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Abstract. We prove the equivalence of (a slightly modified version of) the wall-crossing
formula of Manschot, Pioline and Sen and the wall-crossing formula of Kontsevich and
Soibelman. The former involves abelian analogues of the motivic Donaldson–Thomas type
invariants of quivers with stability introduced by Kontsevich and Soibelman, for which we
derive positivity and geometricity properties.
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1. Introduction

In [12,13] a general framework for the study of the wall-crossing behaviour of
Donaldson–Thomas invariants for 3-Calabi–Yau categories was described. It was
observed in [13] that motivic Donaldson–Thomas invariants of 3-Calabi–Yau man-
ifolds should be equivalent to the refined BPS invariants (see also [4]). Although
the primary interest lies in Donaldson–Thomas invariants for 3-Calabi–Yau cat-
egories, it turns out that Donaldson–Thomas invariants for quivers play a key
role in this setup, since they universally capture the behaviour of Donaldson–
Thomas invariants when crossing a single wall. An alternative definition of motivic
Donaldson–Thomas invariants of quivers, based on cohomological Hall algebras,
was introduced in [14]. Their definition conforms to the proposed mathematical
definition of the BPS state algebra of [9]. Central to the setup of [14] are various
integrality and positivity predictions for the motivic invariants.

The relative integrality of Donaldson–Thomas invariants for quivers was estab-
lished in [20], based on methods [18,19]. These methods were combined in
[22] with the tropical vertex methods of [8] to relate topological invariants
of quiver moduli to Gromov-Witten invariants of toric surfaces (see [6] for a
refined/quantum analogue).

Recently Manschot et al. [16] proposed an explicit wall-crossing formula (called
MPS wall-crossing in the following) for the BPS invariants in the rank two lattice
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of charges by using multi-cantered black hole solutions in supergravity. They also
conjectured that their formula is equivalent to the Kontsevich–Soibelman (KS)
wall-crossing formula [13] in the refined case and to the Joyce–Song wall-crossing
formula [12] in the unrefined case. In this paper, we will show that a slightly mod-
ified MPS formula is equivalent to the KS wall-crossing formula.

A key ingredient of the MPS wall-crossing formula are abelian analogues of the
motivic Donaldson–Thomas invariants of [14]. In the language of [16], these arise
since the index of certain quivers can be reduced to the abelian case, by a phys-
ical argument which allows trading Bose–Fermi statistics with its classical limit,
Maxwell–Boltzmann statistics. The precise mechanism of this reduction, the MPS
degeneration formula, is again equivalent to the Harder–Narasimhan recursion of
[18] (see [21] for a proof in the motivic setup). Under the Gromov–Witten/quiver
duality of [22], the MPS degeneration formula is shown in [21] to correspond to
degeneration formulas in Gromov–Witten theory.

The importance of the approach [16] to the understanding of wall-crossing
formulas and motivic invariants for quivers makes it desirable to study abelian
quiver invariants more systematically, which is the motivation for the present
paper.

One of our aims is to prove integrality and positivity properties of these and
related invariants, and confirm a hypothesis of [17] on their geometric nature.

Let us describe first the KS wall-crossing formula (or HN recursion). Let � be
a rank 2 lattice with a non-degenerate, integer valued skew-symmetric form 〈−,−〉
and let �+ ⊂ � be a monoid having two generators. We define a total preorder
on �∗+ =�+\{0} by setting α ≤β if 〈α,β〉≥ 0. Similarly we order rays l = R>0γ ⊂
�⊗R with γ ∈�∗+. Assume now that we have two families of (refined, rational DT)
invariants �̄−

γ , �̄+
γ for γ ∈�∗+, which are related by an equation of ordered prod-

ucts over rays taken in clockwise (resp. anticlockwise) order

�∏

l

exp

(∑
γ∈l∩� �̄+

γ xγ

q
1
2 −q− 1

2

)
=

�∏

l

exp

(∑
γ∈l∩� �̄−

γ xγ

q
1
2 −q− 1

2

)
(1)

in the quantum torus (see Section 5.1) of �. This is the KS wall-crossing formula.
It allows us to recursively express the invariants �̄+

γ in terms of the invariants �̄−
γ .

For any nonzero m : �∗+ → N with finite support define ‖m‖ = ∑
m(α)α ∈ �∗+ and

m!=∏
m(α)! ∈N. Then we can write (cf. [16, Eq. 1.5])

�̄+
γ =

∑

m:�∗+→N

‖m‖=γ

g(m)

m!
∏

α∈�∗+

(�̄−
α )m(α) (2)

for some invariants g(m). The computation of these invariants is recursive and is
rather difficult (see however [18]).

Manschot et al. [16] suggested the following description of the invariants g(m).
They first construct invariants g(α1, . . . , αn) for non-parallel αi ∈ �, then extend
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their formula to non-parallel αi ∈ � ⊗ R and finally take limits to allow identi-
cal or parallel αi . The map m : �∗+ → N corresponding to (α1, . . . , αn) is given by
m(α) = #{i :αi =α}. The equivalence of the KS wall-crossing formula (1) and the
MPS wall-crossing formula (2) (with the above description of the invariants g(m))
was proved by Sen [23].

In this paper we give a slightly different description of the invariants g(m) which
leads us to the introduction of the abelian quiver invariants. For any m :�∗+ → N

define a quiver Q(m) with vertices αk , where α∈�∗+ and 1≤k ≤m(α). Let the num-
ber of vertices from αk to βk′ be 〈β,α〉 if 〈β,α〉>0 and zero otherwise. We define
the invariant f+(m) to be the motivic invariant of the moduli stack of semistable
abelian representations of Q(m), where abelian means that the representation has
dimension one at every vertex of the quiver. An explicit formula for the invariant
f+(m) can be obtained by using the results of [18] (see also Corollary 3.4). Given
a ray l ⊂� ⊗R, we define invariants g(m) with ‖m‖∈ l, by the formula

1+
∑

‖m‖∈l

f+(m)
xm

m! = exp

(∑
‖m‖∈l g(m) xm

m!
q

1
2 −q− 1

2

)
. (3)

Note that if ‖m‖∈�∗+ is indivisible then g(m)= (q
1
2 −q− 1

2 ) f+(m). Our first result
is the following equivalence conjectured by Manschot et al. [16] (see Theorem 8.3).

THEOREM 1.1. The MPS wall-crossing formula (Equations (2), (3)) is equivalent
to the KS wall-crossing formula (Equation (1)).

For the proof of the above theorem we will closely study abelian quiver represen-
tations. Let Q be a quiver with a fixed stability function Z on the group of dimen-
sion vectors �(Q). For any dimension vector α ∈�(Q) we construct a new quiver
Q(α) with vertices ik , where i ∈ Q0 and 1≤ k ≤αi . Let the number of arrows from
ik to jk′ in Q(α) be the number of arrows from i to j in Q (compare this construc-
tion with the above construction of the quiver Q(m)). The quiver Q(α) inherits
a stability function from Q, and we can define the moduli space of abelian semi-
stable representations of Q(α). Let fZ (α) be the motivic invariant of this moduli
space. Our second result is the following analog of the HN recursion [18] and the
KS wall-crossing formula [13] (see Theorem 3.3)

THEOREM 1.2. The ordered product

�∏

l

⎛

⎝1+
∑

Z(α)∈l

fZ (α)
xα

α!

⎞

⎠ (4)

in the quantum torus of Q is independent of the stability function Z .
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The recursion formula that one obtains from the above theorem can be solved
using the method of [18] (see Corollary 3.4). We define abelian quiver invariants
gZ (α) by the formula

1+
∑

Z(α)∈l

fZ (α)
xα

α! = exp

(∑
Z(α)∈l gZ (α) xα

α!
q

1
2 −q− 1

2

)
. (5)

Similarly to the case of motivic DT invariants of quivers with stability [14], we
can ask about polynomiality, integrality, and positivity properties of the invariants
gZ (α). Our third result is

THEOREM 1.3. Assume that the ray l is such that 〈α,β〉=0 whenever Z(α), Z(β)∈
l and fZ (α), fZ (β) �=0. Then gZ (α)∈N[q± 1

2 ].

In the case of a trivial stability Z , we give an explicit formula for gZ (α) in terms
of natural statistics on spanning trees in a graph. In the general case, the above
theorem follows from (see Theorem 6.5)

THEOREM 1.4. Under the assumptions of the previous theorem, the abelian invari-
ant gZ (α) equals the motive [MZdef (Q(α))]vir of the moduli space of abelian repre-
sentations which are stable with respect to a suitably deformed stability Zdef .

This result confirms a “geometricity” hypothesis for motivic DT invariants
implicit in [17]; namely, there it is assumed that the motivic DT invariant for a
quiver with stability always equals the motive of some appropriately defined “mod-
uli space” depending on the quiver, the stability function and the dimension vector.

The paper is organized as follows: in Section 2 we recall basic facts on quivers,
stability functions and the associated moduli spaces. Using Harder–Narasimhan
techniques, we prove the abelian wall-crossing formula in Section 3. We apply a
graph-theoretic lemma in Section 4 to obtain an explicit formula for the abelian
invariants for trivial stabilities. This enables us to discuss the notion of (quantum)
admissibility of certain series in quantum tori, in analogy to [14], in Section 5,
and to prove integrality of the abelian invariants. Section 6 contains the proof of
the geometricity hypothesis for the abelian invariants, leading to their positivity
properties. Motivated by this, we study related invariants counting indecomposable
semistable abelian quiver representations in Section 7, and discuss their positivity
properties and a graph-theoretic interpretation. The equivalence of KS and MPS
wall-crossing is proved in Section 8; finally, we use abelian wall-crossing in Section
8.1 to give a conceptual explanation for the motivic MPS degeneration formula
of [21].
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2. Notation and Preliminaries

2.1. MOTIVIC INVARIANTS

In this section we assume that k = C. Let K0(Vark) be the group generated by
isomorphism classes [X ] of algebraic varieties X over k, subject to the relation
[X ] = [Y ] + [X\Y ] for any closed subvariety Y ⊂ X . Let L = [A1] and let V =
K0(Vark)⊗Z[L] Q(L

1
2 ).

Sometimes we will denote L by q. For any smooth connected algebraic variety
X we define

[X ]vir =q− 1
2 dim X [X ]∈V. (6)

In particular, we define

g =[Gm]vir =q− 1
2 (q −1)=q

1
2 −q− 1

2 . (7)

Remark 2.1. Given a smooth projective variety X over k, we define its Poincaré
polynomial P(X)∈Z[q 1

2 ] by

P(X)=
∑

k≥0

q
k
2 dim Hk(X,Q). (8)

This map can be uniquely extended to a map P : V → Q(q
1
2 ) with P(L

1
2 ) = q

1
2 ,

called the virtual Poincaré polynomial. Note that for any smooth projective variety
X the function

P([X ]vir)=
∑

k≥0

q
1
2 (k−dim X) dim Hk(X,Q)

is invariant under the change of variables q
1
2 �→q− 1

2 by Poincaré duality.

2.2. PARTITIONS

Given a commutative monoid S with identity element 0 ∈ S, let S∗ = S\{0}. Given
a set X and a commutative monoid S, let P(X, S) be the set of functions f : X →
S with finite support, i.e. functions such that f −1(S∗) is finite. We will denote
P(X,N) by P(X). Given f ∈ P(X), we define f ! = ∏

x∈X f (x)!. Note that P(N∗)
can be identified with the set of partitions [15, Section 1], as we can associate
with any m ∈P(N∗) the partition (1m1 ,2m2 , . . . ) having weight

∑
i≥1 imi . We define

maps

‖−‖ :P(S∗)→ S, m �→
∑

s∈S

m(s)s (9)

and

|−| :P(X, S)→ S, f �→
∑

x∈X

f (x). (10)
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For any f ∈P(X, S) define the multiplicity function m f ∈P(S∗) by

S∗ � s �→# f −1(s).

Then | f |=‖m f ‖.

2.3. QUIVERS

Let Q be a quiver (possibly infinite). We define the group of dimension vec-
tors �(Q) = P(Q0,Z) to be the group of maps Q0 → Z with finite support. Let
�+(Q) = P(Q0) ⊂ �(Q) be the monoid of maps Q0 → N with finite support and
let �∗+(Q) = �+(Q)\{0}. For any vertex i ∈ Q0, we denote also by i ∈ �+(Q) the
corresponding dimension vector Q0 � j �→ δi j ∈N.

Define a bilinear form r = rQ on �(Q) by

r(α,β)=
∑

(a:i→ j)∈Q1

αiβ j , (11)

i.e. for any i, j ∈ Q0 the value r(i, j) is the number of arrows from i to j . Define
the Euler–Ringel bilinear form χ =χQ on �(Q) by

χ(α,β)=
∑

i∈Q0

αiβi −
∑

(a:i→ j)∈Q1

αiβ j =α ·β − r(α,β). (12)

Finally, define a skew-symmetric form 〈·, ·〉 on �(Q) by

〈α,β〉=χ(α,β)−χ(β,α)= r(β,α)− r(α,β). (13)

2.4. STABILITY FUNCTIONS

A central charge (or stability function) on a quiver Q is a group homomorphism
Z :�(Q)→C such that Z( j)∈H+ for j ∈ Q0, where

H+ ={reiπϕ | r >0,0<ϕ ≤1}. (14)

There exist group homomorphisms d, r :�(Q)→R such that Z(α)=−d(α)+ ir(α)

for α ∈�(Q). Define the slope function μZ :�∗+(Q)→R∪{∞} by the rule

μZ (α)= d(α)

r(α)
, α ∈�(Q).

Define a total preorder ≤Z on �∗+(Q) by the rule α ≤β if μZ (α)≤μZ (β). We will
write α <Z β if α ≤Z β but β �≤Z α, i.e. if μZ (α) < μZ (β). We define an equiva-
lence relation ∼Z on �∗+(Q) by α ∼Z β if μZ (α)=μZ (β). The stability function Z
is called trivial if α ∼Z β for any α,β ∈�∗+(Q).
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2.5. SEMISTABLE REPRESENTATIONS

For a representation M of a quiver Q we define its dimension vector dimM ∈
�+(Q) by Q0 � i �→ dim Mi . A representation M is called stable (resp. semistable)
if for any proper nonzero subrepresentation N ⊂ M we have dimN <Z dimM
(resp. dimN ≤Z dimM). For any α ∈ �+(Q), let RZ (Q, α) be the subset of Z -
semi-stable points in the space R(Q, α)=⊕

a:i→ j Hom(kαi ,k
α j ) of representations

of Q having dimension vector α. It is endowed with an action of the group
GLα(k)=∏

i∈Q0
GLαi (k). We define the moduli space MZ (Q, α) as the GIT quo-

tient RZ (Q, α)//GLα(k). This moduli space is smooth if Z is α-generic, i.e. every
semistable representation having dimension vector α is stable.

For any ray l ⊂H+, we define the generating function

AZ ,l =1+
∑

Z(α)∈l

[RZ (Q, α)]vir

[GLα]vir
xα. (15)

Define the quantum torus TQ of the quiver Q to be the algebra V[[xi , i ∈ Q0]]
with the twisted multiplication

xα ◦ xβ =q
1
2 〈α,β〉xα+β. (16)

The Harder–Narasimhan recursion formula [18] says that

�∏

l

AZ ,l =
∑

α∈�+(Q)

[R(Q, α)]vir

[GLα]vir
xα, (17)

where the product is taken over the rays l ⊂H+ in clockwise order.

2.6. PURITY AND CIRCLE COMPACT ACTIONS

Following [1] we say that an action of Gm on a variety X is circle compact if the
fixed point set XGm is proper and for any x ∈ X the limit limt→0 t · x exists.

PROPOSITION 2.2. Let X,Y be varieties with an action of Gm and let f : X → Y
be a proper Gm-equivariant morphism. If the action of Gm on Y is circle compact
then the action of Gm on X is circle compact.

Proof. The variety f −1(Y Gm) is proper as Y Gm is proper. The variety XGm is
closed in f −1(Y Gm) and therefore is proper. For x ∈ X , by assumption, the map
Gm → Y, t �→ t · f (x) can be extended to A

1 → Y . By the valuation criterion of
properness of f : X →Y , we can lift A

1 →Y to a map A
1 → X extending the map

Gm → X, t �→ t · x .

PROPOSITION 2.3. (c.f. [3, Prop. A.2]). Let X be a smooth quasi-projective variety
with a circle compact action of Gm. Then the mixed Hodge structure on the coho-
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mology of X is pure and the virtual Poincaré polynomial of X equals

P(X,q
1
2 )=

∑

n≥0

q
n
2 dim Hn

c (X,Q).

In particular, if X is polynomial-count (see [11, Section 6]) with counting polyno-
mial PX ∈Z[q], then the odd cohomologies of X vanish and PX ∈N[q].

Proof. The variety XGm is smooth and projective. Let XGm =⋃
i Fi be a decom-

position into connected components. Consider the Bialynicki–Birula decomposition
X =⋃

i Xi , where Xi ={x ∈ X | limt→0 t · x ∈ Fi }. This decomposition is filtrable (as X
is quasi-projective, c.f. [3, Prop. A.2]). The natural projection Xi → Fi is an affine
fibration. Every Fi has pure Hodge structure; therefore, the same is true for Xi and
therefore also for X .

If X is polynomial-count with counting polynomial PX then P(X,q
1
2 )= PX (q)∈

Z[q] by [11]. This implies that Hn(X,Q)=0 for odd n and PX ∈N[q].

PROPOSITION 2.4 (c.f. [5, Section 2.2]). Let Q be a quiver with a stability func-
tion Z . Let α ∈ �+(Q) be a dimension vector such that Z is α-generic (i.e. any
Z -semistable Q-representation of dimension vector α is stable). Then the moduli
space MZ (Q, α) has a circle compact action of Gm, it is polynomial-count with
counting polynomial P(q) in N[q], and its motive equals P(L).

Proof. Let M0(Q, α) = R(Q, α)//GLα. Then the inclusion RZ (Q, α) → R(Q, α)

induces a projective map π : MZ (Q, α)→ M0(Q, α). Consider the action of Gm on
R(Q, α) given by

t · (Ma)a∈Q1 = (t Ma)a∈Q1 .

It induces an action of Gm on MZ (Q, α) and M0(Q, α) such that π is
Gm-equivariant. The action of Gm on M0(Q, α) is circle compact (the set of
Gm-invariant points consists of the zero representation). By the previous propo-
sition the action of Gm on MZ (Q, α) is circle compact. We know that MZ (Q, α)

is polynomial-count. Therefore, by the previous proposition its counting polyno-
mial has non-negative coefficients. Moreover, it follows from the motivic nature of
the Harder–Narasimhan relation (discussed e.g. in [21, Section 3.2]) that if Z is
α-generic then the motive of MZ (Q, α) equals P(L).

3. Abelian Wall-Crossing Formula

We say that a representation M of the quiver Q is abelian (or thin sincere) if
dim Mi =1 for any i ∈ Q. Let 1=1Q0 ∈�(Q) be the corresponding dimension vec-
tor, with 1i = 1 for i ∈ Q0. Note that χQ(1,1)=|Q0|− |Q1|. The space of abelian
representations R(Q) = R(Q,1) = k

Q1 is endowed with an action of the group
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G(Q)= GL1 = (k∗)Q0 . Given a stability function Z :�(Q)→C, let RZ (Q)⊂ R(Q)

be the subspace of abelian Z -semi-stable representations. We define

fZ (Q)= [RZ (Q)]vir

[G(Q)]vir
=q

1
2 (|Q0|−|Q1|) [RZ (Q)]

(q −1)|Q0| . (18)

Remark 3.1. For a trivial stability all representations are semistable. Therefore,

ftriv(Q) = q
1
2 (|Q0|−|Q1|) q |Q1|

(q −1)|Q0| = q
1
2 |Q1|

(q
1
2 −q− 1

2 )|Q0|
.

Given a dimension vector α ∈�+(Q), we define a new quiver Q(α) with vertices
ik , where i ∈ Q0 and 1≤ k ≤αi . The number of arrows from ik to jk′ is defined to
be the number of arrows from i to j . Then

|Q(α)0|= |α|, |Q(α)1|=
∑

(a:i→ j)∈Q1

αiα j = r(α,α). (19)

Any stability function Z :�(Q)→C on Q induces a stability function on Q(α) by
Z(ik) = Z(i). We define fZ (α) = fZ (Q(α)). In particular, for a trivial stability, we
have

ftriv(α)= q
1
2 r(α,α)

(q
1
2 −q− 1

2 )|α|
. (20)

Remark 3.2. Consider the group homomorphism

π :�(Q(α))→�(Q), ik �→ i.

It maps the dimension vector 1Q(α) ∈�(Q(α)) to α ∈�(Q). The map π preserves
the skew-symmetric form. This implies that it induces an algebra homomorphism
of the corresponding quantum tori. For any I ⊂ Q(α) we define

π(I )=π(1I )=
∑

ik∈I

i ∈�(Q).

THEOREM 3.3. We have

�∏

l

⎛

⎝1+
∑

Z(α)∈l

fZ (α)
xα

α!

⎞

⎠=
∑

α∈�+(Q)

ftriv(α)
xα

α! . (21)

In particular, the product on the left is independent of the stability function Z .

Proof. Given an abelian representation M of Q(α), there is a unique filtration
(the Harder–Narasimhan filtration)

0= M0 ⊂ M1 ⊂· · ·⊂ Ms = M



504 SERGEY MOZGOVOY AND MARKUS REINEKE

with semistable quotients having decreasing slopes. Each subquotient Mk/Mk−1 of
M is uniquely determined by its support Ik , the set of vertices of Q(α)0 where it
is nonzero. We obtain a disjoint decomposition Q(α)0 = I1∪̇ · · · ∪̇Is , called the HN
type of M .

Given a partition α =α1 +· · ·+αs , the number of ways to decompose Q(α)0 =
I1∪̇ · · · ∪̇Is so that π(Ik)=αk equals

(
α

α1,...,αs

)= α!
α1!...αs ! . This implies that, for a fixed

α ∈�+(Q), the expression

∑

α1+···+αs=α

α1>Z ···>Z αs

fZ (α1)xα1 ◦ · · · ◦ fZ (αs)xαs α!
α1! . . . αs !

equals the invariant of the moduli stack of all abelian representations of Q(α).
This proves the theorem.

COROLLARY 3.4. For any stability function Z we have

fZ (α)= (q
1
2 −q− 1

2 )−|α| ∑

α1+···+αs=α

α1+···+αi >Z α

(−1)n−1
(

α

α1, . . . , αs

)
(q

1
2 )

∑
i< j

〈
αi ,α j

〉+∑
i r(αi ,αi )

.

In particular, fZ (α)∈Q(q
1
2 ).

Proof. It follows from the theorem that

ftriv(α)

α! xα =
∑

α1+···+αs=α

α1>Z ···>Z αs

fZ (α1)

α1! xα1 ◦ · · · ◦ fZ (αs)

αs ! xαs
.

Applying the formula of [18, Theorem 5.1] for the solutions of such recursions we
get

fZ (α)

α! xα =
∑

α1+···+αs=α

α1+···+αi >Z α

(−1)n−1 ftriv(α
1)

α1! xα1 ◦ · · · ◦ ftriv(α
s)

αs ! xαs
.

This, together with Equation (20), implies the corollary.

Remark 3.5. One can obtain this formula also by applying directly [18] to the
invariants of moduli spaces of semi-stable representations of Q(α) having dimen-
sion vector 1Q(α).

It follows from the previous results that, for any α∈�∗+(Q), the invariants fZ (α)

are rational functions in the variable q
1
2 . We are going to define certain polynomial

invariants now.
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DEFINITION 3.6 (Abelian quiver invariants). Assume that a ray l ∈ H+ is such
that

if Z(α), Z(β)∈ l and fZ (α), fZ (β) �=0 then 〈α,β〉=0. (22)

Then we define abelian quiver invariants gZ (α) for α ∈ Z−1(l)∩�+(Q) by the for-
mula

1+
∑

Z(α)∈l

fZ (α)
xα

α! = exp

(∑
Z(α)∈l gZ (α) xα

α!
q

1
2 −q− 1

2

)
. (23)

As one of our main results, we will prove in Section 6 that gZ (α)∈N[q± 1
2 ].

4. Combinatorial Methods

We recall a key lemma by Gessel and Wang [7] relating connected graphs and trees.
Let X be a finite set with a total ordering, and denote the minimal element by

x0 ∈ X . A graph with set of nodes X is encoded as a subset G of the set
(X

2

)
of

two-element subsets of X ; then there is an edge between nodes k and l if and
only if {k, l}∈G. The number of edges is denoted by e(G). If G is connected, then
e(G)≥|X |−1.

Suppose that T is a tree on X , that is, a connected graph such that every proper
subgraph is non-connected. Then e(T ) = |X | − 1. The tree T induces a partial
ordering on X if we view T as rooted in the node x0 as follows: for every x ∈ X ,
there exists a unique path from x0 to x , say x0 − x1 −· · ·− xk = x . Then y � x if and
only if the path from x0 to x passes through y, that is, if y = xi for some 0≤ i ≤k.
In particular, we denote by p(x)= xk−1 the immediate predecessor of an element
x ∈ X \ {x0}.

Define the inversion set I (T ) of T as the set of all pairs (x, y) ∈ X2 such that
x � y, but x > y.

LEMMA 4.1. There is a natural bijection between connected graphs on X and pairs
(T, J ) consisting of a tree on X and a subset J of I (T ).

Proof. (see [7]). To a pair (T, J ) we associate the graph with edges being those
of T , together with edges {p( j), k} for ( j, k) ∈ J . Conversely, given a connected
graph G, we construct a tree T by performing a depth-first search, that is, T is
constructed recursively as follows: we first define x as x0. In each step, if possi-
ble, we choose the maximal successor xmax of x which is not already a node of
T , add the edge {x, xmax} to T and replace x by xmax; otherwise, we replace x by
p(x). Finally, we define J as the set of all ( j, k)∈ I (T ) such that the edge {p( j), k}
belongs to G \ T .
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Now we assume X to be an n-coloured set, that is, we choose a function c :
X →{1, . . . ,n}. We want to enumerate graphs (resp. connected graphs, resp. trees)
according to the colours of the nodes. We choose indeterminates ti j = t j i for 1 ≤
i ≤ j ≤n and define the weight tG of a graph G on X by

∏
{x,y}∈G tc(x),c(y).

For a tuple α = (α1, . . . , αn) of nonnegative integers, we choose a finite
n-coloured set X containing αi elements of colour i for i =1, . . . ,n. Let Gα be the
set of graphs on X , let Cα be the subset of connected graphs, and let Tα be the

subset of trees. We choose indeterminates z1, . . . , zn and denote zα

α! = z
α1
1

α1! · . . . · zαn
n

αn ! .
By the exponential formula [24, Corollary 5.1.6], we have

∑

α∈N
n

∑

G∈Gα

tG zα

α! = exp

⎛

⎝
∑

α∈N
n\{0}

∑

G∈Cα

tG zα

α!

⎞

⎠ . (24)

The left-hand side of Equation (24) can be made explicit, noting that the choice
of a graph G is just the choice of an arbitrary subset of

(X
2

)
, namely

∑

α∈N
n

∑

G∈Gα

tG zα

α! =
∑

α∈N
n

∏

i

(1+ tii )(
αi
2 )

∏

i< j

(1+ ti j )
αi α j

zα

α! .

Using Lemma 4.1, we can also rewrite the right-hand side of Equation (24),
namely as

exp

⎛

⎝
∑

α∈N
n\{0}

∑

T ∈Tα

∏

{x,y}∈T

tc(x),c(y)

∏

(x,y)∈I (T )

(1+ tc(p(x)),c(y))
zα

α!

⎞

⎠ .

Putting these equations together, we arrive at

∑

α∈N
n

∏

i

(1+ tii )(
αi
2 )

∏

i< j

(1+ ti j )
αi α j

zα

α!

= exp

⎛

⎝
∑

α∈N
n\{0}

∑

T ∈Tα

∏

{x,y}∈T

tc(x),c(y)

∏

(x,y)∈I (T )

(1+ tc(p(x)),c(y))
zα

α!

⎞

⎠ .

Let r = (ri j ) be a symmetric integer n × n matrix. We replace ti j by
q

1
2 (ri j +r ji ) −1=qri j −1 for 1≤ i, j ≤n and replace zi by xi

q−1 . Using the fact that a
tree in Tα contains precisely

∑
i αi −1 edges, the previous equality can be rewritten

as



ABELIAN QUIVER INVARIANTS 507

∑

α∈N
n

q
1
2

∑
i, j ri j αi α j

(q −1)
∑

i αi

xα

α!

= exp

⎛

⎝
∑

α∈N
n\{0}

q
1
2

∑
i rii αi

q −1
xα

α!
∑

T ∈Tα

∏

{x,y}∈T

qrc(x),c(y) −1
q −1

∏

(x,y)∈I (T )

qrc(p(x)),c(y)

⎞

⎠ .

We have thus proved:

THEOREM 4.2. Given a symmetric integer n ×n matrix r = (ri j ), there exist poly-
nomials bα ∈Z[q± 1

2 ] for α ∈N
n\{0} such that

∑

α∈N
n

q
1
2

∑
i, j ri j αi α j

(q −1)
∑

i αi

xα

α! = exp

⎛

⎝ 1
q −1

∑

α∈N
n\{0}

bα

xα

α!

⎞

⎠ .

If all ri j are nonnegative then bα ∈N[q 1
2 ] for α ∈N

n\{0}.

COROLLARY 4.3. Under the assumptions of the theorem, the value of the polyno-
mial bα at q

1
2 =1 equals

bα(1)=
∑

T ∈Tα

∏

{x,y}∈T

rc(x),c(y).

The above theorem in particular applies to the matrix r = rQ of a symmetric
quiver Q (that is, r(i, j)=r( j, i) for all i, j ∈ Q0) and the trivial stability. By Defi-
nition 3.6 and formula (20)

∑

α∈�+(Q)

q
1
2 r(α,α)

(q
1
2 −q− 1

2 )|α|
xα

α! = exp

(∑
α∈�∗+(Q) gtriv(α) xα

α!
q

1
2 −q− 1

2

)
.

Using notation of Theorem 4.2 we obtain

gtriv(α)=q
1
2 (|α|−1)bα ∈N[q 1

2 ].
Application of Corollary 4.3 yields

gtriv(α)|
q

1
2 =1

=
∑

T ∈Tα

∏

{ik , jl }∈T

r(i, j),

where we identify Tα with the set of trees on Q(α)0. Define an unoriented graph
Q(α) with the set of vertices Q(α)0, and with the number of edges between ik and
jl being the number of arrows from i to j in Q (this being well-defined since Q
is symmetric).

COROLLARY 4.4. The value of gtriv(α) at q
1
2 = 1 equals the number of spanning

trees of Q(α).



508 SERGEY MOZGOVOY AND MARKUS REINEKE

EXAMPLE 4.5. The previous result allows us to easily derive explicit formulas for
the value of gtriv(α) at q

1
2 =1 for small quivers Q:

(1) For the quiver with a single vertex i and m loops, we get the formula

gtriv(d · i)|
q

1
2 =1

=md−1dd−2 :

by Cayley’s theorem, there are dd−2 spanning trees in a complete graph with d
nodes. For each of the d − 1 edges of this tree, we can freely choose a colour
from 1 to m.

(2) For the quiver with two vertices i and j and a arrows from i to j and from j
to i , we get the formula

gtriv(di · i +d j · j)|
q

1
2 =1

=adi +d j −1d
d j −1
i ddi −1

j :

using the matrix-tree theorem [24, Theorem 5.6.8], the number of spanning
trees in a complete bipartite quiver with di nodes on one side and d j nodes

on the other side can be computed to be d
d j −1
i ddi −1

j ; again, we are allowed to
choose among a colours for each of the di + d j − 1 edges of such a spanning
tree.

5. Admissible Series

Given a set I , we define

�(I )=P(I,Z), �+(I )=P(I,N), �∗+(I )=�+(I )\{0}.
Let r : I × I →Z be some symmetric function. We can naturally extend it to a sym-
metric bilinear form r :�(I )×�(I )→Z. Let T=Q(q

1
2 )[[xi , i ∈ I ]] and

Tr :T→T, xα �→q
1
2 r(α,α)xα, α ∈�+(I ). (25)

In this notation, Theorem 4.2 can be rephrased as

Tr exp
( ∑

xi

q −1

)
= exp

(∑
bαxα/α!
q −1

)

for some polynomials bα ∈ Z[q± 1
2 ], α ∈ �∗+(I ). Moreover, if r(i, j) ≥ 0 for i, j ∈ I

then bα ∈N[q 1
2 ]. Using this result we are going to prove

THEOREM 5.1. Let aα ∈Z[q± 1
2 ] for α ∈�∗+(I ). Then

Tr exp
(∑

aαxα/α!
q −1

)
= exp

(∑
bαxα/α!
q −1

)

for some polynomials bα ∈Z[q± 1
2 ]. Moreover, if r(i, j)≥0 for i, j ∈ I and aα ∈N[q 1

2 ]
for α ∈�∗+(I ) then bα ∈N[q 1

2 ] for α ∈�∗+(I ).
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Proof. For any α ∈ I ′ = �∗+(I ) we define a new variable yα and we substitute
aαxα/α! by this variable in the above expression. The bilinear form r : �(I ) ×
�(I ) → Z restricts to a map r : I ′ × I ′ → Z and then extends to a bilinear form
r ′ : �(I ′) × �(I ′) → Z. We can define an operator T ′ = Tr ′ on the algebra T

′ =
Q(q

1
2 )[[yα, α ∈ I ′]] using this bilinear form. Then, by the previous theorem,

T ′ exp
(∑

yα

q −1

)
= exp

(∑
γ∈�∗+(I ′) bγ (q)

∏
α∈I ′ yγ (α)

α

γ (α)!
q −1

)
.

Now we substitute yα by aα(q)xα/α!. To prove the theorem we have to show that

(
∑

α γ (α)α)!∏
α γ (α)!(α!)γ (α)

∈N

for every γ ∈�∗+(I ′). For any α∈�(I ) let Sα =∏
i∈I Sαi be the product of permuta-

tion groups. Then
∏

α(Sα)γ (α)
� Sγ (α) can be embedded into S∑

α γ (α)α. This proves
the statement.

5.1. QUANTUM ADMISSIBILITY

We now repeat some results from [14, §6.1] in the context of abelian invariants. Let
I ={1, . . . ,n} be a finite set and let 〈−,−〉 be a skew-symmetric bilinear form on
�(I ). We define a quantum torus structure on T=Q(q

1
2 )[[xi , i ∈ I ]] by

xα ◦ xβ =q
1
2 〈α,β〉xα+β.

DEFINITION 5.2. We say that a series in T is admissible if it is of the form

exp
(∑

bαxα/α!
q −1

)

for some polynomials bα ∈ Z[q± 1
2 ]. We say that a series

∑
aαxα ∈ T is quantum

admissible if
∑

α

aαxα1
1 ◦ · · · ◦ xαn

n

is admissible.

PROPOSITION 5.3. The set of quantum admissible series forms a group in T under
multiplication ◦. Let Z : �(I ) → C be a stability function, F, Fl ∈ T with Fl = 1 +∑

Z(α)∈l aαxα , and

F =
�∏

l⊂H+
Fl .

Then F is quantum admissible if and only if every Fl is quantum admissible.
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Proof. The proof for a generic stability function (this means that α,β ∈ Z−1(l)∩
�+(I ) implies proportionality α ‖ β) goes through the lines of [14, Prop. 9] (the
main tool used there is [14, Theorem 9] which is a plethystic analogue of Theorem
5.1). This proof works actually for an arbitrary stability function (using the fact
that quantum admissible series form a group). The proof of the fact that quantum
admissible series form a group goes through the lines of [14, Prop. 10].

PROPOSITION 5.4. Let F = ∑
aαxα be such that 〈α,β〉 = 0 whenever aα,aβ �= 0.

Then F is quantum admissible if and only if it is admissible.

Proof. Let Z be a generic stability and let F =∏
�

l⊂H+ Fl . One can show that if aα

is a nontrivial coefficient of Fl and aβ is a nontrivial coefficient of Fl ′ then 〈α,β〉=
0. This implies that Fl ◦ Fl ′ = Fl Fl ′ and F =∏

l Fl . Now we use the fact that for Fl

admissibility and quantum admissibility coincide.

COROLLARY 5.5. Let Q be a quiver and Z : �(Q) → C be a stability function.
Then for any ray l ∈H+ the series

1+
∑

Z(α)∈l

fZ (α)
xα

α!
is quantum admissible. If 〈α,β〉 = 0 whenever Z(α), Z(β) ∈ l and fZ (α), fZ (β) �= 0
then the above expression is admissible.

Proof. It is enough to prove quantum admissibility for the trivial stability. For
the trivial stability we have

fZ (α)= (q
1
2 )α·α−χ(α,α)

(q
1
2 −q− 1

2 )|α|
.

We have to verify admissibility for these invariants shifted by q
1
2

∑
i< j 〈i, j〉αi α j . Note

that the series

∑

α∈�+(Q)

1

(q
1
2 −q− 1

2 )|α|
xα

α! = exp

( ∑
xi

q
1
2 −q− 1

2

)

is admissible. In order to apply Theorem 5.1 we have to show that the quadratic
form

α �→
∑

i< j

〈i, j〉αiα j −χ(α,α)

is given by a symmetric matrix with integer entries. But it equals

−
∑

i< j

χ( j, i)αiα j −
∑

i≥ j

χ(i, j)αiα j =−
∑

i

χ(i, i)α2
i −

∑

i< j

2χ( j, i)αiα j .
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COROLLARY 5.6. Under the assumptions of Definition 3.6, the abelian quiver
invariants gZ (α) are elements of Z[q± 1

2 ].

Proof. By the previous corollary the series

1+
∑

Z(α)∈l

fZ (α)
xα

α!

is admissible. Therefore, the invariants gZ (α) defined by

1+
∑

Z(α)∈l

fZ (α)
xα

α! = exp

(∑
Z(α)∈l gZ (α) xα

α!
q

1
2 −q− 1

2

)

satisfy gZ (α)∈Z[q± 1
2 ].

6. Geometricity of Abelian Invariants

The aim of this section is to prove that the abelian invariant gZ (α) (under the
numerical conditions of Definition 3.6) can be naturally interpreted as the virtual
motive [MZdef (Q(α))]vir of a moduli space MZdef (Q(α)) = RZdef (Q(α))/G(Q(α))

satisfying the properties of Proposition 2.4. In particular, this implies the positiv-
ity of gZ (α) as a polynomial in L. The strategy is to deform the stability Z to
a generic one Zdef , to analyse the Harder–Narasimhan stratification (with respect
to Zdef ) of the Z -semistable locus, and to show that the corresponding relative
Harder–Narasimhan recursion equals the defining equation for gZ (α).

For any subset I ⊂ Q0 we denote μZ (1I ) by μZ (I ). For an abelian representa-
tion M of Q, the subset I is called M-closed if for any arrow α : i → j , we have
j ∈ I if i ∈ I and Mα �=0. Note that the M-closed subsets are precisely the supports
of subrepresentations of M .

LEMMA 6.1. Given a quiver Q with a stability Z , there exists a stability Zdef on
Q such that

(1) μZdef (I ) �=μZdef (J ) for any non-empty subsets I �= J of Q0.
(2) If μZ (I )<μZ (J ) then μZdef (I )<μZdef (J ).
(3) An abelian representation M ∈ R(Q) is Zdef -stable if and only if it is Zdef -

semistable.
(4) If an abelian representation M ∈ R(Q) is Zdef -stable, it is Z -semistable.
(5) If an abelian representation M ∈ R(Q) is Z -stable, it is Zdef -stable.

Proof. There exists a stability Z ′ :ZQ0 →C satisfying the first condition. Indeed,
for any non-empty subsets I �= J of Q0 the condition μZ ′(I ) �= μZ ′(J ) removes a
hypersurface from the space of all stability conditions. We define Zdef = Z +εZ ′ for
0 <ε � 1. One can see that if vectors u,u′, v, v′ ∈ C are such that u + εu′ ‖ v + εv′
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for 0 < ε � 1 then u ‖ v and u′ ‖ v′. This implies that μZdef (I ) �= μZdef (J ) for any
non-empty subsets I �= J of Q0. The second condition is automatically satisfied.

Now the third claim immediately follows from the first claim: if M is a Zdef -
semistable abelian representation and I ⊂ Q0 is a non-empty proper M-closed sub-
set, then μZdef (I ) ≤ μZdef (Q0). By the first claim, we have μZdef (I ) �= μZdef (Q0),
thus μZdef (I ) < μZdef (Q0), proving stability. For the fourth claim, assume M
to be Zdef -stable, and let I ⊂ Q0 be a non-empty proper M-closed subset.
Then μZdef (I ) < μZdef (Q0), thus μZ (I ) ≤ μZ (Q0) by the second claim, proving
Z -semistability of M . For the fifth claim, assume M to be Z -stable, and let I
be a non-empty proper M-closed subset. Then μZ (I ) < μZ (Q0), thus μZdef (I ) <

μZdef (Q0) by the second claim. The lemma is proved.

COROLLARY 6.2. Let an abelian representation M ∈ R(Q) have the Harder–
Narasimhan type (I1, . . . , Is) (compare the proof of Theorem 3.3) with respect to
Zdef . Then M is Z -semistable if and only if μZ (Ik)=μZ (Q0) for all k.

Proof. Define I≤k = I1 ∪ · · · ∪ Ik for k = 1, . . . , s. Assume that M is Z -semistable.
Then the defining condition

μZdef (I1)>μZdef (I2)> · · ·>μZdef (Is)

of a Harder–Narasimhan type implies that μZdef (I≤k) > μZdef (Q0) for all k < s.
Since every I≤k is M-closed by definition of the Harder–Narasimhan filtration,
we have μZ (I≤k) ≤ μZ (Q0) by Z -semistability of M . If μZ (I≤k) < μZ (Q0), then
μZdef (I≤k)<μZdef (Q0) by the second claim of the previous lemma, a contradiction.
Thus μZ (I≤k)=μZ (Q0) for all k =1, . . . , s, which implies μZ (Ik)=μZ (Q0) for all
k, proving the first claim.

Now let us prove the converse. By definition of the Harder–Narasimhan type,
M admits a filtration by subrepresentations 0 = M0 ⊂ M1 ⊂· · ·⊂ Ms = M such that
Mk/Mk−1 is Zdef -semistable with support in Ik . By the fourth claim of the previous
lemma, each Mk/Mk−1 is Z -semistable, and it is supported on Ik which has the
same Z -slope as Q0. But an iterated extensions of Z -semistable representations of
the same Z -slope is again Z -semistable, proving the converse.

PROPOSITION 6.3. Let Q be a quiver with a stability Z and let α ∈N
Q0 be as in

Definition 3.6. Let Zdef be a deformation of Z for the quiver Q(α) as in Lemma 6.1.
Then we have an identity of motives

[RZ (Q(α))]=
∑

Q(α)0=I1∪̇···∪̇Is

q
∑

k<l rQ(π(Ik),π(Il ))
s∏

k=1

[RZdef (Q(α)|Ik )],

where the sum ranges over all unordered disjoint decompositions of Q(α)0 into subsets
Ik such that μZ (Ik)=μZ (α) for all k.
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Proof. By the previous corollary, [RZ (Q(α))] equals the sum of the motives
of strata having Harder–Narasimhan type (I1, . . . , Is) with respect to Zdef such
that μZ (Ik) = μZ (α) for all k = 1, . . . , s. Every unordered disjoint decomposition
Q(α)0 = I1∪̇ · · · ∪̇Is into subsets such that μZ (Ik)=μZ (α) for all k corresponds to
a unique such Harder–Narasimhan stratum: indeed, by the first claim of the above
lemma, all values μZdef (Ik) are pairwise distinct, thus there exists a unique order-
ing of the Ik with decreasing Zdef -slopes.

Every Harder–Narasimhan stratum is isomorphic to the product of∏
k RZdef (Q(α)|Ik ) and a certain affine space encoding the scalars representing the

arrows between distinct subsets Ik, Il . By the assumption of Definition 3.6, the
dimension of this affine space is

∑
k<l rQ(π(Ik), π(Il)), regardless of the ordering of

the subsets. The proposition is proved.

COROLLARY 6.4. Under the assumptions of Proposition 6.3 we have an identity of
virtual motives

[RZ (Q(α))]vir =
∑

Q(α)0=I1∪̇...∪̇Is

s∏

k=1

[RZdef (Q(α)|Ik )]vir.

where the sum ranges over all unordered disjoint decompositions of Q(α)0 into subsets
Ik such that μZ (Ik)=μZ (α) for all k.

Proof. Let αk =π(Ik) for k =1, . . . , s. Using the symmetry assumption of Defin-
ition 3.6 we obtain

q
1
2 (|Q(α)1|−

∑
k |Q(αk )1|) =q

1
2

∑
k �=l rQ(αk ,αl ) =q

∑
k<l rQ(αk ,αl ).

THEOREM 6.5. Under the assumptions of Proposition 6.3 we have

gZ (α)= (q
1
2 −q− 1

2 )
[RZdef (Q(α))]vir

[G(Q(α))]vir
=[MZdef (Q(α))]vir.

Proof. We prove the first equality by induction on |α|. For any non-empty
proper subset I ⊂ Q(α)0 with μZ (I )=μZ (α), the restriction of Zdef to Q(α)|I sat-
isfies the conditions of Lemma 6.1. Therefore, we can assume by induction that

[RZdef (Q(α)|I )]vir

[G(Q(α)|I )]vir
= gZ (π(I ))

q
1
2 −q− 1

2

.

Now by the previous corollary, we have

[RZ (Q(α))]vir

[G(Q(α))]vir
= [RZdef (Q(α))]vir

[G(Q(α))]vir
+

∑

Q(α)0=I1∪̇...∪̇Is
s≥2

s∏

k=1

gZ (π(Ik))

q
1
2 −q− 1

2

,
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where the sum ranges over all unordered disjoint decompositions of Q(α)0 into
subsets Ik with π(Ik) ∈ Z−1(l). Given an ordered decomposition α = α1 + · · · + αs

with αk ∈ Z−1(l), the number of disjoint decompositions Q(α)0 = I1∪̇ · · · ∪̇Is such
that π(Ik) = αk for all k equals the product of multinomial coefficients

(
α

α1,...,αs

)
.

Therefore,

[RZ (Q(α))]vir

[G(Q(α))]vir
= [RZdef (Q(α))]vir

[G(Q(α))]vir
+

∑

α=α1+···+αs

s≥2

1
s!

(
α

α1, . . . , αs

) s∏

k=1

gZ (αk)

q
1
2 −q− 1

2

,

where the factor 1
s! compensates for the fact that the ordering in the disjoint

decompositions was disregarded.
Comparing coefficients of xα in the defining equation

1+
∑

α∈Z−1(l)

[RZ (Q(α))]vir

[G(Q(α))]vir

xα

α! = exp

⎛

⎝ 1

q
1
2 −q− 1

2

∑

α∈Z−1(l)

gZ (α)
xα

α!

⎞

⎠

of the abelian invariants gZ (α), we see that

[RZ (Q(α))]vir

[G(Q(α))]vir
=

∑

α=α1+···+αs

1
s!

(
α

α1, . . . , αs

) s∏

k=1

gZ (αk)

q
1
2 −q− 1

2

.

This implies

[RZdef (Q(α))]vir

[G(Q(α))]vir
= gZ (α)

q
1
2 −q− 1

2

.

The second equality of the theorem follows from the fact that the princi-
pal G(Q(α))/Gm-fibration RZdef (Q(α)) → MZdef (Q(α)) is Zariski-locally trivial by
Hilbert’s Theorem 90.

COROLLARY 6.6. Under the assumptions of Definition 3.6, we have gZ (α) ∈
N[q± 1

2 ].

Proof. By the motivic nature of the Harder–Narasimhan recursion, the motive
of MZdef (Q(α)) is a polynomial in q, which actually equals the count over finite
fields. It follows from Proposition 2.4 that this polynomial is in N[q]. This fact,
together with the previous theorem, implies that gZ (α)∈N[q± 1

2 ].

Remark 6.7. We proved in the above theorem that for any I, J ⊂ Q(α)0 with
π(I ) = π(J ), the moduli spaces MZdef (Q(α)|I ) and MZdef (Q(α)|J ) have equal
motives. We do not claim however that these moduli spaces are isomorphic to each
other. Moreover, for different choices of Zdef , we get deformed stabilities in many
different chambers of stability space and thus possibly many nonisomorphic mod-
uli spaces, but nevertheless the theorem proves that their motives are the same.
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Remark 6.8. The map MZdef (Q(α)) → MZ (Q(α)) (well-defined by the first lemma
of this section) is a desingularization of MZ (Q(α)). It would be interesting to study
its geometry in more detail.

Remark 6.9. Combining the theorem in this section with the main result of Section
4, we get an explicit formula for the motive of Mtrivdef (Q(α)) in terms of spanning
trees.

7. Indecomposable Abelian Representations

Let Q be a quiver and let M be an abelian representation of Q. Define the sup-
port quiver QM of M as the subquiver of Q with the same set of vertices, and
arrows a ∈ Q1 whenever Ma �= 0 (that is, the linear map between one-dimensional
vector spaces representing the arrow is non-zero). In general, we call a subquiver
G ⊂ Q spanning if G0 = Q0. By associating to an abelian representation M its sup-
port quiver and the scalars representing the non-zero arrows, we get immediately:

LEMMA 7.1. There is a bijection between points in R(Q) and tuples consisting of
a spanning subquiver G ⊂ Q and a choice of a non-zero scalar in k for every arrow
in G.

Also the proof of the following lemma is immediate:

LEMMA 7.2. M is indecomposable if and only if QM is connected. In this case, M
is absolutely indecomposable and Schurian, that is, End(M)=k.

DEFINITION 7.3. Let Q be a quiver and Z :�(Q)→C be a stability function.

(1) As before, for any subset I ⊂ Q0, we define 1I = ∑
i∈I i ∈ Z

Q0 and μZ (I ) =
μZ (1I ).

(2) A subset I ⊂ Q0 is called Q-closed if there are no arrows in Q from I to Q0\I .
(3) The quiver Q is called Z -semistable (resp. Z -stable) if for any proper Q-closed

subset I ⊂ Q0 we have μZ (I )≤μZ (Q0) (resp. μZ (I )<μZ (Q0)).
(4) The set of all spanning Z -semistable subquivers G ⊂ Q is denoted by GZ (Q).

The subset of connected G ∈GZ (Q) is denoted by CZ (Q).

Using this terminology, the following is immediate:

LEMMA 7.4. An abelian representation M of Q is (semi)stable if and only if its
support quiver QM is (semi)stable.

Remark 7.5. A stability Z is 1-generic (i.e. every representation in RZ (Q) is stable)
if and only if GZ (Q)=CZ (Q).
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The above lemma yields a bijection between the points of the semistable locus
RZ (Q) in R(Q) and tuples consisting of a subquiver G ∈ GZ (Q) together with a
choice of a non-zero scalar in k for every arrow in G. Similarly, there is a bijection
between the points in the indecomposable semistable locus Rind

Z (Q) in R(Q) and
tuples consisting of a subquiver G ∈ CZ (Q) together with a choice of a non-zero
scalar in k for every arrow in G. This allows us to calculate

[RZ (Q)]
[G(Q)] =

∑

G∈GZ (Q)

(q −1)|G1|−|G0| (26)

and

[Rind
Z (Q)]

[G(Q)] =
∑

G∈CZ (Q)

(q −1)|G1|−|G0|. (27)

We define aZ (Q) := (q −1)
[Rind

Z (Q)]
[G(Q)] .

Remark 7.6. We can interpret aZ (Q) as a polynomial in q. Given a field k,
let M ind

Z (Q)(k) be the set of isomorphism classes of abelian indecomposable
Z -semistable Q-representations over k. Then for any finite field Fq we have
aZ (Q)(q)=|M ind

Z (Q)(Fq)|.

DEFINITION 7.7. For any quiver (or graph) G we define κ(G) to be the number
of connected components of G and we define the nullity of G to be n(G)=|G1|−
|G0|+κ(G). We always have n(G)≥0 and n(G)=0 if and only if G is a forest.

Using this notation we can write

aZ (Q)=
∑

G∈CZ (Q)

(q −1)n(G). (28)

Applying the exponential formula as in [24, Corollary 5.1.6] and using formulas
(26) and (27), we get:

THEOREM 7.8. For any ray l ∈H+, we have

1+
∑

Z(α)∈l

[RZ (Q(α))]
[G(Q(α))]

xα

α! = exp

⎛

⎝
∑

Z(α)∈l

[Rind
Z (Q(α))]

[G(Q(α))]
xα

α!

⎞

⎠ . (29)

COROLLARY 7.9. Assume that a ray l ⊂H+ satisfies the assumptions of Definition
3.6. Then we have

Tr exp

⎛

⎝
∑

Z(α)∈l

gZ (α)

q
1
2 −q− 1

2

xα

α!

⎞

⎠= exp

⎛

⎝
∑

Z(α)∈l

q
1
2 |α| aZ (Q(α))

q −1
xα

α!

⎞

⎠ .

In particular, aZ (Q(α))∈N[q] by Corollary 6.6 and Theorem 5.1.
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Proof. By the defining equation of abelian quiver invariants, we have

Tr exp

⎛

⎝
∑

Z(α)∈l

gZ (α)

q
1
2 −q− 1

2

xα

α!

⎞

⎠= Tr

⎛

⎝1+
∑

Z(α)∈l

[RZ (Q(α))]vir

[G(Q(α))]vir

xα

α!

⎞

⎠

=1+
∑

Z(α)∈l

q
1
2 |α| [RZ (Q(α))]

[G(Q(α))]
xα

α! .

This expression is equal, by the previous theorem, to

exp

⎛

⎝
∑

Z(α)∈l

q
1
2 |α| [Rind

Z (Q(α))]
[G(Q(α))]

xα

α!

⎞

⎠= exp

⎛

⎝
∑

Z(α)∈l

q
1
2 |α| [M ind

Z (Q(α))]
q −1

xα

α!

⎞

⎠

Remark 7.10. If Q is a symmetric quiver then for the trivial stability the value of
gtriv(α) at q

1
2 =1 equals the number of spanning trees of Q(α) (see Corollary 4.4).

On the other hand, the value of atriv(Q(α)) at q =1 equals the number of spanning
trees of Q(α).

We will see later that aZ (Q)∈N[q] without the assumptions of Definition 3.6. If
Z is a trivial stability, then there are two classical interpretations of the polynomial
aZ (Q).

Remark 7.11. For a trivial stability Z the set CZ (Q) coincides with the set C(Q)

of all connected spanning subgraphs of Q. For any graph Q one defines its Tutte
polynomial [2] by

T (Q; t,q)=
∑

G∈G(Q)

(t −1)κ(G)−κ(Q)(q −1)n(G).

It is known that T (Q; t,q)∈N[t,q]. If Q is connected, then

T (Q;1,q)=
∑

G∈C(Q)

(q −1)n(G) =aZ (Q),

so aZ (Q)∈N[q].

Remark 7.12. For a trivial stability Z the set M ind
Z (Q)(k) coincides with the set

M ind(Q,1)(k) of isomorphism classes of (absolutely) indecomposable Q-represen-
tations over k having dimension vector 1. Therefore, aZ (Q)∈N[q] by the Kac con-
jecture proved by Crawley–Boevey and Van den Bergh [3] in the case of indivisible
dimension vectors (in particular, for the dimension vector 1∈Z

Q0 ) and by Hausel
et al. [10] in general.
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LEMMA 7.13. If Q is connected then there exists a stability function Z :�(Q)→C

such that Q is Z -stable.

Proof. Deleting arrows if necessary, we can assume that Q is a tree. Then we
can find a vertex i0 ∈ Q0 that is incident to just one arrow. Without loss of gener-
ality we can assume that i0 is the start point of this arrow. The quiver Q′ = Q\{i0}
is connected. By induction on |Q0| we can assume that there exists d ′ : Q′

0 → R

such that d ′(Q′
0) = 0 and d ′(I ) < 0 for any proper Q′-closed subset I ⊂ Q′

0 (we
define d ′(I )=∑

i∈I d ′(i)). Let ε > 0 be the minimum of |d ′(I )| over all such sub-
sets. Define d(i)=d ′(i)− ε

|Q′
0| for i �= i0 and d(i0)=ε. Then d(Q0)=d ′(Q′

0)=0. For

any proper Q-closed subset I ⊂ Q0, if i0 ∈ I and I ′ = I\{i0}, then

d(I )=d ′(I ′)− |I ′|
|Q′

0|
ε + ε <d ′(I ′)+ ε ≤0.

If i0 /∈ I then

d(I )=d ′(I )− |I |
|Q′

0|
ε <0.

This implies that Q is Z -stable with respect to Z =−d +√−1r , where r(i)=1 for
all i ∈ Q0.

PROPOSITION 7.14. Let Q be a quiver with a stability function Z such that Q is
the only quiver in CZ (Q). Then Q is a tree.

Proof. By the previous lemma, there exists a stability function Z ′ such that Q is
Z ′-stable. Let Z ′′ = Z +εZ ′ for 0<ε�1. Then Q is Z ′′-stable and is the only quiver
in CZ ′′(Q). Deforming Z ′′ as in Lemma 6.1, we can assume that Z ′′ is moreover
1-generic. By Proposition 2.4, the counting polynomial of MZ ′′(Q) has non-
negative coefficients. If M ∈ RZ ′′(Q) then M is Z ′′-stable and in particular inde-
composable. This implies that QM ∈CZ ′′(Q) and QM = Q. Therefore, the counting
polynomial of MZ ′′(Q) equals (q −1)n(Q). Therefore, n(Q)=0 and Q is a tree.

THEOREM 7.15. Let Q be a quiver with a stability function Z . Then aZ (Q)∈N[q].

Proof. Given a quiver G ∈CZ (Q), let

A(G)={a ∈ G1 | G\{a}∈CZ (Q)}.
We denote the set of graphs G ∈CZ (Q) with A(G)=∅ by TZ (Q). By Proposition
7.14, the family TZ (Q) consists of trees.

We choose a total order on Q1. For any G ∈ CZ (G)\TZ (G), let a(G) =
min A(G) ∈ G1. Deleting the arrow a(G) from G and continuing this process we



ABELIAN QUIVER INVARIANTS 519

will eventually obtain some T ∈TZ (Q). Conversely, given T ∈TZ (Q) let

E(T )={b ∈ Q1\T1 |b =a(T ∪{b})}.

Then for any subset J ⊂ E(T ) the quiver G = T ∪ J is contained in CZ (Q) and T
is obtained from G by the above process. This implies that

aZ (Q)=
∑

G∈CZ (Q)

(q −1)n(G) =
∑

T ∈TZ (Q)

(q −1)n(T )q |E(T )| =
∑

T ∈TZ (Q)

q |E(T )| ∈N[q].

In view of the above theorem, we can formulate the following generalization of
the Kac conjecture.

CONJECTURE 7.16. Let Q be a quiver with a stability function Z and let α ∈
�+(Q) be a dimension vector. Given a field k, let M ind

Z (Q, α)(k) be the set of iso-
morphism classes of absolutely indecomposable Z -semistable Q-representations over
k having dimension vector α. Then there exists a polynomial aZ (Q, α) ∈ N[q] such
that for any finite field Fq we have aZ (Q, α)(q)=|M ind

Z (Q, α)(Fq)|.

We can generalize the Tutte polynomial for the case of a quiver with a stability
function.

CONJECTURE 7.17 (Semistable Tutte polynomial). Let Q be a quiver with a sta-
bility function Z . Define the semistable Tutte polynomial by

TZ (Q; t,q)=
∑

G∈GZ (Q)

(t −1)κ(G)−κ(Q)(q −1)n(G).

We conjecture that TZ (Q; t,q)∈N[t,q]. The proof should not be very different from
Theorem 7.15.

Remark 7.18. If Z is 1-generic then GZ (Q)=CZ (Q). This implies

TZ (Q; t,q)= TZ (Q;1,q)=
∑

G∈CZ (Q)

(q −1)n(G) =aZ (Q)∈N[q].

8. MPS Wall-Crossing Formula

Let � be a rank 2 lattice with a skew-symmetric form 〈· , ·〉 :�×�→Z and a basis
(e1, e2) such that 〈e1, e2〉> 0. Let �+ =Ne1 +Ne2 �N

2 and �∗+ =�+\{0}. We con-
sider stability functions Z :� →C such that

Z(ei )=−di +√−1ri ∈H+, i =1,2.
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For any α = (α1, α2)∈�∗+, we define its slope μZ (α)∈R∪{∞} by

μZ (α)= d1α1 +d2α2

r1α1 + r2α2

and define a total preorder ≤Z on �∗+ by the rule α ≤Z β if μZ (α)≤μZ (β).
Although the set H

2+ of different stability functions Z : � → C is huge, these
functions can induce just three different total preorders depending on the inequal-
ity between μZ (e1) and μZ (e2). We will say that a stability function Z is trivial
(belongs to the marginal wall) if μZ (e1) = μZ (e2). We will denote by c+ the set
(chamber) of stability functions Z such that μZ (e1) < μZ (e2) and we will denote
by c− the set (chamber) of stability functions Z such that μZ (e1)>μZ (e2).

Remark 8.1. Let Q be the generalized Kronecker quiver with two vertices 1,2 and
with m >0 arrows from 2 to 1. Then � =�(Q)�Z

2 and the skew-symmetric form
〈α,β〉=χ(α,β)−χ(β,α) satisfies 〈e1, e2〉=m >0. In the chamber c+ we have e1 <

e2 and there exist plenty of stable representations of Q. On the other hand, in
the chamber c− we have e2 < e1 and the only stable representations of Q are one-
dimensional.

LEMMA 8.2. Let Z :� →C be some stability function.

(1) If Z ∈ c+ then α ≤Z β if and only if 〈α,β〉≥0.
(2) If Z ∈ c− then α ≤Z β if and only if 〈α,β〉≤0.

Proof. Let Z ∈ c+ and let μZ (e1) = d1
r1

, μZ (e2) = d2
r2

. Then μZ (e1) < μZ (e2) and
therefore d1r2 −d2r1 <0. We have α ≤Z β if and only if

d1α1 +d2α2

r1α1 + r2α2
≤ d1β1 +d2β2

r1β1 + r2β2
,

that is,

(α1β2 −α2β1)(d1r2 −d2r1)≤0

and

α1β2 −α2β1 ≥0.

This is equivalent to

〈α,β〉= (α1β2 −α2β1) 〈e1, e2〉≥0.

We will use the slope ordering of the vectors (and rays) in the first quadrant
of �R = � ⊗ R � R

2 (for example e1 < e2). This corresponds to the ordering with
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respect to stability functions in the chamber c+. Assume that for any γ ∈ �∗+ we
have invariants �̄+

γ , �̄−
γ ∈V (we think of them as of Donaldson–Thomas invariants

in the chambers c+ and c−, respectively) related by the equation (KS wall-crossing
formula or HN recursion)

�∏

l

exp

(∑
γ∈l∩� �̄+

γ xγ

q
1
2 −q− 1

2

)
=

�∏

l

exp

(∑
γ∈l∩� �̄−

γ xγ

q
1
2 −q− 1

2

)
(30)

in the quantum torus of (�, 〈· , ·〉). Then we can express

�̄+
γ =

∑

m:�∗+→N

‖m‖=γ

g(m)

m!
∏

α∈�∗+

(�̄−
α )m(α) (31)

for some invariants g(m). Our goal is to determine these invariants.
Let Q be the quiver with set of vertices �∗+ and with the number of arrows from

α to β equal to 〈β,α〉 if 〈β,α〉>0, and zero otherwise. Note that �+(Q)=P(�∗+),
i.e. a map m :�∗+ →N with finite support can be identified with a dimension vector
of Q. The natural group homomorphism

‖−‖ :�(Q)→�, m �→
∑

α∈�∗+

m(α)α.

preserves the skew-symmetric forms, and therefore, induces an algebra homomor-
phism of the corresponding quantum tori. Any stability function on � induces a
stability function on �(Q) and therefore a total preorder on �∗+(Q). As before,
we consider only stability functions Z on � from the chamber c+. Then, for
m,m′ ∈�∗+(Q), we have μZ (m)≤μZ (m′) if and only if

〈
m,m′〉≥0. This implies that

μZ (m)=μZ (m′) if and only if
〈
m,m′〉=0, and we can define abelian quiver invari-

ants g(m)= g+(m) for any m ∈P(�∗+)=�+(Q) by the formula

1+
∑

‖m‖∈l

f+(m)
xm

m! = exp

⎛

⎝
∑

‖m‖∈l

g(m)

q
1
2 −q− 1

2

xm

m!

⎞

⎠ , (32)

where f+(m) is the motivic invariant of the moduli stack of the abelian semistable
representations of the quiver Q(m) (see 3).

THEOREM 8.3. Assume that the invariants g(m) for m ∈ P(�∗+) = �+(Q) are the
abelian quiver invariants of the quiver Q. Then the invariants �̄+(γ ), �̄−(γ ) for γ ∈
�∗+ satisfy the KS wall-crossing formula (30) if and only if they satisfy (31).

Proof. We will show that the formula (31) with the g(m) being abelian quiver
invariants implies the KS wall-crossing formula (30). Using formula (31) we obtain

∑

γ∈l

�̄+
γ xγ =

∑

m∈P(�∗+)

‖m‖∈l

g(m)

m!

⎛

⎝
∏

γ∈�∗+

(�̄−
γ )m(γ )

⎞

⎠ x‖m‖ =
∑

m∈P(�∗+)

‖m‖∈l

g(m)
∏

γ∈�∗+

(�̄−
γ xγ )m(γ )

m(γ )! .
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Then the left-hand side of (30) can be written as

�∏

l

exp

⎛

⎜⎜⎜⎝
∑

m∈P(�∗+)

‖m‖∈l

g(m)

g

∏

γ∈�∗+

(�̄−
γ xγ )m(γ )

m(γ )!

⎞

⎟⎟⎟⎠ .

For any vertex γ ∈ Q0 =�∗+ there is a variable xγ in the quantum torus of Q. We
substitute each element �̄−

γ xγ in the quantum torus of (�, 〈· , ·〉) by the element xγ

in the quantum torus of Q. Then (30) can be written as

�∏

l

exp

⎛

⎜⎜⎜⎝
∑

m∈P(�∗+)

‖m‖∈l

g(m)

g

∏

γ∈�∗+

xm(γ )
γ

m(γ )!

⎞

⎟⎟⎟⎠=
�∏

l

exp

⎛

⎝
∑

γ∈l

xγ

g

⎞

⎠ .

We note that

exp

⎛

⎝
∑

‖m‖∈l

g(m)

g

∏

γ∈�∗+

xm(γ )
γ

m(γ )!

⎞

⎠= exp

⎛

⎝
∑

‖m‖∈l

g(m)

g
xm

m!

⎞

⎠ .

To prove formula (30), we have to show that

�∏

l

⎛

⎝1+
∑

‖m‖∈l

f+(m)
xm

m!

⎞

⎠=
�∏

l

exp

⎛

⎝
∑

γ∈l

xγ

g

⎞

⎠ .

This will follow from Theorem 3.3 once we show that the right-hand side corre-
sponds to the c−-semistable abelian representations of Q.

Let m ∈�+(Q) be such that there exist c−-semistable abelian representations of
Q(m). Assume that there are vertices γi , γ ′

j of Q(m) such that γi <γ ′
j (in c−). This

means that
〈
γ, γ ′〉<0 and there are

〈
γ ′, γ

〉
arrows from γi to γ ′

j . Let γi be one of
the maximal vertices of Q(m). Then there are no arrows from γi to other vertices
of Q(m). Therefore, for any abelian representation M of Q(m), there is a subrep-
resentation M ′ concentrated at γi and we have dimM <dimM ′ in c−. This implies
that there are no c−-semistable abelian representations of Q(m) unless we have〈
γ, γ ′〉=0 for any γ, γ ′ ∈ supp m. This means that supp m is contained in l =R>0γ0

for some γ0 ∈�∗+. The corresponding invariant of c−-semistable abelian representa-
tions is f−(m)=g−|m| (there are no arrows in the quiver Q(m)). The sum of these
invariants (for a fixed ray l) is

∑

supp m⊂l

g−|m| xm

m! =
∑

supp m⊂l

∏

γ∈l

(g−1xγ )m(γ )

m(γ )! =
∏

γ∈l

exp
(

g−1xγ

)
= exp

⎛

⎝
∑

γ∈l

xγ

g

⎞

⎠ .

This finishes the proof of the theorem.
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8.1. INTERPRETATION OF THE MPS FORMULA

We will interpret here the MPS formula [16, Eq. D.6] as described in [21, Theo-
rem 3.5] using the language of the previous sections.

Let Q be a quiver with a stability function Z : �(Q) → C. Consider the quiver
Q′ with vertices il , where i ∈ Q0, l ≥ 1. The number of arrows from il to jl ′ is
defined as ll ′ times the number of arrows from i to j . Consider the projection
‖−‖:�(Q′)→�(Q), il �→ li . It induces a stability function Z :�(Q′)→C on Q′ and
it preserves the skew-symmetric forms on Q′ and Q. This implies that it induces
an algebra morphism from the quantum torus of Q′ to the quantum torus of Q.
For α ∈�∗+(Q) let

AZ (Q, α)= [RZ (Q, α)]vir

[GLα]vir

be the motivic invariant of the moduli stack of Z -semistable Q-representations
having dimension vector α. For m ∈�∗+(Q′) let

fZ (Q′(m))= [RZ (Q′(m))]vir

[(Gm)|m|]vir

be the motivic invariant of the moduli stack of Z -semistable abelian representa-
tions of Q′(m).

We can write [21, Theorem 3.5] in the form

AZ (Q, α)=
∑

‖m‖=α

fZ (Q′(m))
1

m!
∏

il∈Q′
0

(
q

1
2 −q− 1

2

l(q
l
2 −q− l

2 )

)m(il )

. (33)

Consider the algebra homomorphism of quantum tori π :TQ′ →TQ given by

xm �→ x‖m‖ ∏

il∈Q′
0

(
q

1
2 −q− 1

2

l(q
l
2 −q− l

2 )

)m(il )

.

Then the previous equation says that this map sends

1+
∑

Z(m)∈l

fZ (Q′(m))
xm

m! �→1+
∑

Z(α)∈l

AZ (Q, α)xα

for any ray l ⊂H+. It is enough to prove this statement only for a trivial stability,
as both sides satisfy the HN recursion (for abelian representations this is proved
in Theorem 3.3) and π is an algebra homomorphism. For the trivial stability this
statement is proved in the first part of [21, Theorem 3.5].



524 SERGEY MOZGOVOY AND MARKUS REINEKE

Acknowledgements

S. Mozgovoy would like to thank Tamás Hausel, Boris Pioline and Ashoke Sen for
helpful discussions. M. Reineke would like to thank Jan Manschot for explaining
[17], and Sven Meinhardt, Jacopo Stoppa and Thorsten Weist for helpful discus-
sions.

References
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