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Abstract. A notion of intermediate vertex subalgebras of lattice vertex operator algebras is
introduced, as a generalization of the notion of principal subspaces. Bases and the graded
dimensions of such subalgebras are given. As an application, it is shown that the charac-
ters of some modules of an intermediate vertex subalgebra between E7 and E8 lattice ver-
tex operator algebras satisfy some modular differential equations. This result is an analogue
of the result concerning the “hole” of the Deligne dimension formulas and the intermediate
Lie algebra between the simple Lie algebras E7 and E8.
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1. Introduction

The Deligne exceptional series of simple Lie algebras is the series

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

of simple Lie algebras [11]. For irreducible components of some tensor prod-
ucts of the adjoint representations of the simple Lie algebras in the above excep-
tional series, remarkable dimension formulas, called Deligne dimension formulas,
were established [8,11,23]. They are expressed as rational functions in the dual
Coxeter number h∨. For example,

dim g= 2(5h∨ −6)(h∨ +1)

h∨ +6

After finishing this work, we learned of a recent related work by Kaneko et al. [20], where the Kaneko–
Zagier equations and the Mathur–Mukhi–Sen classification are studied in detail.
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and

dim g(2) = 5h∨2(2h∨ +3)(5h∨ −6)

(h∨ +6)(h∨ +12)
.

When h∨ =24, which intermediates between the dual Coxeter numbers 18 of E7

and 30 of E8, the formulas give integer values dim g = 190 and dim g(2) = 15504.
However, there is no such a simple Lie algebra.

Later, this “hole” of the exceptional series was filled in. In [24], a Lie algebra
E7+1/2, which is non-reductive and intermediates between E7 and E8, was con-
structed, and the dimension formulas for this algebra were proved. The Lie algebra
E7+1/2 is an intermediate Lie algebra [15,24,32].

The same exceptional series appeared in earlier studies of modular differen-
tial equations. In 1988, Mathur, Mukhi and Sen, in their work of classification
of rational conformal field theories (C2-cofinite rational vertex operator algebras
(VOAs) of CFT-type) with two characters [30], studied the modular differential
equations of the form

(
q

d
dq

)2

f (τ )+2E2(τ )

(
q

d
dq

)
f (τ )+180μ · E4(τ ) f (τ )=0. (1)

Here μ is a numerical constant, τ a complex number in the complex upper half-
plane H with q = e2π iτ , and Ek(τ )(k =2,4,6, . . .) the Eisenstein series

Ek(τ )=− Bk

k! + 2
(k −1)!

∑
n≥1

nk−1qn

1−qn
,

where Bk is the kth Bernoulli number. (Differential equations equivalent to (1)
were studied by Kaneko and Zagier [21] in number theory.) By studying (1), they
showed, roughly speaking, that the characters of the rational conformal field the-
ories with two characters are that of the level one affine VOAs associated to the
Deligne exceptional simple Lie algebras. The list obtained is shown in Table I.
(c denotes the central charge, h the non-zero conformal weight, and dim V1 the
dimension of the weight one subspace of such a theory.) When μ = 11/900 and
551/900, there are solutions of the differential equations (1) of the form f (τ ) =
q−c/24∑∞

n=0 anqn with a0 =1, an ∈Z>0 (n =1,2,3, . . .) and c =2/5 and 38/5. How-
ever, according to the Verlinde formula, there are no rational conformal field the-
ories of central charges c = 2/5 and 38/5 with two characters. (In [30], the Vira-
soro minimal model at c =−22/5 was assigned to the case μ= 11/900. The char-
acters agree with the famous Rogers–Ramanujan functions. However, we cannot
assign such a theory to the case μ=551/900, according to the Verlinde formula.)
Note that the value c = 38/5 intermediates between the central charges c = 7 of
L1,0(E7) and c = 8 of L1,0(E8). Here, L1,0(g) is the level one affine VOA associ-
ated to a simple Lie algebra g. Note also that actually a1 is 190 and agrees with
dim E7+1/2 =190.
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Table I. The characters of the RCFTs with “two” characters and h ≥0

μ dim V1 c h Identification

11/900 1 2/5 1/5
5/144 3 1 1/4 L1,0(A1)

1/12 8 2 1/3 L1,0(A2)

119/900 14 14/5 2/5 L1,0(G2)

2/9 28 4 1/2 L1,0(D4)

299/900 52 26/5 3/5 L1,0(F4)

5/12 78 6 2/3 L1,0(E6)

77/144 133 7 3/4 L1,0(E7)

551/900 190 38/5 4/5
2/3 248 8 (5/6) L1,0(E8)

Motivated by the above works, we construct an N-graded vertex algebra and a
module with the “characters” satisfying the Equation (1) with μ=551/900, by con-
sidering the analogy of the intermediate Lie algebras. We consider the vertex sub-
algebra

〈E7+1/2〉v.a. ⊂ L1,0(E8) (2)

(and a module). Here, 〈E7+1/2〉v.a. denotes the smallest vertex subalgebra contain-
ing E7+1/2.

The vertex algebra 〈E7+1/2〉v.a. is isomorphic to an intermediate vertex subalgebra
of a lattice VOA, which we introduce in this paper. For the purpose, we establish
the formula to describe the graded dimensions of such subalgebras and modules.

The intermediate vertex subalgebra W (R, S) is by definition the vertex subal-
gebra generated by the subset {eρ, e±σ , σ−1 ⊗ 1|ρ ∈ R, σ ∈ S} of the lattice VOA
VL associated with an integral lattice L. Here, R and S are disjoint subsets of a
Z-basis B of L. (See Definitions 2.1 and 2.2, for more detail.)

The notion of the intermediate vertex subalgebras is a generalization of the
notion of the principal subspaces introduced by Feigin and Stoyanovsky [13,33]. A
principal subspace is the subspace

W (�)=U (n̄) ·v�

of a standard A(1)
n -module L(�), where n is the nilradical of a Borel subalgebra

of sln+1. When n =1, the graded dimensions of W (�0) and W (�1) agree with the
Rogers–Ramanujan functions. The notion clearly extends to an arbitrary highest
weight module for an affine Lie algebra. The principal subspaces were studied in
[3,7,9,10,12,14,31] and others.

Recently, Milas and Penn considered the lattice VOA VL and the vertex subal-
gebra WL(B)=〈eβ1 , . . . , eβn 〉v.a., called the principal subalgebra [29]. This is a gen-
eralization of the principal subspaces of level one standard modules over simply-
laced simple Lie algebras. Combinatorial bases and the graded dimensions of the
subalgebra WL(B) and some modules were given in [29].



160 KAZUYA KAWASETSU

Note that the principal subalgebra WL(B) agrees with the intermediate vertex
subalgebra W (B,∅). By using the bases of the principal subalgebras and mod-
ules, we construct combinatorial bases and give the formula to compute the graded
dimensions of the intermediate vertex subalgebra W (R, S) and intermediate
modules.

We use the formula to study the character of the vertex subalgebra (2). We con-
sider the lattice VOA VE8 associated with the E8 root lattice and the intermediate
vertex subalgebra VE7+1/2 = W ({α1}, {α2, . . . , α8}). This vertex algebra is isomorphic
to the vertex algebra (2) via the isomorphism VE8

∼= L1,0(E8). Next, we consider
the intermediate module VE7+1/2+α1 . Then we will show that the characters of the
subalgebra and module form a basis of the solutions of the modular differential
equation (1) with μ=551/900.

Note that by means of Tuite’s result in [34], which was motivated by the work
of Matsuo [25], our result can be thought of as a conformal field theory version
of filling in the “hole” of the exceptional series.

In Section 2, we recall the definition of the lattice VOAs and introduce the
notion of the intermediate vertex subalgebras and intermediate modules. We then
describe the structures and give the formula to compute the graded dimensions.
In Section 3, we consider the intermediate vertex subalgebra VE7+1/2 and the mod-
ule VE7+1/2+α1 . We compute the characters and show that they form a basis of the
solutions of (1) with μ= 551/900. For the purpose, we decompose the characters
into the form of polynomials in the characters of the modules of some VOAs. In
Section 4, we prove the structure theorem of the intermediate vertex subalgebras
and modules.

2. The Intermediate Vertex Subalgebras

2.1. THE SETTING

Let L be a rank n non-degenerate integral lattice with the Z-bilinear form 〈·, ·〉 :
L × L →Z. Let B ={β1, . . . , βn} be a Z-basis of L.

Put h=C⊗Z L. Consider the affine central extension ĥ=h⊗C[t, t−1]⊕Ck and
its irreducible induced module

M(1)=U (̂h)⊗U (h⊗C[t]⊕Ck) C,

where h⊗C[t] acts trivially and k acts as 1 on the one-dimensional module C. The
space M(1) can be identified with the symmetric algebra S(̂h−), where

ĥ− =h⊗ t−1
C[t−1].

Consider the corresponding lattice vertex operator (super)algebra (lattice VOA)

VL ∼= M(1)⊗C[L]
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[6]. Recall that the vertex operator is given by the following formula:

Y (eα, x)=
∑
m∈Z

(eα)m x−m−1 = E−(−α, x)E+(−α, x)eαxα.

Here

eα · (h ⊗ eβ)= ε(α,β)h ⊗ eα+β, eβ ∈C[L], h ∈ M(1),

E−(−α, x)= exp

⎛
⎝−

∑
j<0

x− j

j
α j

⎞
⎠,

and

E+(−α, x)= exp

⎛
⎝−

∑
j>0

x− j

j
α j

⎞
⎠.

For B ′ ⊂ B, we set

L(B ′)=
⊕
β∈B′

Zβ and L+(B ′)=
⊕
β∈B′

Z≥0β.

Then L(B ′) is a sublattice, and L+(B ′) is a submonoid of L. Furthermore, we set
h(B ′), ĥ(B ′) and ĥ(B ′)− and consider the lattice VOA VL(B′) as a vertex operator
subalgebra of VL .

Let R and S be disjoint subsets of B. Let R � S denote the disjoint union. Put
r =|R| and s =|S|. We arrange the indices of the basis so that R ={β1, . . . , βr } and
S ={βr+1, . . . , βr+s}. We put ρi =βi for 1 ≤ i ≤ r and σ j =βr+ j for 1 ≤ j ≤ s. That
is,

R ={ρ1, . . . , ρr } and S ={σ1, . . . , σs}.
Then we set

L(R, S)= L+(R)⊕ L(S).

This is a submonoid of L.
Let 〈A〉v.a. denote the smallest vertex subalgebra containing the subset A of VL .

DEFINITION 2.1. The (weak) intermediate vertex subalgebra W (R, S) of VL asso-
ciated with (R, S) is the vertex subalgebra

W (R, S)=〈eρ, e±σ , σ−1 ⊗1|ρ ∈ R, σ ∈ S〉v.a..

We set W (R)= W (R,∅).
Let L◦ denote the dual lattice of L. Consider a VL -module VL◦ = M(1)⊗C[L◦].

Let λ be an element of L◦.

DEFINITION 2.2. The (weak) intermediate module W (R, S;λ) over W (R, S) is
the cyclic W (R, S)-module
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W (R, S;λ)= W (R, S) · eλ ⊂ VL◦ .

We set W (R;λ)= W (R,∅;λ).

Remark 2.1. Put L ′ = L(R) and L ′′ = L(S). The intermediate vertex subalgebra
W (∅, S) agrees with the lattice VOA VL ′′ associated with the lattice L ′′. On the
other hand, the intermediate vertex subalgebra W (R) = W (R,∅) is the principal
subalgebra WL ′(R), and the intermediate modules W (R;λ)= W (R,∅;λ) agree with
the principal subspaces WL ′+λ(R) [29]. Moreover, if L ′ is an ADE root lattice,
W (R) and W (R;λi ) correspond to the level one principal subspaces W (�0) and
W (λi ), studied in [7]. Here, λi (i = 1, . . . ,n) are the fundamental weights of the
root system of L ′.

Now let us define some (bi-)gradings on the above vertex algebras and modules.
Put V = VL◦ . First, take the conformal vector ω in VL and the stress-energy tensor

Y (ω, z)= T (z)=
∑
i∈Z

L(i)z−i−2.

Then, the operator L(0) on V is diagonalizable, and the eigenvalues are ratio-
nal numbers. Let Vr denote the r -eigenspace. The grading V =⊕r Vr is called the
weight grading. For v ∈ Vr , we call r the weight of v and write r = wt(v). For any
vector subspace X of V , we set Xr = X ∩ Vr . Then the vector spaces VL , W (R, S)

and W (R, S;λ) are graded vector subspaces of V . We call the restricted grading
the weight grading.

Next, take an element τ of L◦. Consider the subspace

V τ = M(1)⊗ eτ .

Then consider the subspaces

X τ = X ∩ V τ , (X = VL , W (R, S)),

and

(W (R, S;λ))τ = W (R, S;λ)∩ V τ+λ.

Let X be one of the vector spaces V, VL , W (R, S) and W (R, S;λ). The grading
X =⊕τ X τ is called the charge-grading. For any v ∈ X τ , we call τ the charge of v.
If X τ �= 0, we call τ a charge of X . Note that the set of the charges of VL agrees
with L, and that of W (R, S) and W (R, S;λ) agree with L(R, S).

Note that for any charge τ , the subspace X τ is L(0)-invariant, and the weight
grading and charge grading are compatible. Consider the bi-grading X =⊕r,τ X τ

r ,
where X τ

r denote the subspace X τ ∩ Xr . We call this the charge and weight grading.
Note that as the bi-graded vector spaces, W (R, S;0)= W (R, S).
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2.2. STRUCTURE OF THE INTERMEDIATE VERTEX SUBALGEBRAS AND MODULES

Recall that W (R)= W (R,∅) is a principal subalgebra [29]. The following theorem
is our main result.

THEOREM 2.1. The module W (R, S;λ) decomposes as an S(̂h(S)−)⊗W (R)-module
into the form

W (R, S;λ)∼=S(̂h(S)−)⊗
⊕

δ∈L(S)

W (R; δ +λ). (3)

We prove the theorem in Section 4.
Now, we construct a basis of W (R, S;λ) using the theorem and the result of

[29]. Write r =|R| and s =|S|. Put ρi =βi for 1≤ i ≤r , and σ j =βr+ j for 1≤ j ≤ s.
Let k1, . . . , kr be non-negative integers. For 1≤ i ≤ r , consider the set

Mi (R;λ; k1, . . . , kr )=
{(

mki , . . . ,m1
)∈Z

ki |

m1 ≤−1−
i−1∑
l=1

kl〈ρi , ρl〉−〈ρi , λ〉,

m j+1 ≤m j −〈ρi , ρi 〉 (1≤ j ≤ ki −1)

}
.

For each sequence μ= (mk, . . . ,m1) of integers and β ∈ B, set ε
β
μ = (eβ)mk . . . (eβ)m1 .

Consider the set

B(R;λ; k1, . . . , kr )={ερr
μr

. . . ερ1
μ1

.eλ|μi ∈ Mi (R;λ; k1, . . . , kr ) (1≤ i ≤ r)}.

Note that the elements of the set B(R;λ; k1, . . . , kr ) have the charge k1ρ1 + · · · +
krρr .

The following lemma is the result of [29].

LEMMA 2.1 [29, Corollary 4.8]. If k1, . . . , kr are non-negative integers, then the set
B(R;λ; k1, . . . , kr ) is a C-basis of the vector space (W (R;λ))ρ , where ρ = k1β1 +· · ·
+ krβr .

Note that for each τ ∈ L(R, S), the subspace (W (R, S;λ))τ is a free S(̂h(S)−)-
module. By Theorem 2.1 and Lemma 2.1, we obtain the following corollary.

COROLLARY 2.1. If δ is an element of L(S), and k1, . . . , kr are non-negative inte-
gers, then the set B(R;λ + δ; k1, . . . , kr ) is a basis of the free S(̂h(S)−)-module
(W (R, S;λ))τ , where τ = k1ρ1 +· · ·+ krρr + δ.
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Consider the set

B(S(̂h(S)−))={(σ1)i1
1
. . . (σ1)i

l1
1

. . . (σs)i1
s
. . . (σs)i ls

s
|

l1, . . . , ls ≥0, i1
j ≤· · ·≤ i

l j
j ≤−1 (1≤ j ≤ s)}.

Then B(S(̂h(S)−)) is a basis of S(̂h(S)−). Consider the set

B(R, S;λ)=B(S(̂h(S)−))⊗
∐

δ∈L(S),k1,...,kr ≥0

B(R;λ+ δ; k1, . . . , kr ).

Here, for vector spaces P and Q and subsets X ⊂ P and Y ⊂ Q, we denote by X ⊗
Y the set {x ⊗ y ∈ P ⊗ Q|x ∈ X, y ∈Y }.

Then we obtain the following corollary.

COROLLARY 2.2. The following hold.

(i) If δ is an element of L(S), and k1, . . . , kr are non-negative integers, then the set
B(S(̂h(S)−))⊗B(R;λ+δ; k1, . . . , kr ) is a C-basis of the vector space W (R, S;λ)τ ,
where τ = k1ρ1 +· · ·+ krρr + δ.

(ii) The set B(R, S;λ) is a C-basis of the vector space W (R, S;λ).

This is a generalization of the result of [29].

2.3. GRADED DIMENSIONS OF THE INTERMEDIATE VERTEX SUBALGEBRAS

AND MODULES

Recall that VL◦ and our subspaces carry the bi-gradings: the charge and weight
gradings.

DEFINITION 2.3. The graded dimension χW (R,S;λ) of W (R, S;λ) is

χW (R,S;λ)(x;q)=
∑

τ∈L◦,r∈Q

dimC

(
(W (R, S;λ))τr

)
qr xk1

1 · · · xkn
n ,

where k1β1 +· · ·+ knβn = τ .

To compute the graded dimension, consider the symbols

(q)k = (q;q)k = (1−q) · · · (1−qk), (k ≥1),

(q)0 = 1, and (q)∞ =∏∞
i=1(1 − qi ). Here (a;q)k = (1 − a)(1 − aq) · · · (1 − aqk−1) is

the q-Pochhammer symbol. Recall that 1/(q)k agrees with the generating function
of the partitions into parts not greater than k, therefore agrees with the generating
function of the partitions into at most k parts. Recall further that

1
(q)∞

= 1
ϕ(q)

=
∞∑

k=0

p(k)qk .
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Here, ϕ(q) is the Euler function and p(k) is the number of the un-restricted par-
titions of an integer k. Consider the Gram matrix A = (〈βi , β j 〉)i, j . Put r = |R|
and s = |S|. Since λ ∈ L◦, λ has the form l1β1 + · · · + lnβn with l1, . . . , ln ∈ Q. Put
l = (l1, . . . , ln).

THEOREM 2.2. The graded dimension of W (R, S;λ) is given by

χW (R,S;λ)(x;q)=
∑

k1,...,kr ≥0,kr+1,...,kr+s∈Z

q
(k+l)·A·(k+l)

2

(q)k1 · · · (q)kr · (q)s∞
xk1

1 · · · xkr+s
r+s ,

where k = (k1, . . . , kr+s,0, . . . ,0).

Proof. The assertion follows from Corollary 2.2 and the relation

wt(eτ+λ)= 〈τ +λ, τ +λ〉
2

= (k + l) · A · (k + l)
2

,

where τ = k1β1 +· · ·+ knβn .

For later use, we set χ ′
W (R,S;λ)

(x;q)=q−〈λ,λ〉/2χW (R,S;λ)(x;q).

3. Applications (Filling in the “Hole” of the Characters
of the “Exceptional” Series)

As an application of Theorem 2.2, we will study the intermediate vertex subalgebra
VE7+1/2 between the lattice VOAs VE7 and VE8 .

3.1. A WELL-KNOWN EXAMPLE: THE INTERMEDIATE VERTEX SUBALGEBRA VA1/2

First we consider the well-known result as an example of the intermediate vertex
subalgebras.

Let A1 be a root lattice of type A1 with the Z-bilinear form 〈, 〉, and let A◦
1 be

the dual lattice. Consider the lattice VOA VA1 associated with A1. Let α be a sim-
ple root and ω the fundamental weight. Set �1 ={α}.

Consider the intermediate vertex subalgebra VA1/2 = W (�1,∅) and the interme-
diate module VA1/2+ω = W (�1,∅;ω).

Note that they agree with the principal subspaces of the basic representations of
the affine Lie algebra A(1)

1 . The graded dimensions were described in [13,33]:

χVA1/2
(x;q)=

∞∑
k=0

qk2

(q)k
xk

and

χ ′
VA1/2+ω

(x;q)=
∞∑

k=0

qk2+k

(q)k
xk .
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Set

c = 2
5

and h = 1
5
,

as in the row of μ = 11/900 in Table I. We define the characters of VA1/2 and
VA1/2+ω to be

Z(VA1/2; τ)=q−c/24χVA1/2
(1;q)

and

Z(VA1/2+ω; τ)=qh−c/24χ ′
VA1/2+ω

(1;q),

where τ ∈H and q = e2π iτ .
Then the vector space spanned by the characters Z(VA1/2; τ) and Z(VA1/2+ω; τ)

is invariant under modular transformations and is the space of the solutions of the
modular differential equation (1) with μ=11/900:

(
q

d
dq

)2

f (τ )+2E2(τ )

(
q

d
dq

)
f (τ )− 11

5
E4(τ ) f (τ )=0.

In fact, we have

Z
(
VA1/2; τ

)=q−1/60
∞∑

k=0

qk2

(q)k
(4)

and

Z
(
VA1/2+ω; τ

)=q11/60
∞∑

k=0

qk2+k

(q)k
. (5)

The RHS of (5) agrees with the character of the Virasoro minimal model
L(−22/5,0) at c=−22/5, and the RHS of (4) agrees with that of the unique non-
identity irreducible module L(−22/5,−1/5).

Hence,

Z
(
VA1/2; τ

)= Z (L (−22/5,−1/5) ; τ) ,

and

Z
(
VA1/2+ω; τ

)= Z (L (−22/5,0) ; τ) .

Therefore, the characters of the intermediate subalgebra VA1/2 and the module
VA1/2+ω form a basis of the space of the solutions of a modular differential equa-
tion. The differential equation can be standardly deduced using a singular vector
of the Virasoro Verma module V (−22/5,0). It coincides with the above differential
equation. (cf: [26] Theorem 6.1.) Thus the assertion holds.
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Figure 1. Dynkin diagram of E8.

Remark 3.1. Functions (4) and (5) are the Rogers–Ramanujan functions. These
functions arise naturally in solutions of the Regime I of Baxter’s Hard Hexagon
model [5,2].

For later use, put φ1(τ ) = η(τ)2/5 Z(VA1/2) and φ2(τ ) = η(τ)2/5 Z(VA1/2+ω). Here,
η(τ) is the Dedekind eta function. Note that the functions φ1 and φ2 are holo-
morphic modular forms of weight 1/5 (with a suitable multiplier system) on the
congruence subgroup �(5) [4,16,18].

3.2. THE INTERMEDIATE VERTEX SUBALGEBRA VE7+1/2

Let E8 be a root lattice of type E8 with the Z-bilinear form 〈, 〉. Let α1, . . . , α8 be
simple roots of E8 and denote the highest root by α̃, as illustrated in Figure 1.
Note that a sublattice E7 =〈α2, . . . , α8〉⊂ E8 is a root lattice of type E7. Set �8 =
{α1, . . . , α8}. Consider the lattice VOA VE8 associated with E8 and the lattice sub-
VOA VE7 ⊂ VE8 associated with E7.

Set R = {α1} and S = {α2, . . . , α8}. Consider the intermediate vertex subalgebra
VE7+1/2 = W (R, S) of VE8 associated with (R, S). That is,

VE7+1/2 =〈eα1 , e±α2 , . . . , e±α8 , α2, . . . , α8〉v.a. ⊂ VE8 .

Then, the weight one subspace g= (VE7+1/2)1 is a Lie algebra with the Lie bracket
[a,b] := a0b and is isomorphic to E7+1/2. Therefore, VE7+1/2 is a representation of
E7+1/2.

Indeed, consider the adjoint (5-step) grading of the Lie algebra E8 = (VE8)1

induced by the highest root α̃ [24]

E8 = (E8)−2 ⊕ (E8)−1 ⊕ (E8)0 ⊕ (E8)1 ⊕ (E8)2.

Here (E8)i is the i-eigenspace of α̃ ∈ h. Consider the intermediate Lie algebra
E7+1/2 := ((E8)0)

′ ⊕ (E8)1 ⊕ (E8)2. Here ((E8)0)
′ is the derived algebra. Then we

obtain ((E8)0)
′ = E7, (E8)1 = 56 and (E8)2 = Cα̃. Therefore, we see that E7+1/2 =

E7 +56+Cα̃ =〈E7, α1〉. On the other hand, by the definition, we obtain VE7+1/2 =
〈VE7 , α1〉. Hence E7+1/2 is contained in VE7+1/2 .
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As in the previous subsection, we will fill in the “hole” of the “exceptional
series” using the intermediate vertex subalgebra VE7+1/2 . For the purpose, we need
to take a “non-identity” intermediate module with the character satisfying the
modular differential equation. If we consider the ways of the theories of the
intermediate Lie algebras and modules, we should take it in the “non-identity irre-
ducible module” of VE8 . But such a module does not exist since E8 is a unimodu-
lar lattice, that is, E8 = E◦

8 . Therefore, we try to take it in the identity module VE8 .
It will go well.

Consider the element α1 ∈ E8 and the intermediate module W (R, S;α1). We set
VE7+1/2+α1 = W (R, S;α1).

Set

c = 38
5

and h = 4
5
,

as in the row of μ=551/900 in Table I.
We define the characters of VE7+1/2 and VE7+1/2+α1 to be

Z(VE7+1/2; τ)=q−c/24χVE7+1/2
(1, . . . ,1;q)

and

Z(VE7+1/2+α1; τ)=qh−c/24χ ′
VE7+1/2+α1

(1, . . . ,1;q),

where τ ∈H and q = e2π iτ .

THEOREM 3.1. The vector space spanned by the characters Z(VE7+1/2; τ) and
Z(VE7+1/2+α1; τ) is invariant under modular transformations and is the space of the
solutions of the modular differential equation (1) with μ=551/900:

(
q

d
dq

)2

f (τ )+2E2(τ )

(
q

d
dq

)
f (τ )− 551

5
E4(τ ) f (τ )=0. (6)

To prove the above theorem, we need some assertions. Denote by (ω2, . . . , ω8)

(ωi ∈ E◦
7 (i =2, . . . ,8)) the dual basis of the basis (α2, . . . , α8) of the sublattice E7.

Consider the Virasoro minimal model L(−3/5,0) at c = −3/5 and the modules
L(−3/5, h) with the conformal weights h =0,3/4,1/5 and −1/20.

First, we show that the characters satisfy the following equalities:

Z
(
VE7+1/2; τ

)= Z
(
VE7; τ

) · Z (L (−3/5,−1/20) ; τ)

+Z
(
VE7+ω2; τ

) · Z (L (−3/5,1/5) ; τ) (7)

and

Z
(
VE7+1/2+α1; τ

)= Z
(
VE7; τ

) · Z (L (−3/5,3/4) ; τ)

+Z
(
VE7+ω2; τ

) · Z (L (−3/5,0) ; τ) . (8)
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By Theorem 2.2, the characters are

Z
(
VE7+1/2; τ

)=q−19/60 ·
∑

k1≥0,k2,...,k8∈Z

q
k·M8·kT

2

(q)k1(q)7∞
(9)

and

Z
(
VE7+1/2+α1; τ

)=q29/60 ·
∑

k1≥1,k2,...,k8∈Z

q
k·M8·kT

2

(q)k1−1(q)7∞
, (10)

where k = (k1, . . . , k8). Here M8 is the Cartan matrix M8 = (〈αi , α j 〉)(i, j=1,...,8) of
E8. In (9), k = (k1, . . . , k8) implies the charge k1α1 +· · ·+k8α8 of V . Note that the
set of the charges of VE7+1/2 agrees with the set L(R, S) = {k1α1 + · · · + k8α8|k1 ≥
0, k2, . . . , k8 ∈Z}.

Recall (cf. [17]) that the highest root α̃ of E8 is

α̃ =2α1 +3α2 +4α3 +5α4 +6α5 +4α6 +2α7 +3α8.

Set

L(R, S)even ={k2α2 +· · ·+ k8α8 + kα̃|k2, . . . , k8 ∈Z, k ≥0}
and

L(R, S)odd ={k2α2 +· · ·+ k8α8 + kα̃ +α1|k2, . . . , k8 ∈Z, k ≥0}.
Then L(R, S)= L(R, S)even � L(R, S)odd.

Let k2, . . . , k8 be integers and k a non-negative integer. Set μ = k2α2 + · · · +
k8α8 + kα̃ and ν = k2α2 + · · · + k8α8 + kα̃ + α1. Then μ ∈ L(R, S)even, and ν ∈
L(R, S)odd. Set β =k2α2 +· · ·+k8α8 and k′ =(k2, . . . , k8). Then β belongs to L(S)=
E7. Considering the extended Dynkin diagram of E8 (Figure 1), we obtain

〈β,β〉=k′ · M7 ·k′T,

〈β, α̃〉=0,

〈β,α1〉=〈k2α2, α1〉=−k2

and

〈α̃, α1〉=〈3α2 +2α1, α1〉=1.

Here M7 is the Cartan matrix (〈αi , α j 〉)(i, j=2,...,8) of E7. Then we have

〈μ,μ〉
2

= k′ · M7 ·k′T

2
+ k2

and

〈ν, ν〉
2

= k′ · M7 ·k′T

2
− k2 + k2 + k +1.



170 KAZUYA KAWASETSU

Therefore, we have

Z
(
VE7+1/2; τ

)

=q−19/60
∑

k≥0,k2,...,k8∈Z

q
k′ ·M7 ·k′T

2 +k2

(q)7∞(q)2k

+q−19/60
∑

k≥0,k2,...,k8∈Z

q
k′ ·M7·k′T

2 −k2+k2+k+1

(q)7∞(q)2k+1

=
⎛
⎝q−7/24

∑
k2,...,k8∈Z

q
k′ ·M7·k′T

2

(q)7∞

⎞
⎠ ·
⎛
⎝q−1/40

∑
k≥0

qk2

(q)2k

⎞
⎠

+
⎛
⎝q11/24

∑
k2,...,k8∈Z

q
k′ ·M7 ·k′T

2 −〈β,ω2〉

(q)7∞

⎞
⎠ ·
⎛
⎝q−9/40

∑
k≥0

qk2+k

(q)2k+1

⎞
⎠, (11)

where k′ = (k2, . . . , k8), and β = k2α2 +· · ·+ k8α8. Similarly, we have

Z
(
VE7+1/2+α1; τ

)

=
⎛
⎝q−7/24

∑
k2,...,k8∈Z

q
k′ ·M7·k′T

2

(q)7∞

⎞
⎠ ·
⎛
⎝q−9/40

∑
k≥1

qk2

(q)2k−1

⎞
⎠

+
⎛
⎝q11/24

∑
k2,...,k8∈Z

q
k′ ·M7·k′T

2 −〈β,ω2〉

(q)7∞

⎞
⎠ ·
⎛
⎝q1/40

∑
k≥0

qk2+k

(q)2k

⎞
⎠, (12)

where k′ = (k2, . . . , k8), and β = k2α2 +· · ·+ k8α8.
It is known [22] that the four functions appearing in the above equalities agree

with the characters of the Virasoro minimal model at c =−3/5:

q−1/40
∑
k≥0

qk2

(q)2k
= Z (L (−3/5,−1/20) ; τ),

q9/40
∑
k≥0

qk2+k

(q)2k+1
= Z (L (−3/5,1/5) ; τ),

q−9/40
∑
k≥1

qk2

(q)2k−1
= Z (L (−3/5,3/4) ; τ)

and

q1/40
∑
k≥0

qk2+k

(q)2k
= Z (L (−3/5,0) ; τ).
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Furthermore, by the definition of the characters of the lattice VOAs, we have

q−7/24
∑

k2,...,k8∈Z

q
k′ ·M7·k′T

2

(q)7∞
= Z

(
VE7; τ

)

and

q11/24
∑

k2,...,k8∈Z

q
k′ ·M7 ·k′T

2 −〈β,ω2〉

(q)7∞
= Z

(
VE7−ω2; τ

)
,

where k′ = (k2, . . . , k8) and β = k2α2 +· · ·+ k8α8. Since

−ω2 =−1
2
(3α2 +4α3 +5α4 +6α5 +4α6 +2α7 +3α8)

is a representative of the unique non-zero element of E◦
7/E7 ∼= Z/2Z, the module

VE7−ω2 (also, VE7+ω2 ) is the unique non-identity irreducible module of the lattice
VOA VE7 up to equivalence. Thus we have (7) and (8).

Remark 3.2. The four functions

∑
k≥0

qk2

(q)2k
,

∑
k≥0

qk2+k

(q)2k+1
,

∑
k≥1

qk2

(q)2k−1
and

∑
k≥0

qk2+k

(q)2k

appearing in equalities (11) and (12) arise naturally in solutions of the Regime IV
of Baxter’s Hard Hexagon model [2,5].

By the theories of VOAs (or theories of infinite dimensional Lie algebras [17,
35],) we obtain the rules of modular transformations for the characters of the
VOAs VE7 and L(−3/5,0):

(
Z
(
VE7;−1/τ

)
Z
(
VE7+ω2;−1/τ

)
)

= 1√
2

[
1 1
1 −1

](
Z
(
VE7; τ

)
Z
(
VE7+ω2; τ

)
)

, (13)

(
Z
(
VE7; τ +1

)
Z
(
VE7+ω2; τ +1

)
)

=
[

e2π i(−7/24) 0
0 e2π i(11/24)

](
Z
(
VE7; τ

)
Z
(
VE7+ω2; τ

)
)

, (14)
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⎛
⎜⎜⎝

Z(L(−3/5,0);−1/τ)

Z(L(−3/5,3/4);−1/τ)

Z(L(−3/5,1/5);−1/τ)

Z(L(−3/5,−1/20);−1/τ)

⎞
⎟⎟⎠

=
√

2
5

⎡
⎢⎢⎣

sin(2π/5) − sin(2π/5) − sin(π/5) sin(π/5)

− sin(2π/5) − sin(2π/5) sin(π/5 sin(π/5)

− sin(π/5) sin(π/5) sin(2π/5) sin(2π/5)

sin(π/5) sin(π/5) sin(2π/5) sin(2π/5)

⎤
⎥⎥⎦ ·

⎛
⎜⎜⎝

Z(L(−3/5,0); τ)

Z(L(−3/5,3/4); τ)

Z(L(−3/5,1/5); τ)

Z(L(−3/5,−1/20); τ)

⎞
⎟⎟⎠ (15)

and ⎛
⎜⎜⎝

Z(L(−3/5,0); τ +1)

Z(L(−3/5,3/4); τ +1)

Z(L(−3/5,1/5); τ +1)

Z(L(−3/5,−1/20); τ +1)

⎞
⎟⎟⎠

=

⎡
⎢⎢⎣

e2π i(1/40) 0 0 0
0 e2π i(31/40) 0 0
0 0 e2π i(9/40) 0
0 0 0 e2π i(−1/40)

⎤
⎥⎥⎦ ·

⎛
⎜⎜⎝

Z(L(−3/5,0); τ)

Z(L(−3/5,3/4); τ)

Z(L(−3/5,1/5); τ)

Z(L(−3/5,−1/20); τ)

⎞
⎟⎟⎠ . (16)

By (7), (8) and (13)–(16), we have
(

Z
(
VE7+1/2;−1/τ

)
Z
(
VE7+1/2+α1;−1/τ

)
)

= 2√
5

[
sin(2π/5) sin(π/5)

sin(π/5) − sin(2π/5)

]
·
(

Z
(
VE7+1/2; τ

)
Z
(
VE7+1/2+α1; τ

)
)

and (
Z
(
VE7+1/2; τ +1

)
Z
(
VE7+1/2+α1; τ +1

)
)

=
[

e2π i(−19/60) 0
0 e2π i(29/60)

]
·
(

Z
(
VE7+1/2; τ

)
Z
(
VE7+1/2+α1; τ

)
)

.

Hence, especially, the vector space spanned by the characters of the intermediate
vertex subalgebra VE7+1/2 is invariant under modular transformations.
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Now we prove Theorem 3.1. We define the Wronskian of the intermediate vertex
subalgebra VE7+1/2 and module VE7+1/2+α1 to be

W(τ ) := W(
q d

dq

) (Z (VE7+1/2; τ
)
, Z
(
VE7+1/2+α1; τ

))

= det

(
Z
(
VE7+1/2

)
Z
(
VE7+1/2+α1

)
q d

dq Z
(
VE7+1/2

)
q d

dq Z
(
VE7+1/2+α1

)
)

.

Proof of Theorem 3.1. We see that W(τ ) is a modular form of weight 2 and sat-
isfies ordi∞(W)(=−19/60+29/60)=1/6. Then by [28] Proposition 2.4., the Wron-
skian W(τ ) is non-vanishing in the upper half plane. By [28] Theorem 2.2., there is
a unique 2nd order MDE with coefficients being quasimodular forms, with a pos-
sible pole at the infinity, with a basis of the solutions being the characters. By the
explicit computation, we see that this equals the MDE (6), which completes the
proof. (Although in [28] the Wronskian of the C2-cofinite rational VOA is consid-
ered, Proposition 2.4. and Theorem 2.2. in [28] is valid for the above Wronskian
and the space spanned by the characters.)

Remark 3.3. The modular differential equation (1) is equivalent to the MDE [18,
19,21]

f ′′(τ )− k +1
6

E2(τ ) f ′(τ )+ k(k +1)

12
E ′

2(τ ) f (τ )=0 (17)

with μ= k(k +2)/36. More precisely, f (τ ) satisfies (1) with μ= k(k +2)/36 if and
only if η(τ)2k f (τ ) satisfies the above equation. Systems of the solutions of MDE
(17), which consist of the polynomials in the Rogers–Ramanujan series φ1(τ ) and
φ2(τ ), were studied in [18]. When k =19/5, we see that the system corresponds to
the basis consisting of the characters of VE7+1/2 and VE7+1/2+α1 , by the explicit com-
putation. More precisely, when k =19/5, the ordered pair(

φ19
1 +171φ14

1 φ5
2 +247φ9

1φ10
2 −57φ4

1φ15
2 ,57φ15

1 φ4
2 +247φ10

1 φ9
2 −171φ5

1φ14
2 +φ19

2

)

is a system of the solutions of MDE (17) and equals the ordered pair(
η(τ)38/5 Z(VE7+1/2), η(τ )38/5 Z(VE7+1/2+α1)

)
.

Hence we can deduce from (7) and (8) the new descriptions of the system of the
solutions of the above differential equation with k = 19/5 using 1) the characters
of the intermediate vertex subalgebra VE7+1/2 and module or 2) the characters of
the lattice VOA associated with the E7 root lattice and Virasoro minimal model at
c =−3/5.

Remark 3.4. By Remark 3.3, the characters of VE7+1/2 and VE7+1/2+α1 are polyno-
mials in the Rogers–Ramanujan functions. Note that apart from two-dimensional
modular invariant spaces, symmetric powers of two-dimensional vector spaces
spanned by Rogers–Ramanujan functions were dealt with in [27].



174 KAZUYA KAWASETSU

Remark 3.5. The lowest weight subspace of the module VE7+1/2+α1 is
57-dimensional and contains the 56-dimensional irreducible module of E7 ⊂ E7+1/2.
The module VE7+1/2+α1 is expected to give modules of E7+1/2 not having been
studied.

4. Proof of Theorem 2.1

In this section, we prove the main theorem. Let us take over the setting and nota-
tions in Section 2.

LEMMA 4.1. Let λ be an element of L◦. Let τ1, . . . , τl be elements of L. Let
i1, . . . , il be integers. Then,

(i) there exists a unique g ∈S(̂h−) such that

(eτ1)(i1+〈τ1,λ+τl+···+τ2〉) . . . (e
τl )(il+〈τl ,λ〉)1= g ⊗ eτ1+···+τl .

Furthermore,
(ii) there exists a non-zero constant r ∈C such that

(eτ1)i1 . . . (eτl )il e
λ = r · g ⊗ eλ+τ1+···+τl . (18)

Proof. The assertions follow from the definition of vertex operators for the lat-
tice VOA. Note that if one puts

r = ε(τl , λ) · ε(τl−1, λ+ τl) · · · ε(τ1, λ+ τl +· · ·+ τ2)∈C,

r is non-zero, and (18) holds.

Proof of Lemma 2.1. If λ∈ (L(R))◦, the assertion was proved in [29] (Corollary
4.8.) The rest of the assertions follow from Lemma 4.1 and that of the case λ =
0∈ (L(R))◦.

LEMMA 4.2. Let R′ and R′′ be disjoint subsets of B. Let δ′ be an element of
L+(R′) and δ′′ an element of L+(R′′). Then

(W (R′ � R′′;λ))δ
′+δ′′ ⊂S(̂h(R′)−) · (W (R′′; δ′ +λ))δ

′′
. (19)

Proof. Denote the RHS of (19) by X . We show the case R′ = {β1, . . . , βn−1} and
R′′ = {βn}. Since δ′ ∈ L+(R′), δ′ has the form k1β1 + · · · + kn−1βn−1 with k1, . . . ,

kn−1 ≥ 0. Since δ′′ ∈ L+(R′′), δ′′ has the form knβn with kn ≥ 0. Take v ∈ B(R′ �
R′′;λ; k1, . . . , kn). By Lemma 2.1, it suffices to show v ∈ X .

The element v has the form ε
βn
μn . . . ε

β1
μ1 eλ with μi ∈ Mi (R′ � R′′;λ; k1, . . . , kn) for

1≤ i ≤n, and ε
βn−1
μn−1 . . . ε

β1
μ1 .e

λ has the form g ·ek1β1+···+kn−1βn−1+λ with g ∈S(̂h(R′)−).
Then we have v = ε

βn
μn .g · eδ′+λ. By the commutation relation
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[hk, (e
α)l ]= 〈h, α〉(eα)k+l , α ∈ L , h ∈h, k, l ∈Z, (20)

of vertex operators of lattice VOAs, it follows that ε
βn
μn .g is the sum of operators

of the form h · (eβn )qkn
. . . (eβn )q1 with h ∈ S(̂h(R′)−) and q1, . . . ,qkn ∈Z. Since βn ∈

R′′, we have (eβn )qkn
. . . (eβn )q1 .e

δ′+λ ∈ (W (R′′; δ′ +λ))knβn . Therefore, v∈ X . Thus we
have proved the lemma.

Let λ be an element of L◦. Let γ be an element of L+(R) and δ an element of
L(S).

For μ∈ L(R, S), consider the set

T (μ;λ)={ f · (eτl )il . . . (e
τ1)i1 .e

τ0+λ| f ∈S(̂h(S)−), l ≥0, i1, . . . , il ∈Z,

τ0 ∈ L(S), τ1, . . . , τl ∈ R � S � (−S) with

τ0 + τ1 +· · ·+ τl =μ}.
Here, −S ={−σ ∈ L|σ ∈ S}.

LEMMA 4.3. The set T (δ +γ ;λ) spans the vector space W (R, S;λ)δ+γ .

Proof. For τ ∈ L(S), we have eτ+λ = ε(τ, λ)(eτ )−1−〈τ,λ〉eλ. Then it follows that
each element of T (δ +γ ;λ) belongs to W (R, S;λ)δ+γ .

Consider the subset

{ f · (eτl )il . . . (e
τ1)i1 .e

λ| f ∈S(̂h(S)−), l ≥0, i1, . . . , il ∈Z,

τ1, . . . , τl ∈ R � S � (−S) with τ1 +· · ·+ τl = δ +γ }
of T (δ +γ ;λ). By (20), it follows that the subset spans W (R, S;λ)δ+γ . Hence the
set T (δ +γ ;λ) spans W (R, S;λ)δ+γ .

PROPOSITION 4.1.

W (R, S;λ)δ+γ =S(̂h(S)−) · W (R; δ +λ)γ .

Proof. We show the case λ = 0. That is, we show W (R, S)δ+γ = S(̂h(S)−) ·
W (R; δ)γ . Denote the LHS by X and the RHS by Y . Note that both X and Y
are free S(̂h(S)−)-modules. We have X ⊃Y , since W (R; δ)⊂ W (R, S).

Let us show X ⊂ Y . Take v ∈ T (δ + γ ;0). By Lemma 4.3, it suffices to show
v ∈ Y. The element v has the form f · (eτl )il . . . (eτ1)i1 .e

τ0 with f ∈ S(̂h(S)−), l ≥
0, i1, . . . , il ∈Z, τ0 ∈ L(S) and τ1, . . . , τl ∈ R � S � (−S) with τ0 + τ1 +· · ·+ τl = δ +γ .

If τ1, . . . , τl ∈ R, then τ0 = δ and τ1 +· · ·+ τl = γ , since R ∩ (S � (−S))=∅. Then
it follows that v ∈Y .

So assume that j ∈{1, . . . , l} is the minimum number satisfying τ j �∈ R. Then τ j

has the form τ j = t · σk with t ∈ {±1} and k ∈ {1, . . . , s}. Put R′ = t · S and R′′ = R.
Here, t · S = {t · σ1, . . . , t · σs}. Then R′ and R′′ are disjoint. Consider the vector
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v′ = (eτ j )i j · · · (eτ1)i1 eτ0 . (Note that v = f · (eτl )il . . . (e
τ j+1)i j+1 .v

′.) Then v′ ∈ (W (R′ �
R′′; τ0))

τ1+···+τ j , since τ j ∈ R′ and τ1, . . . , τ j−1 ∈ R′′. Moreover, τ j ∈ L+(R′), and
τ1 +· · ·+ τ j−1 ∈ L+(R′′). From Lemma 4.2 and the relation S(̂h(t · S)−)=S(̂h(S)−),
it follows that v′ ∈ S(̂h(S)−) · (W (R; τ0 + τ j ))

τ1+···+τ j−1 . Therefore, v′ is the sum of
elements of the form

g · (eτ ′
j−1)i ′j−1

. . . (eτ ′
1)i ′1 .e

τ0+τ j

with g ∈ S(̂h(S)−), i ′1, . . . , i ′j−1 ∈ Z and τ ′
1, . . . , τ

′
j−1 ∈ R with τ ′

1 + · · · + τ ′
j−1 = τ1 +

· · ·+ τ j−1. Therefore, to show v ∈Y , it suffices to show that the vector f · (eτl )il . . .

(eτ j+1)i j+1 .g · (eτ ′
j−1)i ′j−1

. . . (eτ ′
1)i ′1 .e

τ0+τ j belongs to Y .
By (20), the operator (eτl )il . . . (eτ j+1)i j+1 .g is the sum of operators of the form

h · (eτl )pl · · · (eτ j+1)p j+1 with h ∈ S(̂h(S)−) and p j+1, . . . , pl ∈ Z. Therefore, to show
v ∈Y , it suffices to show that the vector

w = f ·h · (eτl )pl . . . (eτ j+1)p j+1 .(e
τ ′

j−1)i ′j−1
. . . (eτ ′

1)i ′1 .e
τ0+τ j

belongs to Y .
Since τ j ∈ S � (−S), the vector w belongs to T (δ + γ ;0) as the vector v. Since

τ j ∈ S � (−S) and τ ′
1, . . . , τ

′
j−1 ∈ R, the number of elements of the set

{τ |τ �∈ R, τ ∈{τ ′
1, . . . , τ

′
j−1, τ j+1, . . . , τl}}

is fewer than the number of elements of the set {τ |τ �∈ R, τ ∈ {τ1, . . . , τl}}. Thus,
repeating this procedure, we have v ∈Y , and the proof is complete.

Proof of Theorem 2.1. The assertion follows from Proposition 4.1 and the fact
that the set of the charges of W (R, S;λ) agrees with L(R, S).
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