remind that a supercurve of dimension (1|1) over some Grassmann algebra
S (which is fixed throughout this paper) is a pair (X,OX ), where X is a topolog-
ical space and OX is a sheaf of supercommutative S-algebras over X such that
(X,Ored

X ) is an algebraic curve (where Ored
X is obtained from OX by quoting out

nilpotents) and for some open sets Uα⊂ X and some linearly independent elements
{θα} we have OUα = Ored

Uα
⊗ S[θα]. These open sets Uα serve as coordinate neigh-

bourhoods for supercurves with coordinates (zα, θα). The coordinate transforma-
tions on the overlaps Uα ∪Uβ are given by the following formulas zα= Fαβ(zβ, θβ),
θα=�αβ(zβ, θβ), where Fαβ and �αβ are even and odd functions, correspondingly.
A super Riemann surface � over some Grassmann algebra S (see [3,20,29] for
good review) is a supercurve of dimension 1|1 over S, with one more extra struc-
ture: there is a subbundle D of T� of dimension 0|1, such that for any nonzero
section D of D on an open subset U of �, D2 is nowhere proportional to D, i.e.
we have the exact sequence:

0→D → T�→D2 →0. (1)

One can pick the holomorphic local coordinates in such a way that this odd vector
field will have the form f (z, θ)Dθ , where f (z, θ) is a nonvanishing function and

Dθ =∂θ + θ∂z, D2
θ =∂z . (2)

Such coordinates are called superconformal. The transformation between two
superconformal coordinate systems (z, θ) and (z′, θ ′) is determined by the condi-
tion that D should be preserved, i.e.:

Dθ = (Dθ θ ′)Dθ ′ , (3)

so that the constraint on the transformation coming from the local change of coor-
dinates is Dθ z′ −θ ′ Dθ θ ′ =0. An important nontrivial example of a super Riemann
surface is the Riemann super sphere SC∗: there are two charts (z, θ), (z, θ ′) so that
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z′ =−1
z
, θ ′ = θ

z
. (4)

There is a group of superconformal transformations, usually denoted as S P L2

which acts transitively on SC∗ as follows:

z → az +b

cz +d
+ θ γ z + δ

(cz +d)2
,

θ→ γ z + δ
cz +d

+ θ 1+ 1
2δγ

cz +d
,

(5)

where a,b, c,d are even, ad − bc = 1, and γ, δ are odd. The Lie algebra of this
group is isomorphic to osp(2|1).

Let us introduce two more notions which we will use in the following. From
now on let us call the sections of Dn the supercon f ormal f ields of dimension
−n/2. In particular, taking the dual of the exact sequence (1), we find that a bun-
dle of superconformal fields of dimension 1 (i.e. D−2) is a subbundle in T ∗�. Con-
sidering the superconformal coordinate system, a nonzero section of this bundle is
generated by η=dz − θdθ , which is orthogonal to Dθ under the standard pairing.

At last, we introduce one more notation. For any element A which belongs to
some free module over S[θ ], where θ is a local odd coordinate, we denote the body
of this element (i.e. A is stripped of the dependence on the odd variables) as Ā.

2.2. SUPERPROJECTIVE STRUCTURES AND SUPERPROJECTIVE CONNECTIONS

Let us at first define what a superprojective connection is. We consider the follow-
ing differential operator, defined locally with coordinates (z, θ):

D3
θ −ω(z, θ). (6)

The following proposition holds.

PROPOSITION 2.1. [25] Formula (6) defines the operator L, such that

L :D−1 →D2 (7)

iff the transformation of ω on the overlap of two coordinate charts (z, θ) and (z′, θ ′)
is given by the following expression:

ω(z, θ)=ω(z′, θ ′)(Dθ θ ′)3 +{θ ′; z, θ} (8)

where

{θ ′; z, θ}= ∂2
zθ

′

Dθ θ
−2

∂zθD3
θ θ

′

(Dθ θ ′)2
(9)

is a supersymmetric generalization of Schwarzian derivative.
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One can show that the only coordinate transformations for which the super
Schwarzian derivative vanishes are the fractional linear transformations (5).

Let us consider the covering of � by open subsets, so that the transition func-
tions are given by (5). Two such coverings are considered equivalent if their
union has the same property of transition functions. The corresponding equiva-
lence classes are called superprojective structures.

It appears that like in the purely even case, there is a bijection between super
projective connections and super projective structures. For a given super projective
structure one can define a superprojective connection by assigning operator D3

θ in
every coordinate chart. From Proposition 2.1 we find that the resulting object is
defined globally on �. On the other hand, given a super projective connection on
�, one can consider the following linear problem:

(
D3
θ −ω(z, θ)

)
ψ

(
z, θ

)
=0. (10)

From the results of [1] we know that this equation has three independent solutions:
two even x(z, θ), y(z, θ) and one odd ξ(z, θ). Defining C = y/x , α= ξ/x , we find
that ω(z, θ) is expressed via super Schwarzian derivative, i.e. w(z, θ)={α; θ, z} and
the consistency conditions on C and α are such that C can be represented in terms
of α in the following way:

C = cA +γ Aα+ δα, (11)

where A is such a function that (z, θ)→ (A, α) is a superconformal transformation.
In a different basis (A, α) will be transformed via S P L2 (5) and hence (A, α) form
natural coordinates for a projective structure on �. Therefore, we have the follow-
ing proposition (see also [15], Theorem 3.14).

PROPOSITION 2.2. There is a bijection between the set of superprojective struc-
tures and the set of superprojective connections on �.

2.3. CONNECTIONS FOR VECTOR BUNDLES OVER SUPER rIEMANN SURFACES

Let us consider a vector bundle V over the super Riemann surface with the fiber
C

m|n
S . Let E0(�,V ) be the space of sections on V over � and let E1(�,V ) be the

space of 1-form valued sections. As usual, the connection is a differential operator

dA( f s)=d f ⊗ s + (−1)| f | f dAs, (12)

where f is a smooth even/odd function on � and s ∈ E0(�,V ). Locally, in the
chart (z, θ) the connection has the following form:

dA =d + A =d + (ηAz +dθ Aθ )+ (η̄Az̄ +dθ̄ Aθ̄ )

= (∂+ηAz +dθ Aθ )+ (∂̄+ η̄Az̄ +dθ̄ Aθ̄ )

= (ηD A
z +dθD A

θ )+ (η̄D A
z̄ +dθ̄D A

θ̄
). (13)
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We note that we used here the fact that d=∂+ ∂̄ and ∂=η∂z +dθDθ . The expres-
sion for the curvature is

F =d2
A =dθdθFθθ +ηdθFzθ +dθ̄dθ̄Fθ̄ θ̄ + η̄dθ̄Fz̄θ̄

+ηη̄Fzz̄ +ηdθ̄Fzθ̄ + η̄dθFz̄θ +dθdθ̄Fθ θ̄ , (14)

where Fθθ = −D A
θ

2 + D A
z , Fzθ = [D A

z , D A
θ ], Fz,z̄ = [D A

z , D A
z̄ ], Fzθ̄ = [D A

z , D A
θ̄
], Fθ θ̄ =

−[D A
θ , D A

θ̄
], etc.

It appears that if the connection dA offers partial flatness, which implies Fθθ =
Fzθ = Fθ̄ θ̄ = Fz̄θ̄ =0, then there is a superholomorphic structure on V (i.e. transition
functions of the bundle can be made superholomorphic) [26]. We are interested in
the flat superholomorphic connections. In this case, since Fθθ = 0, the connection
is fully determined by the D A

θ locally. In other words, it is determined by the fol-
lowing odd differential operator, which from now on will denote ∇ and call long
superderivative:

∇ = Dθ + Aθ (z, θ), (15)

which gives a map: D→ EndV so that the transformation properties for Aθ are as
follows: Aθ → g Aθg−1 − Dθgg−1, where g is a superholomorphic function provid-
ing change of trivialization.

2.4. S P L2-OPERS

In this subsection, we give a description of the first nontrivial superoper. Sup-
pose we have a superprojective structure on �. Naturally we have a structure of
a flat S P L2-bundle F over �, since on the overlaps there is a constant map to
S P L2. Let us study the corresponding flat connection on �. Since S P L2 is a
group of superconformal automorphisms of SC∗, one can form an associated bun-
dle SC∗

F = F ×S P L2 SC∗. This bundle has a global section which is just given by
the superprojective coordinate functions (z, θ) on �. We note that it has nonvan-
ishing (super)derivative at all points.

One can view SC∗ as a flag supermanifold. Namely, consider the group S P L2

acting in C
2|1 = span(e1, ξ, e2), where we put the odd vector in the middle. Then,

e1 is stabilized by the Borel subgroup of upper triangular matrices. Therefore, one
can identify SC∗ with S P L2/B. Since we have a nonzero section of SC∗

F , we have
a B-subbundle FB of a G-bundle, where G stands for S P L2. Hence, a superpro-
jective structure gives the flat S P L2-bundle F with a reduction FB . However, there
is one more piece of data we can use: it is the condition that the (super)derivative
of the section of SC∗

F is nowhere vanishing. It means that the flat connection on
F does not preserve the B-reduction anywhere. Let us figure out which conditions
does it put on the connection if we choose a trivialization of F induced from the
FB trivialization. As we discussed above, the connection is determined by the fol-
lowing odd differential operator:
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∇ = Dθ +
⎛
⎝
α(z, θ) b(z, θ) β(z, θ)

−a(z, θ) 0 b(z, θ)
γ (z, θ) a(z, θ) −α(z, θ),

⎞
⎠ , (16)

so that the matrix is in the defining representation of the Lie superalgebra of
S P L2, namely osp(1|2). This operator and its square describe even and odd direc-
tions for the tangent vector to SC∗. Since we have the condition that both of
them are nonvanishing, and identifying tangent space with osp(1|2)/b (where b is
the Borel subalgebra), we obtain that a is nonvanishing. It is possible to make
γ = 0, by redefining ∇ by adding μ(∇)2 with appropriate odd function μ, which
just corresponds to the choice of superconformal coordinates on SC∗. We call such
a triple (F ,FB,∇) a superoper. We notice that taking the square of the odd opera-
tor ∇, reducing such even operator from � to the underlying curve �0 and getting
rid of all the odd variables, we obtain the oper connection for the PGL2-bundle.
Thus superopers can be thought about as “square roots” of opers.

Using B-valued gauge transformations one can bring ∇θ to the canonical form:

∇ = Dθ +
⎛
⎝

0 0 ω(z, θ)
−1 0 0
0 1 0

⎞
⎠ . (17)

Therefore, on a superdisc with coordinate (z, θ) the space of S P L2 superopers can
be identified with the space of differential operators D3

θ −ω(z, θ). We will see in
the next section that the coordinate transformations of ω are the same as in Propo-
sition 2.1.

Therefore, we see that there is a full analogy with the bosonic case, where the
space of PGL2-superopers was identified with the set of projective connections or
equivalently with the set of projective structures.

Let us summarize the results of this section in the following theorem.

THEOREM 2.3. There are bijections between the following three sets on a super
Riemann surface �:

(i) Superprojective structures
(ii) Superprojective connections

(iii) S P L2-opers.

3. Superopers for Higher Rank Superalgebras

3.1. THE DEFINITION OF SUPEROPERS

In this section we generalize the results of the previous section to higher rank.
Suppose G is a simple algebraic supergroup [4] of adjoint type over some Grass-
mann algebra S (which, as we remind, is fixed throughout this paper), B is its
Borel subgroup, N = [B, B], so that for the corresponding Lie superalgebras we
have n ⊂ b ⊂ g. Note that g = S ⊗ gred, where gred is a simple Lie superalgebra
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over C. As usual, H = B/N with the Lie algebra h and there is a decomposi-
tion: g=n− ⊕h⊕n+. The corresponding generators of simple roots will be denoted
as usual: e1, . . . , el ; f1, . . . , fl . We are interested in the superalgebras, which have
a pure fermionic system of simple roots, namely psl(n|n), sl(n + 1|n), sl(n|n +
1), osp(2n ± 1|2n), osp(2n|2n), osp(2n + 2|2n) with n ≥ 0 and D(2,1;α) with α =
0,±1. Moreover, a necessary ingredient for our construction is the presence of
the embedding of superprincipal osp(1|2) subalgebra [7,11], namely that for χ−1 =∑

i fi and ρ̌ = ∑
i ω̌i , where ω̌i are fundamental coweights, there is such χ1 that

makes a triple (χ1, χ−1, ρ̌) an osp(1|2) superalgebra. Almost all series of superal-
gebras from the list above allow such an embedding; however, psl(n|n) does not
and we do not consider this series in this article.

As in the standard purely even case we define an open orbit O⊂[n,n]⊥/b con-
sisting of vectors, stabilized by N and such that all the negative root components
of these vectors with respect to the adjoint action of H are nonzero.

Let us consider a principal G-bundle F over X , which can be a super Riemann
surface � or a formal superdisc SDx = SpecS[θ ][[z]], or a punctured superdisc
DS

x
× =SpecS[θ ]((z)) (see e.g. [19,27] for the definitions of the spectra of supercom-

mutative rings), and its reduction FB to the Borel subgroup B. We assume that it
has a flat connection determined by a long superderivative ∇ [see (15)]. According
to the example, considered in Section 2 we do not want ∇ to preserve FB . How-
ever, in the higher rank case this is not enough, so we have to specify extra con-
ditions. Namely, suppose ∇′ is another long superderivative, which preserves FB .
Then we require that the difference ∇′ −∇ has a structure of superconformal field
of dimension 1/2 with values in the associated bundle gFB . We can project it onto
(g/b)FB ⊗D−1. Let us denote the resulting (g/b)FB -valued superconformal field as
∇/FB . Now we are ready to define the superoper, which is a natural generalization
of the oper.

DEFINITION 3.1. A G − superoper on X (where X is stands for super Riemann
surface or formal superdisc or punctured superdisc) is the triple (F ,FB,∇), where
F is a principle G-bundle, FB is its B-reduction and ∇ is a long superderivative
on F , such that ∇/FB takes values in OFB .

Therefore, locally on the open subset U , with coordinates (z, θ), with respect to
the trivialization of FB , the structure of the long superderivative is

Dz,θ +
l∑

i=1

ai (z, θ) fi +μ(z, θ), (18)

where each ai (z, θ) is an even nonzero function (meaning that these functions have
nonzero body and are invertible) and μ(z, θ) is an odd b-valued function. Under
the change of trivialization this operator is transformed under the action of gauge
transformation from the group B(R), where R are either analytic or algebraic func-
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tions on U . Hence, the open subset U , the space of G-superopers on U , which will
be denoted as sOpG(U ), can be characterized as the space of all odd operators of
type (18) modulo gauge transformations from the group B(R).

3.2. COORDINATE TRANSFORMATIONS AND OTHER PROPERTIES

Let us notice that one can use the H -action to make the operator (18) look as
follows:

Dθ +
l∑

i=1

fi +μ(z, θ), (19)

where μ∈ b(R). Therefore, the space sOpG(U ) can be considered as the quotient
of the space of operators of the form (19) [denoted as s̃OpG(U )] by the action of
N (R). As in the pure bosonic case, ρ̌ gives a principal gradation (for those classes
of superalgebras we consider), i.e. we have a direct sum decomposition b=⊕i≥0bi .
Moreover, let us remind that we denoted χ−1 =∑l

i=1 fi and there exists a unique
element χ1 of degree 1 in b, such that χ±1, ρ̌ generate osp(1|2) superalgebra. Let
χ̃k (k = 1, . . . , l) (which can be either odd or even), so that χ̃2 = χ2

1 be the basis
of the space of the ad(χ1) invariants. We note that the decompositions of g with
respect to the adjoint action of such osp(1|2) triple were studied in [11]. Based on
that, we have the following Lemma which is proved in a similar way as in [9] (see
also Lemma 4.2.2 of [13]).

LEMMA 3.1. The gauge action of N (R) on s̃OpG(U ) is free and each gauge equiv-
alence class contains a unique operator of the form (19) with

μ(θ, z)=
l∑

i=1

gi (z, θ)χ̃i , (20)

where gi has opposite parity to χi .

The sketch of the proof is as follows. We use the fact that bi =[χ−1,bi+1]⊕ Vi

where Vi is the subspace of degree i of the space V of all χ−1-invariants. Based
on this fact, one can apply gauge transformation with exp adK, where K ∈ n(R)
to (19). Then decomposing μ and K according to the principle gradation one can
solve the recursion equation for K , so that μ-part of long derivative after the
transformation reduces to (20).

Now let us discuss the transformation properties of operators s̃OpG(U ). Assume
we have a superconformal coordinate change (z, θ) = ( f (w, ξ), α(w, ξ)). Then
according to the transformations of the long derivative we have

∇ = Dξ + (Dξα)(w, ξ)χ−1 + (Dξα)(w, ξ)(μ( f ((w, ξ), α(w, ξ)). (21)
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Considering 1-parameter subgroup C
×
S

1|1 → H which corresponds to ρ̌, applying
adjoint transformation with ρ̌(Dξα) we obtain:

Dξ +χ−1 + (Dξα)(w, ξ)Adρ̌(Dξ α) ·μ( f (w, ξ), α(w, ξ))− ∂wα(w, ξ)

Dξα(w, ξ)
ρ̌. (22)

This gives us the gluing formula for superopers on any super Riemann surface �.
Consider the H -bundle D−ρ̌ on �, which is determined by the property that the

line bundle D−ρ̌ ×Cλ is D−〈ρ̌,λ〉, where λ is from the lattice of characters and Cλ

is the corresponding 1-dimensional representation.
The coordinate transformation formulas for superoper connection immediately

lead to another characterization of this bundle via FB-reduction. The following
statement is the supersymmetric version of Lemma 4.2.1 of [13].

LEMMA 3.2. The H-bundle FH =FB ×B H =FB/N is isomorphic to D−ρ̌ .

Now one can derive the transformation properties for the canonical representa-
tives of opers from Lemma 3.1, which will provide the transformation formulas for
g1, . . . , gn . To do that, one needs to apply to the operator (19) the gauge transfor-
mation of the form

exp
(
κχ1 − 1

2
(Dκ)[χ1, χ1]

)
ρ̌(Dξα), (23)

where κ= ∂wα(w,ξ)
Dξ α

. Then we have that

g̃1(w, ξ)= g1(w, ξ)(Dξα)
2,

g̃2(w, ξ)= g2(w, ξ)(Dξα)
3 +{α;w, ξ}, (24)

g̃ j (w, ξ)= g j (w, ξ)(Dξα)
d j +1, j >2.

Therefore (23) are transition functions for FB and F bundles.

Remark. Note that the g1-term is absent in the osp(1|2); however, it often appears
in the higher rank. The first example is sl(1|2)∼=osp(2|2).

The formulas (24) give the following description of the space of superopers:

sOpG(�)
∼= s Proj (�)×⊕l

j=1, j =2�(�,D−d j −1), (25)

where s Proj (�) stands for superprojective connections on �.
In the previous section we indicated that in the osp(1|2) one can introduce the

oper related to a superoper, by considering ∇2, then stripping it from the θ and S
dependence, we obtain that the resulting ∇2 has all the needed properties of sl(2)
oper on the curve X which is a base manifold for �.

A similar construction is possible in the higher rank case. Let 0G be the reduc-
tive group, which is a base manifold for G. Due to the structure of the coordinate
transformations we derived above, we find out that indeed ∇2 =∇2 defines an oper
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on X . We refer to this object as 0G-oper, associated with the G-superoper, which
we will denote as triple (0F,∇2,0FB), where 0F and 0FB denote the appropriate
purely even reductions of the principal bundles.

4. Superopers with Regular Singularities, Miura Superopers
and Bethe Ansatz Equations

4.1. SUPEROPERS WITH REGULAR SINGULARITIES

Consider a point x on the superc Riemann surface � and the formal superdisc
SDx around that point with the coordinates (z, θ). We define a G-superoper with
regular singularity on SDx as an operator of the form

Dθ +
∑

ai (z, θ) fi +
(
μ1(z)+ θ

z
μ0(z)

)
, (26)

modulo the B(Kx )-transformations (Kx =C[θ ]((z))), where ai (z, θ)∈Ox are nowhere
vanishing and invertible, μi (z, θ) ∈ b(Kx ) (i = 0,1), such that the bodies of
μi (z), i.e. μi ∈ bred(Ored

x ). As before, one can eliminate ai -dependence via H -
transformations; therefore, we can talk about N (Kx ) equivalence class of operators
of the type (26) with ai = 1. Let us denote by sOpRS

G (SDx ) the space of super-
opers with regular singularity. Clearly, we have the embedding: sOpRS

G (SDx ) ⊂
sOpG(SD×

x ).
The 0G-oper, corresponding to G-superoper (26), is the oper with regular singu-

larity. It has the following form:

∂+χ2
−1 +[χ−1,μ1]+ (μ1)

2 + 1
z

(
μ0

)
, (27)

which can be transformed to the standard form via the gauge transformation by
means of ρ

2 (z):

∂z + 1
z

(
χ2

−1 − ρ̌

2
+ Ad ρ̌

2 (z)
· μ̄0

)
+v(z), (28)

where v(z) is regular.
Denoting −λ̌ the projection of μ0 on h, we find that the residue of this differ-

ential operator is equal to χ2
−1 − λ− 1

2 ρ̌, however since this is an oper, only the

corresponding class in h/W is well defined, and we denote it as
(

−λ− 1
2 ρ̌

)
W

, i.e.

this oper belongs to OpRS
G (Dx )λ̌, see e.g. [12].

Let us refer to the space of superopers with regular singularity such that μ̄0(0)=
λ̌, as sOpRS

G (Dx )λ.
If we consider the representation V of G one can talk about a system of differ-

ential equations ∇ ·φV (z, θ) and their monodromy like in the purely even case.
Let λ̌ be the dominant integral coweight and let us introduce the following class

of operators:

∇ = Dθ +
(∑

ai (z, θ) fi +μ(z, θ)
)
, (29)
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where ai = z〈αi ,λ̌〉(ri (θ)+ z(. . . )), so that the body of ri is nonzero, and μ(z, θ)∈
b(Ox ). We call the quotient of the space of operators above by the action of B(Ox )

as sOpG(SDx )λ.
The following Lemma is an analogue of Lemma 2.4. of [12].

LEMMA 4.1. There is an injective map i: sOpG(SDx )λ̌ → sOp(SD×
x ), so that

Imi ⊂ sOpRS
G (SDx )λ̌. The image of i is a subset in the set of those elements of

sOpRS
G (SDx )λ̌, such that the resulting oper has a trivial monodromy around x.

Remark. Notice that the superopers corresponding to sOpG(SDx )λ̌ belong to
OpG(Dx )λ̌. However, here λ̌ is the integral dominant weight for Lie superalgebra.
If we consider λ to be an integral dominant weight for the underlying Lie algebra,
the monodromy for the corresponding superoper would not be necessarily trivial:
the expression will include the half-integer powers of z and the monodromy will
correspond to the reflection: θ→−θ .

4.2. MIURA SUPEROPERS

Miura superoper is defined in complete analogy with the purely even case. Namely,
Miura G-superoper is a quadruple (F ,∇,FB,F ′

B) where the triple (F ,∇,FB) is a
G-superoper and F ′

B is another B-reduction preserved by ∇. Let us denote the
space of such superopers as sMOpG(�).

Such B-reductions of F are completely determined by the B-reduction of the
fiber Fx at any point x on � and a set of all such reductions is given by
(G/B)Fx = Fx ×G G/B = (G/B)F ′

x
. If superoper ξ has the regular singularity and

a trivial monodromy, then there is an isomorphism between the space of Miura
opers for such ξ and (G/B)F ′

x
.

The structure of the flag manifold G/B is usually quite complicated [23,24];
however, we just need the structure determined by its "body", i.e. 0G/0 B. For the
purely even flag variety 0G/ 0 B, we have the standard Schubert cell decomposition,
where cells 0Sw=0 Bw0w

0 B are labeled by the Weyl group elements w∈W and w0

is the longest element of the Weyl group (from now on when we say Weyl group,
we mean only the Weyl group corresponding to purely even Weyl reflections of the
0G root system).

Let us denote Sw the preimage of P :G/B → 0G/ 0 B. We assume that the preim-
age of a big cell 0 Bw0

0 B allows factorization Bw0 B. The B-reduction F ′
B defines

a point in G/B. We say that B-reductions FB,x and F ′
B,x are in relative position

w if FB,x belongs to F ′
x ×B Sw. When w=1, we say that Fx , F ′

x are in generic
position. A Miura superoper is called generic at a given point x ∈� if the B-
reductions FB,x , F ′

B,x are generic. Notice that if a Miura superoper is generic at
x , it is generic in the neighbourhood of x. We denote the space of Miura super-
opers on U as sMOpG(U )gen. It is clear that the reduction of Miura superoper to
(0F ,∇2,0 FB,

0 F ′
B) gives a Miura oper.
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Therefore the following Proposition holds, which follows directly from the reduc-
tion to the purely even case, although one can also go along the lines of the proof
of Lemma 2.6. and Lemma 2.7 of [12].

PROPOSITION 4.2. (i) The restriction of the Miura superoper to the punctured
disk is generic.

(ii) For a generic Miura superoper (F ,∇,FB,F ′
B) the H -bundle F ′

H is isomorphic
to w∗

0(Fh)

As in the even case we can define an H -connection associated to Miura super-
oper on FH ∼=D−ρ̌ , which is determined by ∇̃ = Dθ + u(z, θ), where u is h-valued
function. Under the change of coordinates (z, θ) = ( f (w, ξ), α(w, ξ)), the long
superderivative transforms are as follows:

Dξ + Dξα ·u
(

f (w, ξ), θ(w, ξ)
)

− ∂wα(w, ξ)

Dξα)
ρ̌. (30)

Let us call the resulting morphism sMOpG(U )gen to the space ConnU of the
described above flat H -connections on U as a. Now suppose we are given a long
superderivative ∇̃ on H -bundle D−ρ̌ , one can construct a generic superoper as fol-
lows. Let us set F = D−ρ̌ ×H G, FB = D−ρ̌ ×H B. Then, defining F ′

B as D−ρ̌ ×H

w0 B and the long superderivative on F as ∇ =χ−1 +∇̃, we see that the constructed
quadruple (F ,∇,FB,F ′

B) is a generic Miura oper.
Therefore, we obtained the following statement which is analogue of Proposition

2.8 of [12].

PROPOSITION 4.3. The morphism a : sMOpG(U )gen → ConnU is an isomorphism
of algebraic supervarieties.

Similarly one can define the space of Miura G-superopers of coweight λ̌ on
SDx via the same definition applied to sOpG(SDx )λ̌. Again, we have isomorphism
sMOpG(SDx )λ ∼= sOpG(SDx )λ × (G/B)F ′

x
. We define relative positions as in the

case of standard Miura superopers ( λ̌= 0) and let sMOpG(SDx )λ̌,gen denote the
variety of generic Miura opers of weight λ.

Finally, there is an analogue of Proposition 4.3 in this case. Let ConnRS
SDx ,λ̌

denote the set of long derivatives on the H-bundle D−ρ̌ with regular singularity
and residue −λ̌, namely the long derivatives of the form:

∇̃ = Dθ + θ

z
λ̌+u(z, θ), (31)

where u(z, θ)∈ h[[z, θ ]]. Then as before, one can construct a connection ∇ = ∇̃ +
χ−1 and making the gauge transformation with λ̌(z) we obtain the connection
from sOpG(SDx )λ̌. Therefore, there is an isomorphism between ConnRS

SDx ,λ
and

sMOpG(SDx )gen,λ̌.
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4.3. MIURA SUPEROPERS WITH REGULAR SINGULARITIES ON SC∗

First, let us consider a Miura superoper of coweight λ̂ on the disc SDx . Assume, it
is not generic, but F ′

B,x has the relative position w with FB,x at x . Let us denote
the space of all such Miura superopers by sMOpG(SDx )λ̌,w.

From previous subsection we know that each such Miura superoper corresponds
to some H -connection on D−ρ̌ over SD×

x . Using the results from the purely even
case, one can show that the corresponding H -connection has the form

Dθ + θ

z
ν̌+ f (z, θ), (32)

where ν̌ − 1
2 ρ̌ =w(−λ̌− 1

2 ρ̌), w defines the relative position at x , f (u, θ) is such
that the body of its superderivative is regular in z, i.e. Dθ f (z, θ)∈hred[[z]]. Let us
call the space of such connections by ConnRS

SDx ,λ̌,w
.

Therefore, we can construct a map bRS
λ,w :ConnRS

SDx ,λ̌,w
→sOpRS

G (SDx ) similarly to
the previous subsection, by constructing the triple (F ,∇,FB) via identification F =
D−ρ̌ ×H G, FB =D−ρ̌ ×H B and ∇ =∇̃ +χ−1, where ∇̃ ∈ ConnRS

SDx ,λ̌,w
. We denote

by Connreg
SDx ,λ̌,w

the preimage of sOpG(SDx )λ̌,w under this morphism; therefore,

we have the map: bλ,w : Connreg
SDx ,λ̌,w

→ sMOpRS
G (SDx )λ̌, so that in the quadruple

(F ,∇,FB,F ′
B) the first three terms are as above and F ′

B = D−ρ̌ ×H w0 B. If we
denote sMOpRS

G (SDx )λ̌,w those Miura superopers of coweight λ̌ which have the
relative position w at x , then the following Proposition is true, based on the results
from the purely even case (see Proposition 2.9 of [12]).

PROPOSITION 4.4. For each w ∈ W , b
λ̌,w

is an isomorphism of supervarieties
Connreg

SDx ,λ̌,w
and sMOpG(SDx )λ̌,w.

Let us now consider the case of λ̌= 0 and assume that the relative position is
given by s2αi , where αi is a simple black root. In local coordinates, the correspond-
ing H -connection will be given by the differential operator:

∇̃ = Dθ + θ

2z
α̌i +u(z, θ), (33)

where u(z, θ) ∈ h[θ ]((z)) and u(z, θ) = u1(z) + θu0(z) and u0(z) ∈ hred[[z]]. Then
applying the gauge transformation

exp
(

− θ

2z
ei + 1

4z
e2

i

)
(34)

to the Miura superoper ∇̃ + χ−1, we obtain that the resulting element of
sOpG(SDx )λ̌,s2αi

gives the element OpG Dx λ̌,s2αi
if 〈α̌i ,u0(0)〉=0. If we consider the

associate bundle corresponding to the 3-dimensional representation of the osp(1|2)
triple {ei , fi , α̌i }, writing explicitly all the solutions we find that this condition is
also a necessary one. Namely, the following Proposition holds.
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PROPOSITION 4.5. A superoper corresponding to the H-connection given by (33)
corresponds to OpG(Dx )λ̌,s2αi

if and only if 〈α̌i ,u0(0)〉=0.

Now we are ready to study superopers with regular singularities over the super
Riemann surface SC∗. Let us consider Z1 = (z1, θ1), . . . ,ZN = (zN , θN ) on SC∗.
Also, let λ̌1, . . . , λ̌N , λ̌∞ be the set of dominant coweights of g. Let us consider the
H -connections on SC∗ with regular singularities at the points Z1, . . . ,ZN , (∞,0)
and a finite number of other points W1 = (w1, ξ1), . . . ,Wm = (wm, ξm) such that
the residues of the corresponding even H -connection at zi , w j , ∞ are equal to
−yi (λ̌+ 1

2 ρ̌)+ 1
2 ρ̌, −y′

j (ρ̌)+ 1
2 ρ̌, −yi (λ̌∞ + 1

2 ρ̌)+ 1
2 ρ̌, where yi , y′

j , y∞ ∈ W . In other
words, we are considering the H-connections determined by the differential opera-
tor of the following type:

Dθ −
⎛
⎝

N∑
i=1

θ − θi

z − zi + θθi

(
yi

(
λ̌+ ρ̌

2

)
− ρ̌

2

)
+

m∑
j=1

θ − ξ j

z −w j + θθ j

(
y′

j

(
ρ̌

2

)
− ρ̌

2

)⎞
⎠+nilp

(35)

on SC∗\∞, where nilp stands for elements f (z, θ) from h[θ ]((z)) such that
f (z, θ)= Dθ f (z, θ)=0. Let us study its behaviour at infinity. Any connection Dθ +
α(θ,u) on D−ρ̌ has the following expansion with respect to the coordinates (u, η)=
(−1

z ,
θ
z ):

Dη+u−1α(−u−1,−ηu−1)+u−1ηρ̌. (36)

Therefore, considering η
u -coefficient in the expansion, we obtain the following con-

straint:
N∑

i=1

(
yi (λ̌+ ρ̌

2
)− ρ̌

2

)
+

m∑
i=1

(
y′

i (
ρ̌

2
)− ρ̌

2

)
= y′∞

(
−w0(λ̌∞)+ ρ̌

2

)
− ρ̌

2
, (37)

where y′∞w0 = y∞. This expression is expected from the consideration of the purely
even case [12].

Let us denote the set of the considered above H -connections by
Conn(SC∗)RS

(Zi ),(∞,0);λ̌i ,λ̌∞
.

Now one can associate to any such connection a G-oper on SC∗ with regu-
lar singularities at the points (Zi ), (W j ), (∞,0) by setting, in familiar way, F =
D−ρ̌ ×H G, FB =D−ρ̌ ×H B.

Let us denote the set of superopers with regular singularities at Z1 . . .ZN , (∞,0),
whose restriction to the formal superdisc at any point Zi or (∞,0) belongs to the
space sOpG(SDZi )λ̌ or sOpG(SD(∞,0))λ̌∞ , by sOpG(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞ .
Then let Conn(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞ ⊂Conn(SC∗)RS
(Zi ),(∞,0);λ̌i ,λ̌∞

be those H -conn-
ections with regular singularities, which are associated to sOpG(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞
under the above correspondence. Therefore we have the map

Conn(SC∗)
(Zi ),(∞,0);λ̌i ,λ̌∞ → sOpG(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞ . (38)
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We can construct a Miura superoper associated with the image of this map,
namely F ′

B =D−ρ̌ ×H w0 B. Therefore, this map can be lifted to

b
(Zi ),(∞,0);λ̌i ,λ̌∞ :Conn(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞ → sMOpG(SC∗)
(Zi ),(∞,0);λ̌i ,λ̌∞ .

(39)

Similarly to the purely even case, one can argue that this map is an isomorphism.
Notice that for a given superoper τ ∈ sOpG(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞ (because of the
absence of nontrivial monodromy), the space sMOpG(SC∗)τ of the corresponding
Miura superopers is isomorphic to G/B.

Similarly to the argument in the purely even case, we obtain the following the-
orem, which is an analogue of Theorem 3.1 of [12].

THEOREM 4.6. The set of all connections Conn(SC∗)
(Zi ),(∞,0);λ̌i ,λ̌∞ , which corre-

sponds to a given oper τ ∈ sOpG(SC∗)
(Zi ),(∞,0);λ̌i ,λ̌∞ , is isomorphic to the set of

points of the flag variety G/B.

4.4. S P L2-SUPEROPERS AND SUPER BETHE ANSATZ EQUATIONS

As we explained in the introduction one of the goals of this article is to estab-
lish the relation between the S P L2-superopers with singularities on supersphere
and the osp(1|2) Gaudin model, namely that the Bethe equations of the corre-
sponding Gaudin model will encode the relations between the residues of a given
oper. This is expected because of the analogy with the standard purely even case
where the same relation was established between PGL2-opers with singularities on
the Riemann sphere and the sl(2) Gaudin model. It appeared that this relation
is the simplest example of the so-called Geometric Langlands correspondence (for
more details see e.g. [12]). We expect, again, based on the analogy with the purely
even case that there is a higher rank generalization, which will possibly lead to the
proper formulation of Geometric Langlands correspondence for simple superalge-
bras.

So, in this subsection we return back to the simplest nontrivial example of the
superoper, related to supergroup S P L2. In subsection 4.4 we obtained, that for
a fixed superoper τ one can trivialize F using the fiber at (∞,0). Therefore, we
have the trivialization of G/B-bundle and the map: φτ : SC∗ →G/B, so that (∞,0)
maps into the point orbit of G/B. Also, in the case G = S P L2, G/B ∼= SC∗.

Similar to the purely even case, let us call the superoper τ non − degenerate
if i) φτ (Zi ) is in generic position with B, for any i = 1, . . . , N , and ii) the rela-
tive position of φτ (x) and B is either generic or corresponds to a reflection for
all x ∈ SC∗\(∞,0). Since PGL2 opers are non-degenerate for the generic choice
of zi , and those are the opers corresponding to the S P L2-superopers, then any τ ∈
sOpS P L(2)(SC∗)

(Zi ),(∞,0);λ̌i ,λ̌∞ for the generic choice of Zi is non-degenerate. Also,
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let us consider the unique Miura superoper structure for τ , such that FB,(∞,0) and
F ′

B,(∞,0) coincide, i.e. correspond to the point orbit in G/B.
The corresponding H -connections will have the following form:

∇̃ = Dθ −
N∑

i=1

θ − θi

z − zi − θθi
λ̌i +

m∑
j=1

θ − ξ j

z −w j − θξ j

α̌

2
+nilp, (40)

where λ̌i = li ω̌, so that li ∈ Z+. Imposing the constraint from Proposition 4.5, we
obtain that the following equations should hold for the corresponding oper to be
monodromy free:

N∑
i=1

2li
w j − zi

−
m∑

s=1

2
w j −ws

=0 (41)

Also, let us recall that the coweights λ̌i should also satisfy (37), which in our case
simplifies to:

N∑
i=1

li −m = l∞ (42)

Note, that the corresponding PGL2-oper coweights, i.e. 2li , are even: superopers
associated with the odd weights will have a monodromy which will correspond to
a reflection in θ variable, as it was explained above (see Remark after Lemma 4.1).
The Equations (41) are exactly the Bethe ansatz equations for the osp(1|2) Gaudin
model studied in [17].

5. Some Remarks

In this article, we studied superopers for simple superalgebras with the root system,
which admits the basis of odd roots. However, one can define a similar object for
other types of superalgebras, just in such case it can be only locally defined (i.e.
on a superdisc). The analogue of the expression (18) will be

∇ = Dz,θ +
∑

e

ae

(
z, θ

)
fe +

∑
o

θao

(
z, θ

)
fo +μ

(
z, θ

)
, (43)

where the summation is over even and odd roots correspondingly and ae, f (z, θ) are
the even functions of z, θ with nonzero body. The resulting connection cannot be
defined globally on the super Riemann surface; however, the operator ∇2

θ=0 can
give rise to a connection for a G-bundle over a smooth curve underlying the super
Riemann surface, while ∇2 will give an oper for the underlying semisimple super-
group. This construction gives a generalization of opers in the case of any simple
superalgebra.

In this paper we briefly considered an important relation between the spectrum
of the Gaudin model and superopers on SC∗, which in fact could give an example
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of geometric Langlands correspondence in the case of superalgebras. For S P L2-
superopers and the Gaudin model for osp(1|2) the spectrum was determined in
fact by the underlying PGL2-oper. Unfortunately so far the Gaudin models were
not studied in the case of other superalgebras yet, so it is not clear whether such
a relation holds for higher rank superalgebras.

We will address these and other important questions in the forthcoming publi-
cations.
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