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Abstract. We construct manifestly superconformal field theories in six dimensions which
contain a non-Abelian tensor multiplet. In particular, we show how principal 3-bundles
over a suitable twistor space encode solutions to these self-dual tensor field theories via a
Penrose–Ward transform. The resulting higher or categorified gauge theories significantly
generalise those obtained previously from principal 2-bundles in that the so-called Peif-
fer identity is relaxed in a systematic fashion. This transform also exposes various unex-
plored structures of higher gauge theories modelled on principal 3-bundles such as the rele-
vant gauge transformations. We thus arrive at the non-Abelian differential cohomology that
describes principal 3-bundles with connective structure.
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1. Introduction

Following the impressive success of M2-brane models in the past few years, there
is more and more interest in six-dimensional superconformal field theories that
might yield candidate theories for similar M5-brane models. These theories should
exhibit N = (2,0) supersymmetry and have a tensor multiplet in their field content.
The biggest issue in the construction of such theories is to render the tensor fields
non-Abelian in a meaningful way. While there are a few ad-hoc prescriptions of
how to do this, the geometrically most appealing solution to this problem at the
moment seems to be higher gauge theory, see, e.g. Baez and Huerta [1] and refer-
ences therein.

Higher gauge theory describes consistently the parallel transport of extended
objects, just as ordinary gauge theory describes the parallel transport of point-like
objects. This description arises from a categorification of the ingredients of ordi-
nary gauge theory. Roughly speaking, under categorification a mathematical notion
is replaced by a category in which the notion’s original structure equations hold
only up to isomorphisms. When categorifying principal bundles, we replace the
gauge or structure groups by so-called Lie 2-groups (certain monoidal tensor cat-
egories) and the principal bundles by so-called principal 2-bundles (a non-Abelian
generalisation of gerbes).

Once a gauge structure is encoded in a way that allows for a description in
terms of Čech cochains (as, e.g. principal bundles or bundle gerbes), we can con-
struct a corresponding field theory using twistor geometric techniques: the twistor
space P6 suitable for discussing six-dimensional chiral field theories is well known.
It is the space that parametrises totally null 3-planes in six-dimensional space-time
[2–4]. In addition, a generalisation of the Penrose–Ward transform will map the
Čech cochains to certain differential forms encoding a categorified connection on
six-dimensional space-time that satisfies a set of field equations.

The Penrose–Ward transform for Abelian gerbes over P6 was discussed in [5,6]
(see also [7] for an earlier account and [8] for a supersymmetric extension). It
yields u(1)-valued self-dual 3-forms in six dimensions. Besides that, in [5,6,8] also
twistor space actions have been formulated that represent the twistor analogue of
the space-time actions of Pasti et al. [9–12].

More recently, we have presented the extension to the non-Abelian case [13]:
certain non-Abelian gerbes (or principal 2-bundles) over P6 are mapped under a
Penrose–Ward transform to the connective structure of a non-Abelian gerbe on
space-time that comes with a self-dual 3-form curvature. Since the twistor space
P6 can be straightforwardly extended to the supersymmetric case, a Penrose–Ward
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transform can also be used to identify non-Abelian N = (2,0) and N = (1,0)
superconformal field equations containing a tensor multiplet and to describe solu-
tions to these [13].

The principal 2-bundles that are available in the mathematical literature and that
have been developed to the extent necessary for applying our Penrose–Ward trans-
form are relatively restricted. Instead of having a fully categorified Lie group (a so-
called weak Lie 2-group) as a gauge group, they only come with what is known as
a strict Lie 2-group. The latter can be regarded as a Lie crossed module, that is,
a 2-term complex H→G of ordinary Lie groups G and H. The 3-form curvature
of a principal 2-bundle has to satisfy a condition for the underlying parallel trans-
port along surfaces to be well-defined. For a principal 2-bundles with strict Lie 2-
structure group, this implies that the 3-form curvature takes values in the centre of
the Lie algebra of H.

This restriction may be regarded as one of the drawbacks of this type of non-
Abelian gerbes, and from a topological perspective, these principal 2-bundles thus
appear less interesting. We would like to stress, however, that we expect princi-
pal 2-bundles still to be relevant from a physical perspective. For instance, the
field equations obtained in [13] represent an interacting, non-Abelian set of tensor
field equations. Moreover, in [14] the 3-Lie algebra valued tensor field equations of
Lambert and Papageorgakis [15] have been recast in a higher gauge theory form
based on principal 2-bundles. These equations have been studied in detail (see, e.g.
[16] and references therein), and clearly contain non-trivial dynamics. In particular,
after a dimensional reduction, one recovers five-dimensional maximally supersym-
metric Yang–Mills theory.

We can avoid the aforementioned drawback in essentially two ways that remain
manageable with the tools available in the literature: first of all, one can work with
infinite-dimensional (Lie) crossed modules such as models of the string 2-group
discussed by Baez et al. [17]. This approach has been followed by a number of
people, see for example Fiorenza et al. [18]. Note that because our twistor con-
structions [13] do not make use of any explicit properties of finite-dimensional
crossed modules, they extend to such infinite-dimensional crossed modules with-
out alteration. In the second approach, one can categorify one step further and
employ so-called principal 3-bundles having Lie 3-groups as structure 3-groups.
Here, the 3-form curvature can take values in more general subalgebras which
are non-Abelian, in general. For a more detailed discussion of this point in a
more general context, see also [19]. In this paper, we shall develop the latter
approach.

Principal 3-bundles come with 1-, 2- and 3-form gauge potentials together
with 2-, 3- and 4-form curvatures satisfying certain compatibility relations. If we
draw our motivation for the development of superconformal field theories in six
dimensions from M-theory with its 3-form potential, the inclusion of such a 3-
from potential in the field theory is rather natural. Further motivation for using
principal 3-bundles stems from the recently developed N = (1,0) superconformal
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models [20–25], which make use of a 3-form gauge potential.1 For other recent
approaches to defining six-dimensional superconformal theories, see, e.g. references
[15,18,26–31].

Higher gauge theory on principal 3-bundles has been developed to a certain
extent, see for example Martins and Picken [32], but various details still remain to
be clarified. We, therefore, have two goals in this paper: first, we will derive the
equations of motion of six-dimensional superconformal models with manifest N =
(n,0) supersymmetry for n = 0,1,2 and encode their solutions in terms of holo-
morphic principal 3-bundles on twistor space. In deriving the solutions from this
holomorphic data, many properties of higher gauge theory on principal 3-bundles
(as, e.g. the explicit form of finite and infinitesimal gauge transformations) will
become evident. Describing these properties together with the differential cohomol-
ogy underlying principal 3-bundles with connection is then our second goal.

This paper is structured as follows: In Section 2, we start by reviewing the cat-
egorified groups replacing ordinary gauge groups in our theories. We then present
the cocycle description of principal 3-bundles in Section 3, which we will use in
a rather involved Penrose–Ward transform in Section 4. In Section 4.4, we discuss
the resulting six-dimensional superconformal field theories in detail. In Section 5,
we summarise what we have learnt about principal 3-bundles with connective struc-
ture by formulating the underlying non-Abelian differential cohomology. We con-
clude in Section 6.

2. Gauge Structure: Lie 3-Groups and Lie 2-Crossed Modules

The definition of parallel transport of objects that are not point-like and trans-
form under non-Abelian groups has been a long-standing problem. This problem
is closely related to that of defining non-Abelian Čech (and Deligne) cohomology
beyond the cohomology set encoding vector bundles. A way to solving both prob-
lems is by categorifying the usual description of gauge theory in terms of principal
bundles as explained, for instance, in Baez and Huerta [1]. In particular, we will
have to categorify the notion of a structure group of a principal bundle.

As already indicated, the general categorifications of the notion of a Lie group
lead to so-called weak Lie n-groups. To our knowledge, the theory of principal
n-bundles with weak Lie n-groups as structure n-groups has not been developed, at
least not to the degree that our constructions require. We, therefore, have to restrict
ourselves to semistrict Lie 3-groups that are encoded by a Lie 2-crossed module,
just as strict Lie 2-groups are encoded by Lie crossed modules. Both Lie crossed
modules and Lie 2-crossed modules are very manageable, as they consist of 2-term
and 3-term complexes of Lie groups, respectively.

1Note, however, that it seems clear that these models do not directly fit the picture of higher
gauge theory on principal 3-bundles, at least not without extending the gauge lie 3-algebra to a
3-term L∞-algebra.
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2.1. LIE CROSSED MODULES AND DIFFERENTIAL CROSSED MODULES

In this section, we would like to review briefly the definitions of Lie crossed mod-
ules and their infinitesimal version. For more details, see Baez and Lauda [33] and
references therein.

Lie Crossed Modules. Let (G,H) be a pair of Lie groups. We call the pair (G,H) a
Lie crossed module if, in addition, there is a smooth G-action � on H by automor-
phisms2 (and another one on G by conjugation) and a Lie group homomorphism
t :H→G such that the following two axioms are satisfied:

(i) The Lie group homomorphism t :H→G is a G-homomorphism, that is, t(g �
h)= gt(h)g−1 for all g ∈G and h ∈H.

(ii) The G-action � and the Lie group homomorphism t :H→G obey the so-called
Peiffer identity, t(h1)�h2 =h1h2h−1

1 for all h1,h2 ∈H.

In the following, we shall write (H
t→ G,�) or simply H → G to denote a Lie

crossed module. Note that Lie crossed modules are in one-to-one correspondence
with so-called strict Lie 2-groups [33].

A simple example of a Lie crossed module is (N
t→G,�), where N is a normal

Lie subgroup of the Lie group G, t is the inclusion, and � is conjugation. Another
example appears in the non-Abelian gerbes of Breen and Messing [34] for which

the Lie crossed module is the automorphism Lie 2-group (G
t→Aut(G),�) of a Lie

group G, where t is the embedding via conjugation and � the identity.

Differential Lie Crossed Modules. The infinitesimal counterpart of a Lie crossed
module is a differential Lie crossed module. In particular, if (g,h) is a pair of Lie
algebras together with a g-action � on h by derivations3 (and on g by the adjoint

representation) and a Lie algebra homomorphism t :h→g, then we call (h
t→g,�)

a differential Lie crossed module provided the linearisations of the two axioms of a
Lie crossed module are satisfied:

(i) The Lie algebra homomorphism t : H → G is a g-homomorphism, t(X � Y )=
[X, t(Y )] for all X ∈g and Y ∈h, where [·, ·] denotes the Lie bracket on g.

(ii) The g-action � and the Lie algebra homomorphism t : h→ g obey the Peiffer
identity, t(Y1)�Y2 =[Y1,Y2] for all Y1,2 ∈h, where [·, ·] denotes the Lie bracket
on h.

We shall again use h → g as a shorthand notation to denote a differential Lie
crossed module. In categorical language, differential Lie crossed modules are in

2That is, g �(h1h2)= (g �h1)(g �h2) for all g ∈G and h1,h2 ∈H and furthermore, g1g2 �h =
g1 �(g2 �h) for all g1, g2 ∈G and h ∈H.

3That is, if we denote by [·, ·] the Lie brackets on g and h, respectively, then X � [Y1,Y2] =
[X �Y1,Y2]+ [Y1, X �Y2] for all X ∈g and all Y1,2 ∈h and furthermore, [X1, X2]�Y = X1 �(X2 �
Y )− X2 �(X1 �Y ) for all X1,2 ∈g and Y ∈h.
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one-to-one correspondence with strict Lie 2-algebras. We would like to point out
that, as shown in [14], the 3-algebras underlying the recently popular M2-brane
models can be naturally described in terms of differential Lie crossed modules.

2.2. LIE 2-CROSSED MODULES AND DIFFERENTIAL 2-CROSSED MODULES

As indicated, Lie crossed modules (H
t→ G,�) are used as structure 2-groups in

the theory of principal 2-bundles, in the same way that Lie groups are the struc-
ture groups for principal bundles (that is, principal 1-bundles). The connective
structure on a principal 2-bundle, encoded in a g-valued connection 1-form and a
h-valued connection 2-form, is, however, somewhat restricted: its associated 3-form
curvature has to take values in the kernel of t for a consistent parallel transport.
Together with the Peiffer identity, this implies that the 3-form curvatures lies in the
centre of h.

We now wish to remove this undesirable restriction by moving away from Lie
crossed modules and turning to a categorification of them, the so-called Lie
2-crossed modules of Conduché [35] together with their differential counterparts.4

As we shall see later, these will be used as structure 3-groups in the theory of prin-
cipal 3-bundles. Our main motivation to consider this specific generalisation is that
the Peiffer identity can be relaxed in a systematic way by means of the so-called
Peiffer lifting. As a direct consequence, the condition that the 3-form curvature
takes values in the centre of some Lie algebra will be relaxed, too. This will even-
tually enable us to construct superconformal self-dual tensor theories in six dimen-
sions with a general 3-form curvature.

Lie 2-Crossed Modules. Let (G,H,L) be a triple of Lie groups. A Lie 2-crossed
module [35] is a normal complex5 of Lie groups,

L
t−→ H

t−→ G, (2.1)

together with smooth G-actions on H and L by automorphisms (and on G by con-
jugation), both denoted by �, and a G-equivariant smooth mapping from H×H to
L called the Peiffer lifting and denoted by {·, ·} :H×H→L,6 subject to the follow-
ing six axioms (see, e.g. [32,35]):

(i) The Lie group homomorphisms t are G-homomorphisms, that is, t(g � �)=
g � t(�) and t(g �h)= gt(h)g−1 for all g ∈G, h ∈H, and �∈L.

4Another categorification of Lie crossed modules is given by Lie crossed squares and Breen [36]
has constructed higher principal bundles using those as structure groups. These crossed squares can
be reduced to 2-crossed modules and from a categorical perspective, the latter are sufficiently general.

5The mappings t are Lie group homomorphisms with t2(�)=1 for all �∈L, the images of the
mappings t are normal Lie subgroups, and im(t :L→H) is normal in ker(t :H→L). This is a neces-
sary requirement for defining cohomology groups via coset spaces.

6G-equivariance of {·, ·} means that g �{h1,h2}={g �h1, g �h2} for all g ∈G and h1,h2 ∈H.
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(ii) t({h1,h2}) = h1h2h−1
1 (t(h1) � h−1

2 ) for all h1,h2 ∈ H. We define 〈h1,h2〉 :=
h1h2h−1

1 (t(h1)�h−1
2 ).

(iii) {t(�1), t(�2)} = �1�2�
−1
1 �−1

2 for all �1, �2 ∈ L. We define [�1, �2] := �1�2�
−1
1 �−1

2
(and likewise for elements of G and H).

(iv) {h1h2,h3}={h1,h2h3h−1
2 }(t(h1)� {h2,h3}) for all h1,h2,h3 ∈H.

(v) {h1,h2h3}={h1,h2}{h1,h3}{〈h1,h3〉−1, t(h1)�h2} for all h1,h2,h3 ∈H.
(vi) {t(�),h}{h, t(�)}=�(t(h)��−1) for all h ∈H and �∈L.

We shall write (L
t→ H

t→ G,�, {·, ·}) or, as shorthand notation, L → H → G to
denote a Lie 2-crossed module. From a categorical point of view, Lie 2-crossed
modules encode semistrict Lie 3-groups called Gray groups, see Kamps and Porter
[37], i.e. Gray groupoids with a single object.

Furthermore, there is an additional, natural H-action on L, also denoted by �,
that is induced by the above structure,

h �� := �{t(�)−1,h} for all h ∈ H and � ∈ L. (2.2)

This action is an H-action on L by automorphisms [35,38], and we recall the proof
in Appendix. We directly conclude that

g � (h ��)= (g �h)� (g ��) for all g ∈G, h ∈ H, � ∈ L. (2.3)

We would like to emphasise that Lie crossed modules are special instances of
Lie 2-crossed modules, and, as such, the latter form natural generalisations of the
former. This can be seen as follows: First, let us consider the situation when L is
the trivial group L ={1}. Then, the data (H

t→ G,�) forms a Lie crossed module
since {h1,h2}=1 for all h1,h2 ∈H and the above axioms (i)–(vi) straightforwardly
reduce to those of a Lie crossed module. Second, for any Lie 2-crossed module

(L
t→ H

t→ G,�, {·, ·}), the truncation (L
t→ H,�) with the induced H-action (2.2)

forms a Lie crossed module, since from (2.2) and axioms (ii) and (iii) it immedi-
ately follows that

t(h ��)= t(�)t({t(�−1),h})= t(�)t(�−1)ht(�)h−1 =ht(�)h−1,

t(�1)��2 =�2{t(�−1
2 ), t(�1)}=�1�2�

−1
1 .

(2.4)

These are precisely the two axioms of a Lie crossed module. Finally, the data

(t(L)\H
t→G,�) also form a Lie crossed module.

Differential Lie 2-Crossed Modules. As before, we may study the infinitesimal
counterpart of Lie 2-crossed modules. Let (g,h, l) be a triple of Lie algebras. A
differential Lie 2-crossed module is a normal complex of Lie algebras

l
t−→ h

t−→ g, (2.5)

equipped with g-actions on h and l by derivations (and on g by the adjoint rep-
resentation), again denoted by �, respectively, and a g-equivariant bilinear map,
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called again Peiffer lifting and denoted by {·, ·} :h×h→ l, all of which satisfy the
following axioms (here, [·, ·] denotes the Lie bracket in the respective Lie algebra):

(i) The Lie algebra homomorphisms t are g-homomorphisms, that is, t(X � Z)=
X � t(Z) and t(X �Y )=[X, t(Y )] for all X ∈g, Y ∈h, and Z ∈ l.

(ii) t({Y1,Y2})=[Y1,Y2]− t(Y1)�Y2 =: 〈Y1,Y2〉 for all Y1,2 ∈h.
(iii) {t(Z1), t(Z2)}= [Z1, Z2] for all Z1,2 ∈ l.
(iv) {[Y1,Y2],Y3}= t(Y1)� {Y2,Y3}+{Y1, [Y2,Y3]}− t(Y2)� {Y1,Y3}−{Y2, [Y1,Y3]} for

all Y1,2,3 ∈h.
(v) {Y1, [Y2,Y3]}={t({Y1,Y2}),Y3}−{t({Y1,Y3}),Y2} for all Y1,2,3 ∈h.

(vi) {t(Z),Y }+{Y, t(Z)}=−t(Y )� Z for all Y ∈h and Z ∈ l.

We shall write (l
t→ h

t→ g,�, {·, ·}) or, more succinctly, l→ h→ g to denote a dif-
ferential Lie 2-crossed module.

Analogously to Lie 2-crossed modules, there is an induced h-action � on l that
is defined as

Y � Z := −{t(Z),Y } for all Y ∈ h and Z ∈ l (2.6)

and acts by derivations. This h-action simply follows from the linearisation of

(2.2). In addition, as is a direct consequence of the finite case, (l
t→h,�) forms a

differential Lie crossed module.

3. Principal 3-Bundles

The next step in our discussion is the introduction of categorified principal bun-
dles that are modelled on Lie 2-crossed modules. Such bundles are called princi-
pal 3-bundles. Following the conventional nomenclature of ordinary principal (1-
)bundles, we shall refer to the Lie 2-crossed modules on which the principal 3-
bundles are based as the structure 3-groups. Notice that principal 1-bundles and
2-bundles as well as Abelian 1-gerbes and 2-gerbes will turn out to be special
instances of principal 3-bundles.

3.1. COCYCLE DESCRIPTION OF PRINCIPAL 1- AND 2-BUNDLES

First, let us briefly recall the formulation of smooth principal 1- and 2-bundles in
terms of Čech cohomology. To this end, let M be a smooth manifold and let {Ua}
be a covering of M which is chosen to be sufficiently fine. In the following, the
intersections of coordinate patches that appear will always be assumed to be non-
empty.

Principal Bundles. As is well-known, smooth principal bundles over M with struc-
ture group G are described in terms of the non-Abelian Čech cohomology
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H1(M,G).7 Representatives of elements of H1(M,G) are 1-cocyles and are called
transition functions. Specifically, a 1-cocycle is a collection {gab} of smooth maps
gab :Ua ∩Ub →G on non-empty intersections Ua ∩Ub which obey the cocycle con-
dition

gabgbc = gac on Ua ∩Ub ∩Uc. (3.1)

Note that this condition implies that gaa = 1. Moreover, two principal bundles
with transition functions {gab} and {g̃ab} are considered topologically equivalent
(or cohomologous), if there are smooth maps ga :Ua →G such that

g̃ab = g−1
a gabgb. (3.2)

A trivial principal bundle is a principal bundle that is described by transition func-
tions that are all cohomologous to one, that is, gab ∼1 on all Ua ∩Ub.

Principal 2-Bundles. Similarly, smooth principal 2-bundles with structure 2-groups

(H
t→ G,�) can be described in terms of a generalised, non-Abelian Čech coho-

mology denoted by H2(M,H → G). Representatives of elements of this cohomol-
ogy set are 2-cocyles and are again called transition functions. Specifically, a 2-
cocycle is a pair ({gab}, {habc}) of collections of smooth maps gab : Ua ∩ Ub → G
and habc :Ua ∩Ub ∩Uc →H which obey the following cocycle conditions [34,39] (see
also [40]):

t(habc)gabgbc = gac on dUa ∩Ub ∩Uc,

hacd habc =habd(gab �hbcd) on Ua ∩Ub ∩Uc ∩Ud .
(3.3)

The first equation is a ‘categorification’ of (3.1): the original equation holds only
up to the isomorphism t(habc). The second equation is the appropriate non-
Abelian generalisation of the defining relation of a Čech 2-cocycle.

Clearly, if H={1}, that is, H is the trivial group, then the definition (3.3) reduces
to that of an ordinary principal G-bundle. Moreover, for the Lie crossed module

BU(1) := (U(1) t→{1},�) with t and � trivial, this definition coincides with that of
an Abelian (bundle) gerbe. We would like to emphasise that, roughly speaking, the
cohomology H2(M,H → G) combines ordinary first-order and second-order Čech
cohomologies non-trivially: if both H and G are Abelian and the action of G onto
H is trivial, then H2(M,H→G)∼= H1(M,G)⊕ H2(M,H).

Two principal 2-bundles, represented by the transition functions ({gab}, {habc})
and ({g̃ab}, {h̃abc}), are considered equivalent (or cohomologous), ({gab,habc}) ∼
({g̃ab, h̃abc}), if there are smooth maps ga :Ua →G and hab :Ua ∩Ub →H such that

7In writing H1(M,G), we do not make a notational distinction between the Lie group G and
the sheaf SG of smooth G-valued functions. We shall continue to use a similar notation when deal-
ing with principal 2- and 3-bundles, respectively.
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ga g̃ab = t (hab)gabgb and hachabc = (ga � h̃abc)hab(gab �hbc). (3.4)

A trivial principal 2-bundle is then described by transition functions that are all
cohomologous to one, that is, gab ∼1 on all Ua ∩Ub and habc ∼1 on all Ua ∩Ub ∩
Uc.

Note that by virtue of (3.4), we can always assume that haaa =1 without loss of
generality. Concretely, starting from a general habc with haaa 
=1, it is a straight-
forward exercise to show that for the choice haa =haaa we obtain h̃aaa =1. In the
following, we shall therefore always make this choice and assume haaa =1. Clearly,
the residual equivalence relations are then those relations (3.4) for which haa =1.
Furthermore, from (3.3) together with haaa =1 we immediately conclude that also
gaa =1 and haab =habb =1.

3.2. COCYCLE DESCRIPTION OF PRINCIPAL 3-BUNDLES

General 3-Cocyles. Let us now move on and discuss smooth principal 3-bundles.
There are two obvious ways of categorifying Lie crossed modules and, therefore,
two routes to principal 3-bundles. The first one, using ‘crossed modules of crossed
modules’ also known as crossed squares, yields the 2-gerbes of Breen [36,41]. The
second one, which we shall be following here, was developed by Jurčo [42] and

uses 2-crossed modules (L
t→H

t→G,�, {·, ·}). It leads to a nice categorification of
the cocycle description (3.3) in terms of a specific generalised, non-Abelian Čech
cohomology, denoted by H3(M,L → H → G) in the following. Representatives of
elements of this non-Abelian cohomology set are 3-cocycles which are collections
({gab}, {habc}, {�abcd}) of smooth maps gab : Ua ∩ Ub → G, habc : Ua ∩ Ub ∩ Uc → H,
and �abcd :Ua ∩Ub ∩Uc ∩Ud →L subject to the following cocycle conditions [42]:8

t(habc)gabgbc = gac on Ua ∩Ub ∩Uc, (3.5a)

hacd habct(�abcd)=habd(gab �hbcd) on Ua ∩Ub ∩Uc ∩Ud , (3.5b)

and

�abcd

((
gab �h−1

bcd

)
��abde

)
(gab ��bcde)

=
(

h−1
abc ��acde

){
h−1

abc, gac �h−1
cde

}((
gabgbc �h−1

cde

)
��abce

)
. (3.5c)

on Ua ∩Ub ∩Uc ∩Ud ∩Ue. The first equation is the same as that for a principal 2-
bundle. The next equation is a ‘categorification’ of the corresponding equation of
a principal 2-bundle. The last equation is the appropriate non-Abelian generalisa-
tion of the Abelian Čech cocycle equation; see [42] for details on the derivation.
As before, we will refer to the 3-cocycles as transition functions.

From the above equations it is clear that the cohomology H3(M,L → H → G)
combines ordinary first-order, second-order, and third-order Čech cohomologies in

8The convention in comparison to [42] are as follows: ni j ↔ gab, mi jk ↔h−1
abc and �i jkl ↔�abcd .
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a non-trivial fashion: if L, H, and G are all Abelian and the action of G onto
H and L is trivial, then H3(M,L → H → G)∼= H1(M,G)⊕ H2(M,H)⊕ H3(M,L).
Note that these principal 3-bundles are a non-Abelian generalisation of principal
2-bundles that contain Abelian 2-gerbes: for L = {1}, the cocycle conditions (3.5)
reduce to the ones of a principal 2-bundle. Moreover, for the Lie 2-crossed module

BBU(1)= (U(1) t→{1} t→{1}), we recover the definition of a local Abelian (bundle)
2-gerbe.

Two principal 3-bundles described by transition functions ({gab}, {habc}, {�abcd})
and ({g̃ab}, {h̃abc}, {�̃abcd}) are considered equivalent, if there are smooth maps ga :
Ua →G, hab :Ua ∩Ub →H and �abc :Ua ∩Ub ∩Uc →L such that

ga g̃ab = t (hab)gabgb, (3.6a)

hachabc =
(

ga � h̃abc

)
hab(gab �hbc)t(�abc), (3.6b)

�abcd =
(

h−1
abc ��acd

)(
h−1

abc �
(

gac �h−1
cd

))

�
[
�abc(((gab �hbc)hab)� ga � �̃abcd)

(
h−1

ab �
{

hab, gb �h−1
bc

})]

×
(

h−1
ab �

{
hab,

(
h−1

abc � gac �h−1
cd

)

×
((

t
(

h−1
abc

)
gac

)
�h−1

cd

)(
h−1

abc � gac �h−1
cd

)}){
h−1

abc, gac �h−1
cd

}

×
(

gab ��−1
bcd

)(
h−1

ab � {hab, gab � t(�bcd)}
)

×
((

gab �h−1
bcd

)
h−1

ab � {hab, gab �hbcd}
)

×
((

gab �h−1
bcd h−1

bd

)
h−1

ab � {hab, gab �hbd}
)((

gab �h−1
bcd

)
��−1

abd

)
.

(3.6c)

Similarly to the principal 2-bundle case, these equivalence relations can be used
to normalise the transition functions according to

gaa =1, haab =habb =1, and �aabc =�abbc =�abcc =1, (3.7)

and we shall always do so in the following.

Trivial 3-Cocyles. For a trivial principal 3-bundle, there exist smooth maps ga :
Ua →G, hab :Ua ∩Ub →H, and �abc :Ua ∩Ub ∩Uc →L such that the transition func-
tions satisfy the following conditions:

gab = t
(

h−1
ab

)
gag−1

b , (3.8a)

habc =h−1
ac hab(gab �hbc)t

(
�−1

abc

)
, (3.8b)

�abcd =
(

h−1
abc ��acd

){
h−1

abc, gac �h−1
cd

}

×
((

gabgbc �h−1
cd

)
��abc

)(
gab ��−1

bcd

)((
gab �h−1

bcd

)
��−1

abd

)
. (3.8c)
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These relations can be derived from (3.6) by putting g̃ab =1, h̃abc =1, and �̃abc =
1. Alternatively, the first of these equations can be read off (3.5a) by fixing the
patch where the cocycle trivialises to be Uc. Likewise, (3.8b) follows from (3.5b) by
fixing the trivialising patch to be Ud and (3.8c) follows from (3.5c) by fixing the
trivialising patch to be Ue, respectively. Note that to preserve the normalisations
(3.7), we also normalise the group-valued functions hab and �abc according to

haa =1 and �aaa =�aab = �abb =1. (3.9)

Finding the splitting (3.8) for a given collection of transition functions ({gab},
{habc}, {�abcd}) amounts to solving a Riemann–Hilbert problem.

4. Penrose–Ward Transform and Self-Dual Fields

We are now in the position to pursue our main idea to construct self-dual non-
Abelian tensor field theories in six dimensions via twistor theory. The basic idea
of twistor theory is to encode solutions to certain field equations on space-time in
terms of holomorphic data on a twistor space that is associated with space-time in
a particular fashion. Conversely, the field equations in question and the associated
gauge transformations follow naturally from the algebraic twistor data. For gauge
theory, this map between data on space-time and data on twistor space is known
as a Penrose–Ward transform.

The twistor approach has been used very successfully for the description of
instantons in Yang–Mills theory [43,44] and Einstein gravity [45–47] in four dimen-
sions (including their supersymmetric extensions, e.g. in [48–57]). In this context,
the twistor space is the Penrose twistor space [58–61] (and supersymmetric exten-
sions thereof, see for example [48,53,62]) and the holomorphic twistor data are
certain holomorphic vector and principal bundles in the case of Yang–Mills the-
ory and holomorphic contact structures in the case of Einstein gravity. The twistor
approach has also been used for description of gauge theory instantons in dimen-
sions greater than four (see, e.g. [63–68] and references therein). In addition, it has
been used to describe equations of motion of non-self-dual theories such as max-
imally supersymmetric Yang–Mills theory in four [48,69–71], three [72], and six
dimensions [73].

More recently, it was demonstrated that twistor theory can also be applied
to the construction of superconformal non-Abelian self-dual tensor field theories
in six dimensions [13] which are based on principal 2-bundles (see [5–8] for the
Abelian description). In the remainder of this work, we would like to generalise
our previous results [13] by constructing superconformal self-dual non-Abelian ten-
sor field theories in six dimensions that are based on principal 3-bundles. As indi-
cated previously, principal 3-bundles allow to relax the Peiffer identity, and, as
such, we will obtain self-dual tensor theories with a 3-form curvature that is sig-
nificantly less constrained than that of principal 2-bundles.
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4.1. OUTLINE OF THE PENROSE–WARD TRANSFORM

Since the following construction is rather lengthy and technical, let us give a brief
overview over the key components and present an outline of the Penrose–Ward
transform discussed in this section. We are interested in an N = (n,0) superconfor-
mal gauge theory in six dimensions, and we start by constructing a twistor space
P6|8n to six-dimensional flat Minkowski superspace M6|8n . Relating both spaces
is the so-called correspondence space F9|8n , which is fibred over both P6|8n and
M6|8n :

P6|2n M6|8n

F9|8n

π1 π2�
��

�
��

(4.1)

The aim of the Penrose–Ward transform is now to establish a bijection between
certain topologically trivial holomorphic principal 3-bundles over twistor space
P6|2n and solutions to the superconformal gauge theory over M6|8n . Starting from
such a principal 3-bundle Ê → P6|2n , we pull it back along π1. The resulting prin-
cipal 3-bundle E on correspondence space F9|8n turns out to be holomorphically
trivial. There exists now a differential cohomology relative to π1, which translates
between a holomorphically trivial principal 3-bundle with non-trivial transition
functions but vanishing relative connective structure and a principal 3-bundle with
trivial transition functions and flat but non-vanishing relative connective structure.
The explicit construction of this equivalence relation will turn out to be the most
involved part of our construction. The resulting flat relative connective structure
on correspondence space can be readily pushed down to M6|8n . Relative flatness
translates into certain constraint equations which are fulfilled by the connective
structure on M6|8n . These constraint equations are equivalent to the field equa-
tions of the superconformal field theory we are interested in. Besides the constraint
equations, our construction also exposes the full gauge symmetry of connective
structures on principal 3-bundles.

4.2. TWISTOR SPACE

Chiral Superspace. As we wish to discuss superconformal gauge theories in six
dimensions, let us consider complexified flat space-time, M6 :=C6, and extend it by
8n fermionic directions with n ∈ {0,1,2}. We obtain N = (n,0) chiral superspace
M6|8n :=C6|8n :=C6 ⊕�C8n , where � is the (Graßmann) parity-changing opera-
tor. We will always work in this complexified setting; real structures leading to
Minkowski signature or split signature can be introduced whenever desired (see,
e.g., [5] for details).

Next, we coordinatise chiral superspace M6|8n by (x AB , ηA
I ), where the x AB =

−x B A are bosonic (i.e. Graßmann-parity even) coordinates and the ηA
I are fermi-

onic (i.e. Graßmann-parity odd) coordinates. The indices A, B, . . .= 1, . . . ,4 are
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(anti-chiral) spinor indices and I, J, . . .= 1, . . . ,2n are Sp(n) R-symmetry indices.
Anti-symmetric pairs of spinor indices may be raised and lowered with the help of
the Levi-Civita symbol 1

2εABC D . Specifically, we shall write xAB := 1
2εABC D xC D .

If we let � := (�I J ) be an Sp(n)-invariant 2n ×2n matrix, we may introduce the
derivative operators

PAB := ∂

∂x AB
:= ∂AB and DI

A := ∂

∂ηA
I

−2�I JηB
J

∂

∂x AB
. (4.2)

They obey the (anti-)commutation relations

[P AB, PC D]=0, [P AB, DI
A]= 0, and [DI

A, D J
B]=−4�I J PAB, (4.3)

where [·, ·] denotes the super Lie bracket (graded supercommutator).
In the following, we will use the conventions ∂AB xC D = δ[C[Aδ

D]
B] , where brackets

denote normalised anti-symmetrisation of the enclosed indices.9

Twistor Space and Double Fibration. To define the relevant twistor space of M6|8n ,
we first introduce the correspondence space, which we define as F9|8n := M6|8n ×
P3 with P3 being complex projective 3-space. Furthermore, we equip the corre-
spondence space with the coordinates (x AB, ηA

I , λA), where the λA are homoge-
neous coordinates10 on P3. Notice that for n =0, the correspondence space can be
understood as the projectivisation of the dual of the (rank-4) bundle of anti-chiral
spinors on six-dimensional space-time M6.

On F9|8n , we introduce a distribution D := span{V A,V I AB}, called the twistor
distribution, with

V A := λB∂AB and V I AB := 1
2ε

ABC DλC DI
D. (4.4)

This is a rank-3|6n distribution because of the relations λAV A = 0 = λB V I AB .
Moreover, it is a straightforward exercise to check that D is an integrable distri-
bution, that is, [D, D] ⊆ D. Therefore, we have a foliation of the correspondence
space, and we define the twistor space to be the quotient P6|2n := F9|8n/D. This is
a complex (super)manifold. Indeed, if we let (z A, λA, ηI ) be homogeneous coordi-
nates on P7|2n , then the twistor space P6|2n is a complex hypersurface in P7|2n \
P3|2n given by the zero locus

z AλA −�I JηIηJ =0, (4.5)

where the P3|2n we remove from P7|2n is given by the condition λA =0.

9Likewise, parentheses will denote normalised symmetrisation of the enclosed indices.
10In particular, all equations involving these homogeneous coordinates are obviously to be

understood as homogeneous equations.
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In summary, we have established the double fibration (4.1), where π2 denotes the
trivial projection while π1 acts as

π1 :
(

x AB , ηA
I , λA

)
→

(
z A, ηI , λA

)
=

((
x AB +�I JηA

I η
B
J

)
λB, η

A
I λA, λA

)
.

(4.6)

The equations

z A =
(

x AB +�I JηA
I η

B
J

)
λB and ηI =ηA

I λA (4.7)

are called the incidence relation.

Geometric Twistor Correspondence. Because of the incidence relation (4.7), we have
a geometric relation between points and certain submanifolds. Specifically, any
point x ∈ M6|8n in chiral superspace corresponds to a complex projective 3-space
x̂ = π1(π

−1
2 (x)) ↪→ P6|2n . Conversely, any point p ∈ P6|2n in twistor space corre-

sponds to a 3|6n-superplane π2(π
−1
1 (p)) ↪→ M6|8n,

x AB = x AB
0 + εABC DμCλD +2�I J εC DE[AλCθI DEη0

B]
J ,

ηA
I =η0

A
I + εABC DλBθI C D .

(4.8)

Here, (x AB
0 , η0

A
I ) is a particular solution to the incidence relation (4.7) which cor-

responds to a reference point in the superplane in M6|8n . The moduli μA and θI AB

are defined up to terms proportional to λA. As a result, there are 3|6n (which is
the rank of the twistor distribution) moduli parametrising the superplane. Note
that for n = 0, (4.8) reduce to x AB = x AB

0 + εABC DμCλD and εABC DμCλD is a
generic null-vector in six dimensions. Hence, (4.8) represent a super-extension of
a totally null 3-plane.

4.3. PENROSE–WARD TRANSFORM

Twistor Data. Subject of this section is the explicit derivation of non-Abelian self-
dual tensor theories by means of twistor theory. In particular, the algebraic twistor
data from which we would like to start is represented by topologically trivial, holo-
morphic principal 3-bundles Ê → P6|2n over the twistor space P6|2n which, in addi-
tion, are holomorphically trivial when restricted to any complex projective 3-space
x̂ =π1(π

−1
2 (x)) ↪→ P6|2n . Following Manin’s terminology in the principal 1-bundle

case [48], we will refer to such bundles as M6|8n-trivial. We denote the structure

3-group of Ê by (L
t→ H

t→ G,�, {·, ·}).11 If, as before, {Ûa} is an open cover-
ing of P6|2n that is chosen to be sufficiently fine (Stein), then Ê → P6|2n can be

11At this stage, we could assume that L, H, and G are Lie supergroups, and hence, Ê is a
principal 3-superbundle. However, for the sake of clarity, and since there is no immediate physical
application of supergroups here, we will only work with Lie groups. The discussion below can be
adapted to the supergroup case without any difficulty.
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described by holomorphic transition functions ({ĝab}, {ĥabc}, {�̂abcd}) on appropri-
ate non-empty overlaps of the coordinate patches Ûa subject to the cocycle condi-
tions (3.5) and the normalisations (3.7).12

Relative Connective Structure. Next, we wish to pull back such an M6|8n-trivial
bundle Ê → P6|2n to the correspondence space along the projection π1. This yields
a holomorphic principal 3-bundle E := π∗

1 Ê over F9|8n . For simplicity, we work
with the induced covering {Ua := π−1

1 (Ûa)} on the correspondence space. This
enables us to describe the bundle E in terms of the pulled-back transition func-
tions ({gab := π∗

1 ĝab}, {habc := π∗
1 ĥabc}, {�abcd := π∗

1 �̂abcd}) which also obey (3.7).
Since we are assuming that the bundle Ê → P6|2n is topologically trivial, and,
in addition, holomorphically trivial on all projective 3-spaces x̂ =π1(π

−1
2 (x)), the

bundle E → F9|8n must be trivial (topologically as well as holomorphically) on all
of the correspondence space. Hence, by virtue of (3.8), its transition functions are
of the form

gab = t
(

h−1
ab

)
gag−1

b , (4.9a)

habc =h−1
ac hab(gab �hbc)t

(
�−1

abc

)
, (4.9b)

�abcd =
(

h−1
abc ��acd

){
h−1

abc, gac �h−1
cd

}

×
((

gabgbc �h−1
cd

)
��abc

)(
gab ��−1

bcd

)((
gab �h−1

bcd

)
��−1

abd

)
. (4.9c)

We emphasise that the group-valued functions ({ga}, {hab}, {�abc}) are holomorphic
and obey (3.9). Despite being holomorphically trivial, the bundle E → F9|8n con-
tains non-trivial information: the explicit equivalence relation turning the transi-
tion functions describing E to trivial ones generate a non-trivial relative connective
structure as will become transparent momentarily.

By definition of a pull-back, the transition functions ({gab}, {habc}, {�abce}) of E
must be annihilated by the twistor distribution. Specifically, let us introduce the
relative exterior derivative along the fibration π1 : F9|8n → P6|2n by

dπ1 := eAV A + eI AB V I AB = e[AλB]∂AB + eA
I DI

A, (4.10)

where we have defined eA
I :=− 1

2ε
ABC DeI BCλD . The 1-forms eA and eI AB span the

dual of the twistor distribution, and they are of homogeneity −1 and defined up
to terms proportional to λA because of the relations λAV A = 0 = λB V I AB . As an
immediate consequence of the (anti-)commutation relations of the twistor distrib-
ution, Cartan’s structural equations for the 1-forms eA and eI

A read as

dπ1(e[AλB])=�I J εABC DeC
I ∧ eD

J and dπ1eA
I =0. (4.11)

12The standard (Stein) cover of P6|2n consists of four coordinate patches. Hence, for this choice
of cover, there will only be one �abcd , and, consequently, the cocycle condition (3.5c) for �abcd will
become vacuous.
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Thus, we have

dπ1 gab =dπ1 habc =dπ1�abcd =0 (4.12)

but, importantly, dπ1 ga 
=0, dπ1 hab 
=0, and dπ1�abc 
=0, in general. This latter fact
enables us to introduce a set of differential 1-forms

aa := g−1
a dπ1 ga, (4.13a)

bab := g−1
a �

(
dπ1 habh−1

ab

)
, (4.13b)

cabc := g−1
a �

[
(hab(gab �hbc))�

(
�−1

abcdπ1�abc

)
−

{
hab,

(
t(h−1

ab

)
ga)�bbc

}]
, (4.13c)

on the appropriate intersections of the coordinate patches {Ua}. Notice that these
forms have components only along the fibration π1 : F9|8n → P6|2n , and, as such,
they are so-called relative differential 1-forms. In our subsequent discussion, we will
denote the sheaf of relative differential r -forms on the correspondence space by
�r
π1

. Notice also that baa =caaa =caab =cabb =0 because of the normalisations (3.9)
and the fact that {1,Y }=0 for all Y ∈h.

The relative 1-forms aa , bab, and cabc obey the following relations:

aa =ab + t(bab) on Ua ∩Ub, (4.14a)

bab +bbc =bac + t(cabc) on Ua ∩Ub ∩Uc, (4.14b)

cabc − cbcd + ccda = cdab on Ua ∩Ub ∩Uc ∩Ud . (4.14c)

The first two of these equations follow relatively straightforwardly from (4.9a) and
(4.9b), respectively, while the last equation follows from (4.9c) after a lengthy cal-
culation. In fact, we have established the equation (4.14c) and the more involved
relations following below using a computer algebra programme.13

Next, we point out that equation (4.14c) implies that cabc is totally anti-
symmetric in its indices: since caaa = caab = cbaa = 0, the choice a = c in (4.14c)
yields caba = 0. Using this, we further obtain for a = b, b = c, and c = d in (4.14c)
the equations cabc = cbca , cabc =−ccba , and cabc = ccab, respectively, which together
imply the total anti-symmetry of cabc. Therefore, we may conclude that the collec-
tion {cabc} defines an ordinary l-valued Čech cocycle, that is, it represents an ele-
ment of the Abelian Čech cohomology group H2(F9|8n,�1

π1
⊗ l). This cohomology

group, however, vanishes since H2(F9|8n,�1
π1
) is zero as follows from similar argu-

ments as those given in [5,7]. Hence, cabc must be of the form

cabc = cab + cbc + cca with cab =−cba, (4.15)

where cab is defined on Ua ∩Ub.

13The procedure we have used in deriving this result is as follows: (i) simplify the equation to
cabc −cbcd +ccda =cdab +· · · with a minimum amount of substitutions of the expressions for trivial
cocycles; (ii) turn all actions of H on l in the remaining terms into actions of G on l; (iii) simplify
all the terms by using the identity {h1,h

−1
1 �h2}={h1,h

−1
1 h2h1}=−t(h1)�{h−1

1 ,h2} for h1,h2 ∈H.
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Since cabc is totally anti-symmetric, we conclude that also bab must be anti-
symmetric as this follows from (4.14b) for the choice c =a. Upon substituting the
splitting (4.15) into (4.14b), we obtain

b′
ab +b′

bc =b′
ac with b′

ab :=bab − t(cab). (4.16)

Thus, the collection {b′
ab} defines an element of the Abelian Čech cohomology

group H1(F9|8n,�1
π1

⊗h). This cohomology group is also zero [5,7] and, therefore,
we have yet another splitting

b′
ab =b′

a −b′
b. (4.17)

Next, we substitute the definition (4.16) of b′
ab into (4.14a) and because of

t2(Z)=0 for all Z ∈ l and (4.17), we realise that

Aa :=aa − t(b′
a) (4.18)

satisfies Aa = Ab on Ua ∩Ub. Hence, we obtain a globally defined g-valued relative
1-form Aπ1 with Aa = Aπ1 |Ua .

A straightforward calculation shows that14

dπ1aa + 1
2 [aa,aa]=0 and dπ1 bab + 1

2 (aa +ab)�bab−1
2 〈bab,bab〉=0, (4.19)

where 〈bab,bab〉= t({bab,bab}) as before. With the help of the splitting (4.17) and
the definition (4.16), these equations imply that

−dπ1 b′
a −aa � b′

a + 1
2 t(b′

a)� b′
a =−dπ1 b′

b −ab � b′
b + 1

2 t(b′
b)� b′

b + t(c′
ab) (4.20a)

with

c′
ab :=dπ1 cab + 1

2 (aa +ab)� cab +{
b′[a,b′

b]
}
. (4.20b)

Again, a lengthy calculation shows that

c′
ab + c′

bc = c′
ac on Ua ∩Ub ∩Uc. (4.21)

This simply says that the collection {c′
ab} defines an element of the Abelian Čech

cohomology group H1(F9|8n,�2
π1

⊗ l). However, also this cohomology group van-
ishes following the arguments of [5,7]. Therefore, we arrive at the splitting

c′
ab = c′

a − c′
b. (4.22)

This result can be substituted into (4.20a) and we conclude that

Ba :=−dπ1 b′
a −aa �b′

a + 1
2 t(b′

a)�b′
a − t(c′

a) (4.23)

14Here and in the following, the bracket [·, ·] includes the wedge product of forms: if ω=ωaτa
and ρ = ρbτb are two Lie-algebra valued differential r - and s-forms in some basis τa of the Lie
algebra under consideration, then [ω,ρ] =ωa ∧ ρb[τa , τb]. The same holds for other operations in
the Lie 2-crossed module, in particular for the Peiffer lifting.
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obeys Ba = Bb on the overlaps Ua ∩ Ub. Thus, the Bas yield a globally defined
h-valued relative 2-form Bπ1 with Ba = Bπ1 |Ua .

Finally, we define a relative differential 3-form

Ca :=−dπ1

(
c′

a + 1
2

{
b′

a,b
′
a

})− (
aa − t(b′

a)
)
�

(
c′

a + 1
2

{
b′

a,b
′
a

})

−
{

b′
a,dπ1 b′

a +
(

aa − 1
2 t(b′

a)
)

�b′
a − 1

2

〈
b′

a,b
′
a

〉}
(4.24)

on Ua . A lengthy computation using a computer algebra programme shows that
this 3-form obeys Ca = Cb on Ua ∩ Ub. Therefore, we have obtained a globally
defined l-valued relative 3-form Cπ1 with Ca =Cπ1 |Ua .

Summarising, we have constructed the global relative differential forms Aπ1 , Bπ1 ,
and Cπ1 using the data (4.9). We may interpret these forms as the connection
forms constituting a relative connective structure on the principal 3-bundle E →
F9|8n .

Relative Curvatures. The set of curvature forms associated with the relative connec-
tion forms Aπ1 , Bπ1 , and Cπ1 will consist of a g-valued 2-form curvature Fπ1 , an
h-valued 3-form curvature Hπ1 , and an l-valued 4-form curvature Gπ1 . In particu-
lar, using the first equation in (4.19) and the definitions (4.18), (4.23), and (4.24),
it immediately follows that

t(Bπ1)=dπ1 Aπ1 + 1
2 [Aπ1, Aπ1 ] =: Fπ1, (4.25a)

t(Cπ1)=dπ1 Bπ1 + Aπ1 � Bπ1 =: Hπ1, (4.25b)

which define the curvature forms Fπ1 and Hπ1 . These equations simply state the
vanishing of the so-called 2-form and 3-form fake curvatures,

Fπ1 := Fπ1 − t(Bπ1) and Hπ1 := Hπ1 − t(Cπ1). (4.26)

It remains to define the 4-form curvature. It is

Gπ1 :=dπ1Cπ1 + Aπ1 �Cπ1 +{Bπ1, Bπ1}. (4.27)

This choice of Gπ1 is essentially dictated by demanding covariant behaviour under
gauge transformations, and we will come back to this point below. One can check
that Ga = Gπ1 |Ua = 0, which follows upon substituting the explicit expressions
(4.18), (4.23), and (4.24) for Aa , Ba , and Ca into the definition (4.27). We shall call
connective structures, for which the fake relative curvatures (4.26) and Gπ1 vanish
relative flat. Note that in the purely bosonic case n = 0, (4.27) vanishes trivially
as in this case the fibres of π1 : F9|0 → P6|0 are three-dimensional implying that
there are no relative 4-forms. However, for n>0 this expression is, in general, non-
trivial because of the extra fermionic directions. As we shall see below, the equa-
tion Gπ1 =0 will correspond to certain constraint equations on chiral superspace.

Altogether, M6|8n-trivial holomorphic principal 3-bundles over the twistor space
correspond to holomorphic principal 3-bundles over the correspondence space that
are equipped with a relative connective structure that is relative flat.
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Gauge Freedom on the Correspondence Space. By construction, it is clear that the
solutions to the Riemann–Hilbert problems (4.9), (4.15), (4.17), and (4.22) are not
unique: we can always consider the transformation ga → gag for a globally defined
holomorphic G-valued function g.15 Likewise, we may consider the shifts b′

a →
b′

a +�π1 , cab →cab −�a +�b,16 and c′
a →c′

a +�π1 where �π1 is a globally defined
h-valued relative 1-form, �a is an l-valued relative 1-form defined on Ua , and �π1

is a globally defined l-valued relative 2-form, since these shifted forms represent
equally good solutions to the Riemann–Hilbert problems (4.15), (4.17), and (4.22).
The combination of these transformations then yields

aa → ãa := g−1aag + g−1dπ1 g, (4.28a)

b′
a → b̃′

a := g−1 �b′
a +�π1 + t(�a), (4.28b)

c′
a → c̃′

a := g−1 � c′
a −dπ1�a − ãa ��a + 1

2 t
(

b̃′
a −�π1

)
��a

+ 1
2

{
b̃′

a,�π1

}
− 1

2

{
�π1, b̃

′
a

}
+�π1 . (4.28c)

Some lengthy algebraic manipulations show that under these transformations, the
relative connection forms (4.18), (4.23), and (4.24) behave as

Aπ1 → Ãπ1 := g−1 Aπ1 g + g−1dπ1 g − t(�π1), (4.29a)

Bπ1 → B̃π1 := g−1 � Bπ1 −∇̃π1�π1 − 1
2 t(�π1)��π1 − t(�π1), (4.29b)

Cπ1 → C̃π1 := g−1 �Cπ1 −∇̃0
π1

(
�π1 − 1

2 {�π1 ,�π1}
)

+
{

B̃π1,�π1

}
+

{
�π1 , B̃π1

}
+

{
�π1 , ∇̃π1�π1 + 1

2 [�π1,�π1 ]
}
,

(4.29c)

where we have used the abbreviations

∇̃π1 :=dπ1 + Ãπ1 � and ∇̃0
π1

:=dπ1 + (
Ãπ1 + t(�π1)

)
� . (4.29d)

We shall refer to the transformations (4.29) as gauge transformations of the relative
connective structure. We will demonstrate momentarily that these transformations
will correspond to certain space–time gauge transformations. The gauge transfor-
mations (4.29) then imply that a pure gauge configuration is one for which the rel-
ative connection forms are of the following form:

Aπ1 = g−1dπ1 g − t(�π1), (4.30a)

Bπ1 =−dπ1�π1 −
(

g−1dπ1 g
)

��π1 + 1
2 t(�π1)��π1 − t(�π1), (4.30b)

Cπ1 =−dπ1

(
�π1 + 1

2 {�π1,�π1}
)

−(
g−1dπ1 g − t(�π1)

)
� (�π1 + 1

2 {�π1 ,�π1}
)

−{
�π1 ,dπ1�π1 + (

g−1dπ1 g − 1
2 t(�π1)

)
��π1 − 1

2 〈�π1 ,�π1〉
}
. (4.30c)

15That is, it is independent of λA.
16Hence, the definition of b′

ab in (4.16) depends on such �a -shifts.
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This should be compared with the expressions (4.18), (4.23), and (4.24) for Aa , Ba ,
and Ca , respectively, which again justifies calling a relative connective structure rel-
ative flat.

Note that the coordinate-patch-dependent �a-transformations appearing in (4.28)
drop out of (4.29) as they should since the relative connection forms are globally
defined. At this point we would like to point out that there are additional trans-
formations that leave the splitting (4.9) invariant. They are

ga → g̃a := ga t(ha), (4.31a)

hab → h̃ab := (ga �hah−1
b )hab, (4.31b)

�abc → �̃abc :=
[(

gab �h−1
bc

)
h−1

ab

(
ga �h−1

c hb

)]
�

{
hab, (t

(
h−1

ab

)
ga)�hbh−1

c

}
�abc

(4.31c)

for some smooth functions ha : Ua → H, and we will come back to them in Sec-
tion 5. However, also these coordinate-patch-dependent transformations necessar-
ily leave the global relative connection forms Aπ1 , Bπ1 , and Cπ1 invariant. Thus,
the freedom in defining the relative connection forms is given by g ∈ H0(F9|8n,G),
�π1 ∈ H0(F9|8n,�1

π1
⊗h), and �π1 ∈ H0(F9|8n,�2

π1
⊗ l).

The induced transformations of the associated curvature forms (4.25a), (4.25b),
and (4.27) read as

Fπ1 → F̃π1 := g−1 Fπ1 g − t
(∇̃π1�π1 + 1

2 t(�π1)��π1

)
, (4.32a)

Hπ1 → H̃π1 := g−1 � Hπ1 − (
F̃π1 − t(B̃π1)

)
��π1

+t
[
−∇̃0

π1

(
�π1 − 1

2 {�π1,�π1}
)

+
{

B̃π1,�π1

}
+

{
�π1, B̃π1

}

+
{
�π1, ∇̃π1�π1 + 1

2 [�π1,�π1 ]
}]
, (4.32b)

Gπ1 → G̃π1 := g−1 � Gπ1 − (
F̃π1 − t(B̃π1)

)
�

(
�π1 − 1

2 {�π1,�π1}
)

+
{
�π1, H̃π1 − t(C̃π1)

}
−

{
H̃π1 − t(C̃π1),�π1

}

−
{
�π1,

(
F̃π1 − t(B̃π1)

)
��π1

}
. (4.32c)

The first two equations imply that the fake curvature relations (4.25) behave
covariantly under gauge transformations, that is, F̃π1 = t(B̃π1) and H̃π1 = t(C̃π1). In
addition, provided that these equations hold, the transformation law of the 4-form
curvature Gπ1 simplifies to Gπ1 → G̃π1 = g−1 � Gπ1 . This behaviour under gauge
transformations explains our definition (4.27) of Gπ1 . Note that since Gπ1 =0 also
G̃π1 =0 confirming again the consistency of our constructions.

Field Expansions. In the final step of our Penrose–Ward transform, we wish to
push down to chiral superspace M6|8n the bundle E → F9|8n and its relative con-
nective structure. This amounts to ‘integrating out’ the P3-dependence in the
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relative connection forms stemming from the fibres of π2 : F9|8n → M6|8n .17 Even-
tually, we will obtain a holomorphic principal 3-bundle E ′ → M6|8n (which is holo-
morphically trivial as M6|8n has trivial topology) with a connective structure that
is subjected to certain (superspace) constraints. That is, certain components of the
associated curvature forms on E ′ will vanish.

Concretely, the relative connection forms (Aπ1, Bπ1 ,Cπ1) and the associated cur-
vature forms (Fπ1, Hπ1 ,Gπ1) are expanded as

Aπ1 = e[AλB] AAB + eA
I AI

A, (4.33a)

Bπ1 =− 1
4 eA ∧ eBλC ε

ABC D BD
EλE + 1

2 eAλB ∧ eE
I ε

ABC D BC D
I
E

+ 1
2 eA

I ∧ eB
J B I J

AB, (4.33b)

Cπ1 =− 1
3 eA ∧ eB ∧ eCλDε

ABC D C E FλEλF

− 1
4 eA ∧ eBλC ε

ABC D ∧ eE
I (CD

F I
E )0λF

+ 1
4 eAλB ∧ eE

I ∧ eF
J ε

ABC D (CC D
I J
E F )0

+ 1
6 eA

I ∧ eB
J ∧ eC

K C I J K
ABC (4.33c)

and

Fπ1 =− 1
4 eA ∧ eBλC ε

ABC D FD
EλE + 1

2 eAλB ∧ eE
I ε

ABC D FC D
I
E

+ 1
2 eA

I ∧ eB
J F I J

AB, (4.34a)

Hπ1 =− 1
3 eA ∧ eB ∧ eCλDε

ABC D H E FλEλF

− 1
4 eA ∧ eBλC ε

ABC D ∧ eE
I

(
HD

F I
E

)
0
λF

+ 1
4 eAλB ∧ eE

I ∧ eF
J ε

ABC D
(

HC D
I J
E F

)
0

+ 1
6 eA

I ∧ eB
J ∧ eC

K H I J K
ABC , (4.34b)

Gπ1 =− 1
3 eA ∧ eB ∧ eCλDε

ABC D ∧ eE
I

(
G FG I

E

)
0
λFλG

− 1
4 eA ∧ eBλC ε

ABC D ∧ eE
I ∧ eF

J

(
G D

G I J
E F

)
0
λG

+ 1
4 eAλB ∧ eE

I ∧ eF
J ∧ eG

K ε
ABC D

(
GC D

I J K
E FG

)
0

+ 1
6 eA

I ∧ eB
J ∧ eC

K ∧ eD
L G I J K L

ABC D, (4.34c)

as (Aπ1, Bπ1 ,Cπ1) and (Fπ1, Hπ1 ,Gπ1) are of homogeneity zero in the λA coordi-
nates. Here, we have used the relative differential 1-forms eA and eA

I , which were
introduced in (4.10). In addition, the component (CA

B I
C )0 of Cπ1 represents the

totally trace-less part of CA
B I

C and (CAB
I J
C D)0 denotes the part of CAB

I J
C D that

does not contain terms proportional to εABC D . Similar conventions have been

17Technically speaking, we compute the zeroth direct images of the sheaf �r
π1

as in [5].
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used for the components of Hπ1 and Gπ1 . We would like to emphasise that all λ-
dependence has been made explicit in the above expansions, that is, the component
fields in (4.33) and (4.34) are superfields defined on the chiral superspace M6|8n .

To clarify the meaning of these component fields, we recall the components
of general low-degree differential forms on M6|8n . In the following, (·) and [·]
denote symmetric and antisymmetric indices, respectively. Note that ‘fermionic’
index pairs (I

A), etc. always appear totally symmetrised. A 1-form A on M6|8n has
the components

(
A[AB] = 1

2εABC D A[C D], AI
B

)
(4.35a)

in spinor notation while a differential 2-form B has the components

(
BA

B, B[AB] I
C , B I J

AB

)
, (4.35b)

where BA
B is trace-less, and a differential 3-form C has the spinor components

(
C(AB), C (AB), CA

B I
C , C[AB] I J

C D, C I J K
ABC

)
, (4.35c)

where CA
B I

C is trace-less over the AB indices. The C(AB)-component represents the
self-dual part of the purely bosonic components of C while the C (AB)-component
represents the anti-self-dual part, respectively. A differential 4-form D has the fol-
lowing spinor components:

(
DA

B, D(AB)
I
C , D(AB) I

C , DA
B I J

C D, D[AB] I J K
C DE , DI J K L

ABC D

)
, (4.35d)

where DA
B and DA

B I J
C D are trace-less over the AB indices. Hence, the compo-

nent fields in (4.33) and (4.34) are nothing but the spinor components of cer-
tain differential-form-fields on M6|8n . We thus see that the components of the rel-
ative connection forms Aπ1 and Bπ1 correspond to connection forms A and B on
a holomorphically trivial principal 3-bundle E ′ → M6|8n . However, as is apparent
from (4.35), we do not obtain all possible components of a connection 3-form C
from the expansion (4.33). In fact, from Cπ1 we only obtain the components C AB ,
(CA

B I
C )0, (CAB

I J
C D)0, and C I J K

ABC . We shall denote the 3-form on M6|8n that con-
tains only those components by C0. The ‘missing’ components in the field expan-
sions of the relative curvature forms (4.34) will shortly be seen as part of the con-
straint equations which the curvature forms F := dA + 1

2 [A, A], H := dB + A � B,
and G :=dC0 + A �C0 +{B, B} associated with the connective structure (A, B,C0)

have to obey.

Constraint Equations on Chiral Superspace. So far, we have obtained a holomor-
phically trivial principal 3-bundle E ′ → M6|8n over chiral superspace with a con-
nective structure that is represented by the connection forms A, B, and C0 given
by the components fields of the expansions (4.33). Because the relative fake cur-
vatures defined in Equation (4.25) and the relative 4-form curvature Gπ1 vanish,
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certain components of the associated curvature forms F , H++, and G will van-
ish. Concretely, the connective structure (A, B,C0) on E ′ → M6|8n is subject to the
following set of superspace constraint equations:

FA
B = t

(
BA

B
)
, FAB

I
C = t

(
BAB

I
C

)
, F I J

AB = t
(

B I J
AB

)
, (4.36a)

and

H AB = t(C AB),
(

HA
B I

C

)
0
= t

((
CA

B I
C

)
0

)
,

(
HAB

I J
C D

)
0
= t

((
CAB

I J
C D

)
0

)
, H I J K

ABC = t
(

C I J K
ABC

)
,

(4.36b)

and

(
G AB I

C

)
0
=0,

(
G A

B I J
C D

)
0
=0,

(
G AB

I J K
C DE

)
0
=0, G I J K L

ABC D =0. (4.36c)

The totally ‘trace-less parts’ (HA
B I

C )0 and (HAB
I J
C D)0 of the component of the

curvature 3-form H may be written as

(
HA

B I
C

)
0
= HA

B I
C −

(
δB

Cψ
I
A − 1

4δ
B
Aψ

I
C

)
, (4.37a)

(
HAB

I J
C D

)
0
= HAB

I J
C D − εABC Dφ

I J , (4.37b)

where the fermionic (Graßmann-odd) ψ I
A and bosonic (Graßmann-even) φ I J =

−φ J I fields represent the ‘trace-parts’. These fields will turn out later to be the
fermions and the scalars of the tensor multiplet. Using these expressions, the con-
straint equations (4.36b) thus take the equivalent form

H AB = t(C AB), (4.38a)

HA
B I

C = δB
Cψ

I
A − 1

4δ
B
Aψ

I
C + t

((
CA

B I
C

)
0

)
, (4.38b)

HAB
I J
C D = εABC Dφ

I J + t
((

CAB
I J
C D

)
0

)
, (4.38c)

H I J K
ABC = t

(
C I J K

ABC

)
. (4.38d)

The components of the curvatures F and H appearing in the constraint equa-
tions (4.36a) and (4.38) read explicitly as



SIX-DIMENSIONAL SUPERCONFORMAL FIELD THEORIES 1171

FA
B =∂BC AC A −∂C A ABC +

[
ABC , AC A

]
, (4.39a)

FAB
I
C =∂AB AI

C − DI
C AAB +

[
AAB, AI

C

]
, (4.39b)

F I J
AB = DI

A AJ
B + D J

B AI
A +

[
AI

A, AJ
B

]
+4�I J AAB, (4.39c)

H AB =∇C(A BC
B), (4.39d)

HA
B I

C =∇ I
C BA

B −∇DB BD A
I
C +∇D A B DB I

C , (4.39e)

HAB
I J
C D =∇AB B I J

C D −∇ I
C BAB

J
D −∇ J

D BAB
I
C

−2�I J
(
εAB F[C BD]F − εC DF[A BB]F

)
, (4.39f)

H I J K
ABC =∇ I

A B J K
BC +∇ J

B B I K
AC +∇K

C B I J
AB

+4�I J BAB
K
C +4�I K BAC

J
B +4�J K BBC

I
A. (4.39g)

These equations follow from (4.25) and the expansions (4.33) and (4.34) together
with the relations (4.11); these components also follow directly from the expres-
sions F = dA + 1

2 [A, A] and H = dB + A � B on chiral superspace. The self-dual
part HAB of the 3-form curvature is then given by

HAB :=∇C(A BB)
C . (4.40)

The ‘trace-less parts’ (G AB I
C )0, (G A

B I J
C D)0+++, and (G AB I J K

C DE )0 of the compo-
nents of the curvature 4-form G may be written as

(
G AB I

C

)
0
= G AB I

C −χ I (Aδ
B)
C , (4.41a)

(
G A

B I J
C D

)
0
= G A

B I J
C D − (

U I J
A[Cδ

B
D] + 1

4δ
A
BU I J

[C D]
)− (

V I J
A(Cδ

B
D)− 1

4δ
A
B V I J

(C D)

)
, (4.41b)

(
G AB

I J K
C DE

)
0
= G AB

I J K
C DE − εABC Dψ̃

I J K
E

−5 terms to totally symmetrise in (I
A)(

J
B)(

K
C ), (4.41c)

where χ I A and ψ̃ I J K
A = ψ̃ [I J ]K

A are fermionic (Graßmann-parity odd) and U I J
AB =

U [I J ]
AB and V I J

AB = V (I J )
AB are bosonic (Graßmann-parity even) which represent the

‘trace-parts’. The bi-spinor U I J
AB can be decomposed into a vector U I J

[AB] and a self-
dual 3-form U I J

(AB) and similarly for V I J
AB . Thus, the constraint equations (4.36c)

read as

G AB I
C =χ I (Aδ

B)
C , G AB

I J K
C DE = εABC Dψ̃

I J K
E + symmetrisation,

G I J K L
ABC D =0, G A

B I J
C D = (

U I J
A[Cδ

B
D] + 1

4δ
A
BU I J

[C D]
)+ (

V I J
A(Cδ

B
D)− 1

4δ
A
B V I J

(C D)

) (4.42)
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with the curvature components given by18

G AB I
C =−∇ I

C C AB + 1
4∇D(A(CD

B) I
C )0

− 1
4

{
BD

(A, B B)D I
C

}
+ 1

4

{
B D(A I

C , BD
B)

}
, (4.43a)

G A
B I J

C D = 1
2

[(
∇ I

C

(
CA

B J
D

)
0
−8�I J εAC DE C E B

−
{

B E B I
C , BE A

J
D

}
+

{
BE A

J
D, B E B I

C

}
+ (I

C )↔ (J
D)

)

−∇E B
(

CE A
I J
C D

)
0
+∇E A

(
C E B I J

C D

)
0

+
{

BA
B, B I J

C D

}
+

{
B I J

C D, BA
B
}]
, (4.43b)

G AB I J K
C DE = 1

3

[
∇ ABC I J K

C DE

+
(

−∇ I
C

(
C AB J K

DE

)
0
+8�I J δ

[A
[C (CD]B]K

E )0

+
{

B AB I
C , B J K

DE

}
+

{
B J K

DE , B AB I
C

}

+(I
C )↔ (J

D)+ (I
C )↔ (K

E )
)]
, (4.43c)

G I J K L
ABC D = 1

4!
[
−∇ I

AC J K L
BC D + 3

2�
I J

(
CAB

K L
C D

)
0
+ 3

2

{
B I J

AB, BK L
C D

}

+23 terms to totally symmetrise in (I
A)(

J
B)(

K
C )(

L
D)

]
. (4.43d)

In deriving these equations, we have again made use of (4.11). Note that one can
show that all these components of G lie in the kernel of t.

Gauge Freedom on Chiral Superspace. Because of (4.29), there is a gauge freedom
in the above constraint equations. In particular, the gauge parameters �π1 and �π1

appearing in the gauge transformations (4.29) of the relative connective structure
are expanded as

�π1 = e[AλB]�AB + eAB
I λA�

I
B, (4.44a)

�π1 =− 1
4 eA ∧ eBλC ε

ABC D�D
EλE + 1

2 eAλB ∧ eE F
I λE ε

ABC D �C D
I
F

+ 1
2 eC A

I λC ∧ eDB
J λD �

I J
AB, (4.44b)

where �A
B is trace-less. Note that g in (4.29) is a globally defined, holomorphic G-

valued function on the correspondence space, and, as such, it does not depend on
the coordinates λA (since P3 is compact). Thus, g descents down to M6|8n directly.

The coefficient functions of �π1 and �π1 together with g are the gauge para-
meters on M6|8n : upon substituting the expansions (4.44) and (4.33) into the trans-
formations (4.29), we find the following gauge transformation on chiral superspace
M6|8n :

18Recall that G =dC0 + A �C0 +{B, B}.
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AAB → ÃAB := g−1 AAB g + g−1∂AB g − t(�AB), (4.45a)

AI
A → ÃI

A := g−1 AI
Ag + g−1 DI

Ag − t
(
�I

A

)
, (4.45b)

BA
B → B̃A

B := g−1 � BA
B −∇̃BC�C A +∇̃C A�

BC

− 1
2 t(�BC )��C A + 1

2 t(�C A)��BC − t
(
�A

B
)
, (4.45c)

BAB
I
C → B̃AB

I
C := g−1 � BAB

I
C −∇̃AB�

I
C +∇̃ I

C�AB

− 1
2 t(�AB)��I

C + 1
2 t

(
�I

C

)
��AB − t

(
�AB

I
C

)
, (4.45d)

B I J
AB → B̃ I J

AB := g−1 � B I J
AB −∇̃ I

A�
J
B −∇̃ J

B�
I
A −4�I J�AB

− 1
2 t(�I

A)��J
B − 1

2 t
(
�J

B

)
��I

A − t
(
� I J

AB

)
, (4.45e)

C AB → C̃ AB := g−1 �C AB −∇̃0 C(A
(
�C

B)− 1
2

{
�B)D,�DC

}
+ 1

2

{
�DC ,�

B)D
})

−
{

B̃C
(A,�B)C

}
+

{
�C(A, B̃C

B)
}

+
{
�C(A, ∇̃B)D�DC −∇̃DC�

B)D +
[
�B)D,�DC

]}
, (4.45f)

(
CA

B I
C

)
0
→

(
C̃A

B I
C

)
0
:= g−1 �

(
CA

B I
C

)
0

−
[
∇̃0 I

C

(
�A

B − 1
2

{
�BC ,�C A

}
+ 1

2

{
�C A,�

BC
})

+∇̃0 DB
(
�D A

I
C − 1

2

{
�D A,�

I
C

}
+ 1

2

{
�I

C ,�D A

})

+∇̃0
D A

(
�DB I

C − 1
2

{
�DB,�I

C

}
+ 1

2

{
�I

C ,�
DB

})

−
{

B̃A
B,�I

C

}
−

{
�I

C , B̃A
B
}

+
{

B̃D A
I
C ,�

DB
}

−
{
�DB, B̃D A

I
C

}
+

{
B̃ DB I

C ,�D A

}
−

{
�D A, B̃ DB I

C

}

−
{
�I

C , ∇̃B D�D A −∇̃D A�
B D +[�B D,�D A]

}]
0
, (4.45g)

(
CAB

I J
C D

)
0
→

(
C̃AB

I J
C D

)
0
:= g−1 �

(
CAB

I J
C D

)
0

−
[
∇̃0

AB

(
� I J

C D − 1
2

{
�I

C ,�
J
D

}
− 1

2

{
�J

D,�
I
C

})

−∇̃0 I
C

(
�AB

J
D − 1

2

{
�AB ,�

J
D

}
+ 1

2

{
�J

D,�AB

})

−∇̃0 J
D

(
�AB

I
C − 1

2

{
�AB ,�

I
C

}
+ 1

2

{
�I

C ,�AB

})

−2�I J εAB F[C
(
�D]F + 1

2

{
�FG ,�B]G

}
− 1

2

{
�D]G ,�AG

})

+2�I J εC DF[A

(
�B]F + 1

2

{
�FG ,�B]G

}
− 1

2

{
�B]G ,�AG

})

−
{

B̃ I J
C D,�AB

}
−

{
�AB , B̃ I J

C D

}
−

{
B̃AB

J
D,�

I
C

}
+

{
�I

C , B̃AB
J
D

}

−
{

B̃AB
I
C ,�

J
D

}
+

{
�J

D, B̃AB
I
C

}

−
{
�AB , ∇̃ I

C�
J
D +∇̃ J

D�
I
C −4�I J�C D +

[
�I

C ,�
J
D

]}
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+
{
�I

C , ∇̃AB�
J
D −∇̃ J

D�AB +
[
�AB ,�

I
C

]}

+
{
�J

D, ∇̃AB�
I
C −∇̃ I

C�AB +
[
�AB ,�

J
D

]}]
0
, (4.45h)

C I J K
ABC → C̃ I J K

ABC := g−1 �C I J K
ABC

−∇̃0 I
A

(
� J K

BC − 1
2

{
�J

B,�
K
C

}
− 1

2

{
�K

C ,�
J
B

})

−∇̃0 J
B

(
� I K

AC − 1
2

{
�I

A,�
K
C

}
− 1

2

{
�K

C ,�
I
A

})

−∇̃0 K
C

(
� I J

AB − 1
2

{
�I

A,�
J
B

}
− 1

2

{
�J

B,�
I
A

})

−4�I J
(
�AB

K
C − 1

2

{
�AB,�

K
C

}
+ 1

2

{
�K

C ,�AB

})

−4�I K
(
�AC

J
B − 1

2

{
�AC ,�

B
J

}
+ 1

2

{
�J

B,�AC

})

−4�J K
(
�BC

I
A − 1

2

{
�BC ,�

I
A

}
+ 1

2

{
�I

A,�BC

})

+
{

B̃ I J
AB,�

K
C

}
+

{
�K

C , B̃ I J
AB

}

+
{

B̃ I K
AC ,�

J
B

}
+

{
�J

B, B̃ I K
AC

}

+
{

B̃ J K
BC ,�

I
A

}
+

{
�I

A, B̃ J K
BC

}

−
{
�I

A, ∇̃ J
B�

K
C +∇̃K

C �
J
B +4�J K�BC +

[
�J

B,�
K
C

]}

−
{
�J

B, ∇̃ I
A�

K
C +∇̃K

C �
I
A +4�I K�AC +

[
�I

A,�
K
C

]}

−
{
�K

C , ∇̃ I
A�

J
B +∇̃ J

B�
I
A +4�I J�AB +

[
�I

A,�
J
B

]}
. (4.45i)

4.4. DISCUSSION OF THE CONSTRAINT EQUATIONS

To summarise the discussion of the previous section, by starting from an M6|8n-
trivial holomorphic principal 3-bundle Ê over the twistor space P6|2n , we have
constructed a holomorphically trivial principal 3-bundle over chiral superspace
M6|8n that comes equipped with a holomorphic connective structure subjected to
the superspace constraint equations (4.36a), (4.38), and (4.42). In particular, the
Čech equivalence class of any such bundle over the twistor space gives a gauge
equivalence class of complex holomorphic solutions to these constraint equations.
The inverse of this Penrose–Ward transform is well-defined, and returns an M6|8n-
trivial holomorphic principal 3-bundle Ê ′ over the twistor space P6|2n that is
equivalent to Ê . To see this, we take the components of the connective structure
on M6|8n and construct the relative connective structure using equations (4.33).
The fact that the relative 4-form curvature as well as the relative fake curva-
tures vanish, implies that the relative connective structure is pure gauge. From this
observation, the reverse construction of the Čech cocycles describing the princi-
pal 3-bundle Ê ′ over twistor space is essentially straightforward. We may, therefore,
formulate the following theorem:
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THEOREM 1. There is a bijection between

(i) equivalence classes of M6|8n-trivial holomorphic principal 3-bundles over the
twistor space P6|2n and

(ii) gauge equivalence classes of (complex holomorphic) solutions to the constraint
equations (4.36) on chiral superspace M6|2n .

Let us now discuss the constraint equations (4.36), or, equivalently, (4.36a),
(4.38), and (4.42) in more detail. The equation H AB = t(C AB) appearing in (4.38)
fixes the anti-self-dual part of H AB .19 However, by inspecting (4.45f), we realise
that we have, in fact, enough gauge freedom to choose a gauge via the gauge
transformation (4.45f) in which C AB vanishes identically. Alternatively, this also
follows from an analogous cohomological discussion to that presented in the
Abelian case in [5,7]. This gauge makes then transparent that our constraint equa-
tions indeed contain a non-Abelian generalisation of the self-dual tensor multiplet
represented by (HAB,ψ

I
A, φ

I J ), where HAB was defined in (4.40) and the spinors
ψ I

A and scalars φ I J were given in (4.37).
Note that, by construction, the fields (HAB,ψ

I
A, φ

I J ) take values in the kernel of
t :h→g. This is analogous to what was obtained previously in the context of prin-
cipal 2-bundles [5]. However, it is important to realise that contrary to the princi-
pal 2-bundle case, here this does not imply that (HAB,ψ

I
A, φ

I J ) have to take val-
ues in the centre of the Lie algebra h. Specifically, if, say, Y1 ∈ ker(t : h→ g), then
by virtue of axiom (ii) of a differential Lie 2-crossed module, we obtain [Y1,Y2]=
〈Y1,Y2〉 
= 0, in general, for any Y2 ∈ h. Thus, as a result of the non-triviality of
the Peiffer lifting, the tensor multiplet (HAB,ψ

I
A, φ

I J ) obtained from principal 3-
bundles is generally non-Abelian. Furthermore, as our equations are formulated
on superspace, they are manifestly supersymmetric. In addition, the whole twistor
construction is superconformal. Altogether, we have, therefore, obtained N = (n,0)
manifestly superconformal, interacting field theories with n =0,1,2 that contain a
non-Abelian generalisation of the N = (n,0) tensor multiplet.

We should note that a general gauge theory on a principal 3-bundle over chi-
ral superspace M6|8n , which we will discuss in Section 5, will contain the full fake
curvature condition H= H − t(C)=0. According to our constraint equations (4.38),
we do not find the full fake curvature equation on chiral superspace. However, if,
say, the sequence l → h → g was exact at h, we could always adjust the 3-form
potential C such that the general fake curvature condition holds since, by con-
struction, we have t(H)= 0 for the full 3-form curvature. Otherwise, even though
the relation of our constraint equations to parallel transport of two-dimensional
objects remains unclear at this stage,20 they still describe a consistent superconfor-
mal gauge theory.21

19This is quite similar to what happens in the field equations of [20].
20Note that parallel transport requires the vanishing of fake curvatures, see [32,74–76].
21In [77] a (non-supersymmetric) higher gauge theory including an action principle based on

principal 2-bundles was obtain that does not require the vanishing of the fake curvature either.
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A particularly interesting point is now the coupling of the ‘matter fields’, such as
ψ I

A and φ I J defined in (4.37), to the connective structure. Equations (4.38) together
with (4.45a)–(4.45e) show that these fields transform under gauge transformations
as

ψ I
A → ψ̃ I

A := g−1 �ψ I
A + t

(
α I

A

)
and φ I J → φ̃ I J := g−1 �φ I J + t(α I J ),

(4.46)

where the gauge parameters α I
A and α I J are fixed by the gauge parameters � and

� entering (4.45a)–(4.45e). This is the desired transformation and such a coupling
of matter fields to a connective structure of higher gauge theory had only been
obtained in [13] so far. Notice that HAB transforms likewise as HAB → H̃AB :=
g−1 � HAB + t(αAB).

Finally, let us come to a few special cases of our construction. First of all, if we
reduce our principal 3-bundle to a principal 2-bundle by choosing a Lie 2-crossed
module {1} → H → G, our equations reduce to those obtained in [13]. A further
reduction to the Abelian case {1} → U(1)→ {1} then obviously leads to the sit-
uation described in [5,6]. One can also perform the Penrose–Ward transform for
principal 3-bundles over the hyperplane twistor space introduced in [5]. This will
yield solutions to non-Abelian generalisations of the self-dual string equations. As
the discussion is straightforward (cf. the discussion for principal 2-bundles in [13]),
we refrain from going into any further details.

4.5. CONSTRAINT EQUATIONS AND SUPERCONFORMAL FIELD EQUATIONS

A detailed analysis of our constraint equations requires to reduce them to an
equivalent set of field equations on six-dimensional space-time M6. This step is
well understood, e.g. for the constraint equations of maximally supersymmetric
Yang–Mills theories [78,79] and three-dimensional supersymmetric Chern–Simons
theories [80,81].

In this reduction, the components of the curvatures along fermionic directions
are identified with matter superfields as done above, and the Bianchi identities
yield the corresponding field equations for a supermultiplet of superfields. These
field equations can then be shown to be equivalent to the field equations restricted
to the purely bosonic part of the superfields. One thus arrives at a set of supersym-
metric field equations on ordinary space–time. This reduction procedure, however,
is very involved, and it is, therefore, beyond the scope of this paper and postponed
to future work.

Although we do not have the explicit field equations on space–time, we already
know that they will consist of a N = (2,0) superconformal higher gauge the-
ory involving a connective structure on a trivial principal 3-bundle over six-
dimensional Minkowski space. Recall that recently, N = (1,0) superconformal field
theories were derived from a non-Abelian generalisation of the tensor hierarchy
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[20,22,24]. An obvious question is now if there is any relation between our N =
(2,0) field equations and those of the (1,0)-models.

The general relation between higher gauge theories and the (1,0)-models was
explored in [82]. There it was found that the algebraic structure underlying the
(1,0)-models can be encoded in a certain class of semistrict Lie n-algebras. More-
over, the field equations are those of a higher gauge theory with an additional six-
dimensional vector multiplet coupled to the tensor multiplet. In [20,22,24], how-
ever, no fake curvature conditions were imposed and correspondingly, there is
no underlying parallel transport of extended objects. A further difference to our
superconformal field equations is the fact that we had to restrict our discussion to
the case of strict Lie n-algebras, as a more general cocycle description of princi-
pal 3-bundles is not yet available. We thus see that there is a large overlap in field
content and equations of motion between our superconformal field equations and
the (1,0)-models.

Finally, it is certainly tempting to speculate about the role of our constraint
equations in the description of systems of multiple M5-branes. Recall that the
interactions of M5-branes are mediated by M2-branes suspended between these,
and their boundaries form so-called self-dual strings. An effective description
of M5-branes should, therefore, capture the parallel transport of these self-dual
strings, just as the effective description of D-branes by Yang–Mills theories cap-
tures the parallel transport of the endpoints of strings. This argument directly leads
to superconformal higher gauge theories such as the one constructed in this paper.

Possibly the most important consistency check for an effective description of
M5-branes is a convincing reduction mechanism to five-dimensional supersymmet-
ric Yang–Mills theory. This remains an open problem for both our field equations
as well as those of the (1,0)-model. Similarly unclear is what higher gauge group
one should choose for a description of systems of multiple M5-branes. There are
arguments which are based on a relation of higher principal bundles with principal
bundles on loop space and the necessity of a reduction to five-dimensional Yang–
Mills theory. Naively, they suggest to use the automorphism 2-group of U(N ).
More sophisticated arguments suggest to use string 2-groups, cf. [18].

5. Higher Gauge Theory on Principal 3-Bundles

In the derivation of the constraint equations in the last section, all features of
gauge theory on principal 3-bundles have become apparent. Let us summarise
these in the following.

To give a complete description, we will discuss the underlying non-Abelian dif-
ferential cohomology right from the start. Recall that Abelian (n − 1)-gerbes with
connective structure are described by Deligne cohomology [83]. The non-Abelian
differential cohomology we have in mind here is one that is based on principal
n-bundles with structure n-groups, and which reduces to Deligne cohomology for
the case of Abelian (n − 1)-gerbes, that is principal n-bundles with gauge n-group
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Bn−1U(1). In the following, we shall iterate through the principal n-bundles for
n =0,1,2,3.

Consider a manifold M with a cover U :={Ua}. We denote Čech p-cochains that
take values in the sheaf of smooth functions into G by C p,0(U,G) and Čech p-
cochains that take values in the sheaf of differential q-forms on M times a Lie
algebra g by C p,q(U,g).

Degree 0. A degree-0 cochain {ga} with values in G is specified by a set {ga} ∈
C0,0(U,G). The cocycle condition reads as

ga = gb on Ua ∩Ub. (5.1)

As usual in degree 0, there is no equivalence between cocycles in terms of
coboundaries. Thus, an element of the degree 0 cohomology set defines a smooth
function M →G, which could be called a principal 0-bundle.

Degree 1. A degree-1 G-valued cochain ({gab}, {Aa}) is given by the Čech cochains
{gab}∈C1,0(U,G) and {Aa}∈C0,1(U,g). The degree-1 cocycle condition amounts to

gac = gabgbc on Ua ∩Ub ∩Uc, (5.2a)

Ab = g−1
ab Aagab + g−1

ab dgab on Ua ∩Ub. (5.2b)

Two degree-1 cocycles ({gab}, {Aa}) and ({g̃ab}, { Ãa}) are considered equivalent if
there is a degree-0 cochain {ga} with values in G such that

Ãa = g−1
a Aaga + g−1

a dga on Ua, (5.3a)

g̃ab = g−1
a gabgb on Ua ∩Ub. (5.3b)

We conclude that elements of the degree-1 cohomology set define principal
(1-)bundles with connection. Note that the second cocycle condition turns the local
Lie algebra valued one-forms {Aa} into a global object, the connection. The cur-
vature of ({gab}, {Aa}) ,

Fa :=dAa + 1
2 [Aa, Aa], (5.4)

fulfils the Bianchi identity dFa +[Aa, Fa] = 0. Moreover, the curvatures of ({gab},
{Aa}) and ({g̃ab}, { Ãa}) are related via

F̃a = g−1
a Faga on Ua . (5.5)

Degree 2. A degree-2 cochain with values in the Lie crossed module (H
t→G) con-

sists of the following Čech cochains:

{habc}∈C2,0(U,H), {�ab}∈C1,1(U,h), {Ba}∈C0,2(U,h),

{gab}∈C1,0(U,G), {Aa}∈C0,1(U,g).
(5.6)
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Note that contrary to Deligne cohomology, the sum of Čech and de Rham degrees
of the Čech cochains forming the non-Abelian differential cochain will no longer
be constant from now on. The degrees are constant, however, across the form-
valued Čech cochains which take values in the same Lie algebra or integrating Lie
group. Moreover, since we fixed our conventions such that gaa =1, we do not have
the additional elements C0,0(U,H) that appeared in Schreiber and Waldorf [84].
The degree-2 cocycle conditions are

hacd habc =habd(gab �hbcd), (5.7a)

�ac =�bc + g−1
bc ��ab − g−1

ac �
(

habc∇ah−1
abc

)
, (5.7b)

Bb = g−1
ab � Ba −∇b�ab − 1

2 [�ab,�ab], (5.7c)

gac = t(habc)gabgbc, (5.7d)

Ab = g−1
ab Aagab + g−1

ab dgab − t(�ab), (5.7e)

where each equation is considered on the obvious intersections of patches. Note
that upon putting haba = 1, the cocycle condition for �ab turns into the corre-
sponding consistency condition given in [1].

Two cocycles ({habc}, {�ab}, {Ba}, {gab}, {Aa}) and ({h̃abc}, {�̃ab}, {B̃a}, {g̃ab}, { Ãa})
are considered cohomologous, if there is a degree-1 (H

t→G)-valued cochain

{hab}∈C1,0(U,H), {�a}∈C0,1(U,h) and {ga}∈C0,0(U,G) (5.8)

such that

h̃abc = g−1
a �

(
hachabc

(
gab �h−1

bc

)
h−1

ab

)
, (5.9a)

�̃ab = g−1
b ��ab +�b − g̃−1

ab ��a −
(

g−1
b g−1

ab

)
�

(
h−1

ab ∇bhab

)
, (5.9b)

B̃a = g−1
a � Ba −∇̃a�a − 1

2 [�a,�a], (5.9c)

g̃ab = g−1
a t(hab)gabgb, (5.9d)

Ãa = g−1
a Aaga + g−1

a dga − t(�a). (5.9e)

On each patch Ua , we introduce the curvatures

Fa :=dAa + 1
2 [Aa, Aa] and Ha :=dBa + Aa � Ba =∇a Ba . (5.10)

To render the underlying parallel transport of one-dimensional objects along sur-
faces reparameterisation invariant, one has to impose the fake curvature condition:

Fa := Fa − t(Ba)=0. (5.11)

Besides the Bianchi identity for Fa , the fake curvature condition yields the Bianchi
identity dHa + Aa � Ha =0 together with

t(Ha)=0, (5.12)
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and this equation, together with the Peiffer identity, implies that Ha takes values
in the centre of h. The curvatures of cohomologous 2-cochains ({habc}, {�ab}, {Ba},
{gab}, {Aa}) and ({h̃abc}, {�̃ab}, {B̃a}, {g̃ab}, { Ãa}) are related as follows:

F̃a = g−1
a Faga − t

(
∇̃a�a + 1

2 [�a,�a]
)
, (5.13a)

H̃a = g−1
a � Ha − (F̃a − t(B̃a))��a . (5.13b)

Note that the degree-2 cohomology set arose from the degree-1 set by cate-
gorification: the cocycle and coboundary relations for degree 1 hold in degree 2
only up to isomorphisms. Therefore, we expect that beyond the equivalence rela-
tion between cochains, there should be an equivalence relation between equiva-
lence relations. Two degree-0 cochains ({ga}, {hab}) and ({g̃a}, {h̃ab}) encoding an
equivalence relation (5.9) are called cohomologous, if there is a degree-0 cochain
{ha}∈C0,0(U,h) such that

g̃a = t(ha)ga and h̃ab =hahab

(
gab �h−1

b

)
. (5.14)

Degree 3. Degree-3 cochains with values in the Lie 2-crossed module (L
t→H

t→G)
are encoded in the following Čech cochains:

{�abcd}∈C3,0(U,L), {�abc}∈C2,1(U, l), {�ab}∈C1,2(U, l), {Ca}∈C0,3(U, l),

{habc}∈C2,0(U,H), {�ab}∈C1,1(U,h), {Ba}∈C0,2(U,h),

{gab}∈C1,0(U,G), {Aa}∈C0,1(U,g).

(5.15)

The degree-3 cocycle conditions for {�abcd}, {habc}, and {gab} are given in (3.5).
The corresponding equations on the gauge potentials {Ca}, {Ba}, and {Aa} are
given by gauge transformations across overlaps of patches:

Cb = g−1
ab �Ca −∇b

(
�ab − 1

2 {�ab,�ab}
)+ t(�ab)� 1

2 {�ab,�ab}
+{Bb,�ab}+{�ab, Bb}+{�ab,∇b�ab + 1

2 [�ab,�ab]}, (5.16a)

Bb = g−1
ab � Ba −∇b�ab − 1

2 [�ab,�ab]− t(�ab), (5.16b)

Ab = g−1
ab Aagab + g−1

ab dgab − t(�ab). (5.16c)

The degree-3 cocycle condition for {�ab} is an obvious categorification of the
degree-2 cocycle condition of {�ab}. We omit the remaining cocycle conditions for
{�abc} and {�ab}, as their explicit form is mostly irrelevant for working with higher
gauge theories based on principal 3-bundles. Moreover, they are easily derived: the
degree-3 cocycle condition for {�ab} and {�ab} are obtained by demanding con-
sistency of the ‘gluing relations’ (5.16) across triple intersections of patches Ua ∩
Ub ∩Uc. The consistency of the thus obtained cocycle conditions across quadruple
intersections of patches then yields the cocycle condition for {�abc}.

Two degree-3 cochains ({�abcd}, {�abc}, {�ab}, {Ca}, {habc}, {�ab}, {Ba}, {gab}, {Aa})
and ({�̃abcd}, {�̃abc}, {�̃ab}, {C̃a}, {h̃abc}, {�̃ab}, {B̃a}, {g̃ab}, { Ãa}) are cohomologous,
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if relations (3.6), the following equations:

C̃a = g−1
a �Ca −∇̃0

a

(
�a − 1

2 {�a,�a})

+{B̃a,�a}+{�a, B̃a}+{�a, ∇̃a�a + 1
2 [�a,�a]}, (5.17a)

B̃a = g−1
a � Ba −∇̃a�a − 1

2 [�a,�a]− t(�a), (5.17b)

Ãa = g−1
a Aaga + g−1

a dga − t(�a), (5.17c)

and additional equations for {�abc}, {�ab}, and {�ab}, which we again suppress,
are satisfied. Here, ∇̃0

a :=d + Ã0
a � with Ã0

a := Ã0
a + t(�a).

Again, to have a well-defined underlying parallel transport along volumes, the
curvatures

Fa :=dAa + 1
2 [Aa, Aa], Ha = ∇a Ba, Ga :=∇aCa +{Ba, Ba} (5.18)

have to satisfy the fake curvature conditions

Fa := Fa − t(Ba)=0 and Ha := Ha − t(Ca)=0. (5.19)

Besides the usual Bianchi identity involving Fa , we have

∇a Ha + t({Ba, Ba})=0 and ∇aGa =0 (5.20)

together with

t(Ha)=0 and t(Ga)=0. (5.21)

Once again, this should be compared to the principal 2-bundle case. Because of
the Peiffer lifting, the equation t(Ha)= 0 does not imply that Ha takes values in
the centre of h, rather it is non-Abelian in general. However, t(Ga)=0 implies that

Ga lies in the centre of l since (l
t→h,�), with � being the induced h-action on l

defined in (2.6), is a differential crossed module.
The curvatures of cohomologous 3-cochains are then related via

F̃a = g−1
a Faga − t

(∇̃a�a + 1
2 t(�a)��a

)
, (5.22a)

H̃a = g−1
a � Ha − (

F̃a − t(B̃a)
)
��a

+t
[
−∇̃0

a

(
�a − 1

2 {�a,�a})+{B̃a,�a}+{�a, B̃a}
+

{
�a, ∇̃a�a + 1

2 [�a,�a]
}]
, (5.22b)

G̃a = g−1
a � Ga − (

F̃a − t(B̃a)
)
�

(
�a − 1

2 {�a,�a})

+{�a, H̃a − t(C̃a)}−{H̃a − t(C̃a),�a}
−

{
�a,

(
F̃a − t(B̃a)

)
��a

}
. (5.22c)

Eventually, note that there are again equivalence relations between equivalence
relations here, and one has a categorified version of equation (5.14). They appear
in the Penrose–Ward transform in (4.31), but they turn out to be irrelevant for the
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resulting field equations, as one would expect. Note that the has used in the cat-
egorification of (5.14) and the ones appearing in (4.31) are related by ha ↔ g−1

a �
ha . In addition, there is a further equivalence relation between these equivalences.
Since these formulæ are rather lengthy, not very illuminating and of no direct use
in the discussion of the dynamics of connective structures on principal 3-bundles,
we again refrain from listing them here.

6. Conclusions

In this paper, we constructed new N = (n,0) superconformal field theories in six
dimensions with n =0,1,2 that contain a non-Abelian generalisation of the tensor
multiplet. The equations were obtained from a Penrose–Ward transform of certain
holomorphic principal 3-bundles over a suitable twistor space. Compared to the
superconformal field equations that we had derived previously in [13], the equa-
tions here are significantly more general: the Peiffer identity is lifted in a controlled
way and the previous restriction of the 3-form curvature H to live in the centre of
a Lie algebra is removed. Moreover, our new equations contain a 3-form potential,
which can be motivated by either making connections to M-theory or by referring
to other approaches to six-dimensional superconformal field theories as those in
[20,22,24,25] or [18].

The Penrose–Ward transform exposed all features of higher gauge theory with
principal 3-bundles, some of which had remained unexplored in the literature so
far. In particular, we formulated the non-Abelian differential cohomology that
describes principal 3-bundles with connective structure. This cohomology nicely
reduces to the usual Deligne cohomology, when the principal 3-bundle is reduced
to an Abelian 2-gerbe.

The constraint equations we obtained seem rather promising to us, and they lead
to a number of questions that we intend to address in future work. First of all, it
is important to reduce our superfield constraint equations to actual field equations
on ordinary six-dimensional space-time. This issue appears usually in the twistor
description of field equations, see [78,79] for the case of maximally supersymmet-
ric Yang–Mills theory in four dimensions and [80,81] for similar expansions in the
context of three-dimensional supersymmetric Chern–Simons theories. Once this is
done, a more detailed analysis of the field equations and their possible relation to
the effective description of M5-branes can be undertaken. In particular, the reduc-
tion to five-dimensional super Yang–Mills theory as well as a detailed study of the
BPS configurations known as self-dual strings should be performed. As we pointed
out, our superconformal tensor field equations can be dimensionally reduced to
those of a non-Abelian generalisation of the self-dual string equations. Alterna-
tively, these equations can also be obtained from holomorphic principal 3-bundles
over the hyperplane twistor space introduced in [5].

An important question is the interpretation of the additional 3-form potential
that is not believed to be part of the field content of an effective description of
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M5-branes. Currently, it seems that this field should be regarded analogously to
the 3-form field appearing in [20,22,24,25]. That is, it merely mediates couplings
between the various other fields.

Finally, it still seems conceivable that a manageable Čech description of prin-
cipal 2-bundles with semistrict structure 2-groups exists. In this case, our twistor
construction would be an ideal approach both to explore the general definition of
semistrict higher gauge theories as well as to find new and more general supercon-
formal field theories in six dimensions.
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Appendix A: Collection of Lie 2-Crossed Module Identities and Their Proofs

Useful Lie 2-Crossed Module Identities. Let us collect and prove some useful iden-
tities which are used throughout this work. We have

{1,h}=1={h,1} for all h ∈H, (A.1)

as follows directly from applying the Lie 2-crossed module axioms (iv) and (v) to
{11,h} and {h,11}, respectively.

Obvious, but very useful is also

�1�2 ={t(�1), t(�2)}�2�1 for all �1, �2 ∈ L. (A.2)

By applying the Lie 2-crossed module axiom (iv) to the expression {h1h−1
1 ,h1h2h1},

we find

{h1,h2}−1 = t(h1)� {h−1
1 ,h1h2h−1

1 } for all h1,h2 ∈ H. (A.3)

Together, with axiom (vi), this enables us to rewrite the induced H-action on L
given in (2.2) as

h ��= t(h)� (�{h−1,ht(�−1)h−1}) for all h ∈ H and � ∈ L. (A.4)

Note that

{h1,h2}�=��−1{h1,h2}�({h1,h2})−1{h1,h2}
=�{t(�)−1, t({h1,h2})}{h1,h2}
= (t({h1,h2})��){h1,h2} (A.5)

for all h1,h2 ∈H and �∈L.
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As observed in [32], the fact that the action of H onto L is an automorphism
together with (A.5) implies that we can reformulate the Lie 2-crossed module
axiom (v) as follows:

{h1,h2h3}={h1,h2}{h1,h3}{〈h1,h3〉−1, t(h1)�h2}
={h1,h2}((t(h1)�h2)� {h1,h3})
= (t({h1,h2})� (t(h1)�h2)� {h1,h3}){h1,h2}
= ((h1h2h−1

1

(
h1h−1

2 h−1
1 )

)
�

(
h1h2h−1

1

)
� {h1,h3}){h1,h2}

=
((

h1h2h−1
1

)
� {h1,h3}

)
{h1,h2} (A.6)

for all h1,h2,h3 ∈H.

Proof that the Induced H-Action Is By Automorphisms. To verify that the induced
H-action (2.2) is an automorphism action, one has to demonstrate the two rela-
tions h1h2 ��=h1 �h2 �� and h � (�1�2)= (h ��1)(h ��2) for all h,h1,h2 ∈H and
�, �1, �2 ∈L.

To show the first relation, we use the alternative version (A.4) for the induced
H-action on L. We find

(h1h2)�� = (t(h1h2)��)
{
t(h1h2)� (h1h2)

−1, t(h1h2)�
(

h1h2t(�−1)h−1
2 h−1

1

)}

= (t(h1h2)��)
{
t(h1h2)�h−1

2 , t(h1h2)�
(

h2t(�−1)h−1
2

)}

×
{
t(h1)�h−1

1 , t(h1)�
(

h1h2t(�−1)h−1
2 h−1

1

)}

=h1 � (h2 ��). (A.7)

To show the second relation, we consider

(h ��1)(h ��2)=�1

{
t
(
�−1

1

)
,h

}
�2

{
t
(
�−1

2

)
,h

}

=�1�2

{
t
(
�−1

2

)
, t

(
�−1

1

)
ht (�1) h−1

}{
t
(
�−1

1

)
,h

}{
t
(
�−1

2

)
,h

}

=�1�2

{
t
(
�−1

2

)
, t

(
�−1

1

)
ht (�1) h−1

}

×
{
t
(
�−1

2

)
,h

}
{ht

(
�−1

2

)
h−1t(�2), t

(
�−1

1

)
ht

(
�1)h

−1
}{

t
(
�−1

1

)
,h

}

=�1�2

{
t
(
�−1

2

)
, t

(
�−1

1

)
ht(�1)h

−1h
}{

t
(
�−1

1

)
,h

}
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=�1�2

{
t
(
�−1

2

)
, t

(
�−1

1

)
ht(�1)

}{
t
(
�−1

1

)
,h

}

=�1�2

{
t
(
�−1

2

)
t
(
�−1

1

)
,h

}

=h � (�1�2). (A.8)
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tion. Birkhäuser, Boston (2007)

84. Schreiber, U., Waldorf, K.: Connections on non-abelian gerbes and their holonomy.
Theor. Appl. Categ. 28, 476 (2013). [0808.1923 [math.DG]]

http://arxiv.org/abs/hep-th/0508137
http://arxiv.org/abs/1201.6285
http://arxiv.org/abs/hep-th/0309173
http://arxiv.org/abs/hep-th/0412325
http://arxiv.org/abs/math.DG/0511710
http://arxiv.org/abs/1006.0903
http://arxiv.org/abs/0912.1358
http://arxiv.org/abs/1008.2739
http://arxiv.org/abs/1308.2622
http://arxiv.org/abs/0808.1923

	Six-Dimensional Superconformal Field Theories from Principal 3-Bundles over Twistor Space
	Introduction
	Gauge Structure: Lie 3-Groups and Lie 2-Crossed Modules
	LIE CROSSED MODULES AND DIFFERENTIAL CROSSEDMODULES
	LIE 2-CROSSED MODULES AND DIFFERENTIAL 2-CROSSED MODULES

	Principal 3-Bundles
	COCYCLE DESCRIPTION OF PRINCIPAL 1- AND 2-BUNDLES
	COCYCLE DESCRIPTION OF PRINCIPAL 3-BUNDLES

	Penrose--Ward Transform and Self-Dual Fields
	OUTLINE OF THE PENROSE--WARD TRANSFORM
	TWISTOR SPACE
	PENROSE--WARD TRANSFORM
	DISCUSSION OF THE CONSTRAINT EQUATIONS
	CONSTRAINT EQUATIONS AND SUPERCONFORMAL FIELD EQUATIONS

	Higher Gauge Theory on Principal 3-Bundles
	Conclusions
	Acknowledgements
	Appendix A: Collection of Lie 2-Crossed Module Identities and Their Proofs
	References


