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Abstract. We investigate the existence of the meromorphic extension of the spectral zeta
function of a Laplacian on self-similar fractals using the results of Kigami and Lapidus
(based on renewal theory) and the newer results by Hambly and Kajino based on heat
kernel estimates and other probabilistic techniques. We also formulate conjectures which
hold true for the examples that have been analyzed in the existing literature.
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There have been many works in mathematical physics, analysis, and probability
on fractals studying spectral and heat kernel asymptotics of various Laplacians
on fractal sets, see [1,2,5,6,19,20,24,28,36,44, and references therein]. It is possible
that fractal spaces may provide useful models for the study of quantum gravity [4].
In particular, on many fractals the short time asymptotics of the partition function
are not given by a power function alone as it is on manifolds but in many cases
the power function is corrected by a multiplicatively periodic function. This behav-
ior has been observed in [3,22,23,34] for finitely ramified fractals, and [1,24,28]
extend the class of fractals for which one can expect the log-periodic oscillations
in the short time heat kernel asymptotics.

In this paper we investigate the related question of the existence of a mero-
morphic continuation of the spectral zeta function, which has found many prof-
itable uses in physics [21,35] (e.g. Casimir effect [14,16]). If the Weyl ratio for the
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eigenvalue counting function is a multiplicatively periodic function, up to a smaller
order term (as proved by Kigami and Lapidus in [34]), then the spectral zeta func-
tion can be expected to be meromorphic in some region to the left of dS where dS

is the spectral dimension of the underlying Laplacian. We discuss how new results
by Hambly and Kajino [24,28,29] can be applied to obtain a meromorphic con-
tinuation of the spectral zeta function of the Laplacian on certain fractals, such as
finitely ramified symmetric fractals and Sierpinski carpets. Furthermore, if the par-
tition function is decomposed into a sum of power functions times multiplicatively
periodic terms, and an exponentially decreasing term (with no other terms), then
the spectral zeta function is meromorphic over the whole complex plane (this is
done, in relation to [1] concerning the physical implications the existence of mero-
morphic continuations).

If the Laplace operator L has a discrete spectrum with eigenvalues λl , repeated
according to their multiplicities, then the spectral zeta function of L is given by

ζ(s, γ )=
∞∑

l=1

(λl +γ )−s/2 (1)

whenever the series converges absolutely. The use of s/2 instead of s is not essen-
tial, but is precedented in the cited literature and only changes the results by a
scaling factor of 2. Recall that the partition function of a non-negative self-adjoint
operator L is ZL(t)= T r(e−t L), which decays exponentially for large t in the case
of a discrete spectrum with no or excluded zero eigenvalue. By applying the inverse
Mellin transform [17,18] to ZL(t), we have

ζ(2s, γ )= 1
�(s)

∞∫

0

t s−1 ZL(t)e−γ t dt. (2)

We consider Laplacians on self-similar compact sets F , which are connected met-
ric space with injective contraction maps {ψ j }N

j=1 such that ψ j : F → F and F =
⋃N

j=1ψ j (F). For the sake of simplicity, we only consider the unique probability
self-similar measure μ on F with equal weights, that is μ(ψ j (F))=1/N . On a self-
similar set, in addition to a self-similar metric and measure, one could ask what it
means for a Dirichlet form to be self-similar. We assume the existence of the fol-
lowing decomposition of a local regular Dirichlet form E on F

E( f, g)=ρF

N∑

i=1

E( f ◦ψi , g ◦ψi ), (3)

and note that the effect of applying E to f ◦ψi is to localize E to act only on
ψi (F). With appropriate boundary conditions and domain, the Laplacian � is
defined in a weak sense by E( f, g)=− ∫

F f�g dμ.
The constant ρF is called the energy rescaling factor or conductance scaling fac-

tor. Its reciprocal r = 1
ρF

is the resistance scaling factor. In a number of papers
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the value of ρF is explicitly calculated for various finitely ramified fractals (see
[5,6,13,26,31,32,43,45] and references therein), however for infinitely ramified frac-
tals the only examples where the exact energy scaling was obtained are [12,40,41]
(information on eigenvalues and eigenfunctions can be found in [30,39]). For gen-
eralized Sierpinski carpets, ρF can be estimated and the uniqueness can be proved
(see [7–11,25] and references therein). Note that the spectral dimension is given by

dS = 2 log(N )
log(τ )

= 2 log(N )
log(ρF N )

=2
d f

dw
=2

d0

dw

where d f =d0 is the Hausdorff dimension and dw is the so-called walk dimension
(see Lemma 2 and the related work [42] by Strichartz on the spectral dimension).
The Laplacian scaling factor τ =ρF N is also known as the time scaling factor.

We say that a self-similar set K is finitely ramified and fully symmetric if the
following three conditions hold:

(1) there exists a finite subset V0 of K such that ψ j (K )∩ψk(K )=ψ j (V0)∩ψk(V0)

for j �= k (this intersection may be empty);
(2) if v0 ∈ V0 ∩ψ j (K ) then v0 is the fixed point of ψ j ;
(3) there is a group G of isometries of K that has a doubly transitive action

on V0 and is compatible with the self-similar structure {ψ j }N
j=1, which means

([38, Proposition 4.9] and also [5,27,37]) that for any j and any g ∈G there
exists k such that g ◦ψ j =ψk .

Moreover, a fully symmetric finitely ramified self-similar set K is a post-critically
finite (p.c.f.) self-similar set if and only if for any v0 ∈ V0 there is a unique j such
that v0 ∈ψ j (K ) [27,38] (Figure 1).

Our first result is the following theorem, which improves the main result in [44,
Theorem 2] (this result is related to the gaps in the spectrum, see [27]) which states
that for the spectral zeta function for a polynomial with a totally disconnected
Julia set then the zeta function extends to the left of the tower of poles at dS by
some ε. The connection with spectral zeta functions in a fractal context is given
through [44, Theorem 7] in the example of the Sierpinski gasket. The spectrum of
the Laplacian on the Sierpinski gasket is given via the Julia set of a polynomial
using the spectral decimation method.

THEOREM 1. On any fully symmetric p.c.f. fractal, as defined above, the spectral
zeta function with γ = 0 has a meromorphic continuation to Re(s) >−ε for some
positive ε with at most two sequences of poles, also called spectral dimensions, at
Re(s)=dS and Re(s)=0.

Proof. spectral zeta function is analytic for Re(s)>dS and there is a simple pole
at s = dS . From the results in [5,44] we obtain that there exists a meromorphic
continuation to the half-plane Re(s)>−ε with finitely many sequences of poles in
0 ≤ Re(s)≤ dS . In addition, [28, Theorem 7.7 and Corollary 7.8] and Lemma 1
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Figure 1. Complex spectral dimensions of the Laplacian on a fully symmetric finitely ramified
fractal. New results of Kajino [29] imply that in fact there is a meromorphic continuation for
all s ∈C.

applied with γ = 0 imply that there are no poles in 0 < Re(s) < dS . Note that
according to [28, Definition 2.10 and Definition 6.8], a fully symmetric p.c.f. fractal
has zero-dimensional rational boundary and so there are heat kernel estimates (see
[33]). Thus the only possible sequences of poles are at Re(s)= dS and Re(s)= 0,
which completes the proof.

For ease of reference, [28, Theorem 7.7 and Corollary 7.8] are reproduced at the
end o this paper. See Theorem 3 and Corollary 2.

THEOREM 2. For any intersection type finite self-similar structures (see [28, The-
orem 7.7 and Corollary 7.8]), including fully symmetric p.c.f. fractals, nested frac-
tals and generalized Sierpinski carpets, the spectral zeta function associated with the
self-similar Laplacian has a meromorphic extension beyond the spectral dimension, at
least to the half-plane Re(s)>2 d∂

dw
. Moreover, the spectral zeta function satisfies the

following functional equation for γ >−c4 and Re(s)>2 d∂
dw

d
dγ
ζ(s, γ )=−γ ζ(s +2, γ ). (4)

The poles of ζ(s,0) are located, in the region Re(s)>2 d∂
dw

, at dS + 4π in
log(τ ) . When γ �=

0 they are located at dS −2m + 4π in
log(τ ) for m ≥0.

Proof. Similarly to the previous result, this is implied by Lemma 1 and [24] and
[28, Theorem 7.7 and Corollary 7.8] (See Theorem 3 and Corollary 2.) The same
argument, as in the proof of Lemma 1, for differentiating under the integral for
I1(s, γ ) applies also to I2(s, γ ) and I3(s, γ ) with the same functional equation. The
location of the poles when γ = 0 is observed from directly summing the series in



MEROMORPHIC SPECTRAL ZETA FUNCTIONS ON FRACTALS 1381

(14) when γ = 0. When γ �= 0 the poles when m = 0 are obtained from the same
estimate, and the translations of poles by 2m is forced by the functional equation.

Remark 1. In the case of the standard Sierpinski carpet 2 d f
dw

− 2 will be less than
2 d∂

dw
so that there are no extra poles in the right half-plane. In fact, the spectral

zeta function associated with the self-similar Laplacian on the Sierpinski carpet
has a meromorphic extension to the whole complex plane because, by the work
[29] of Kajino, the conditions of Theorem 2 are satisfied. Moreover, the same is
true for large classes of fractals, such as nested fractals and generalized Sierpin-
ski carpets where the values of dk have a geometric meaning. For example d0 =d f

and dk is the Minkowski dimension of the co-dimension k faces of the carpet and
dd =0 is the Minkowski dimension of the single point that is a co-dimension d face
of the carpet.

CONJECTURE 1. For fully symmetric finitely ramified fractals, even without heat
kernel estimates, the spectral zeta function with γ = 0 has a meromorphic continu-
ation to C with at most two sequences of poles, also called spectral dimensions, at
Re(s)=dS and Re(s)=0. This applies for the usual Dirichlet–Laplacian, and for the
Neumann–Laplacian if the zero eigenvalue is excluded.

CONJECTURE 2. For generalized Sierpinski carpets the possible poles of the spec-
tral zeta function with real part 2 dk

dw
, with k = 1, . . . ,d − 1, are actually removable

singularities because there are different self-similar (graph-directed) structures that
yield the same Laplacian operator. This applies for the usual Neumann–Laplacian
if the zero eigenvalue is excluded. For the Dirichlet–Laplacian, the dimension of the
boundary will play a role in the spectral asymptotics.

The two-dimensional standard Sierpinski carpet can be realized by two such
structures, and in this case it is conjectured that there are only two sequences of
poles, one at Re(s)= 2 d f

dw
and the other at Re(s)= 0. This has been observed in

the case of some Laakso spaces in [12].

LEMMA 1. Suppose that d∂<d f and for t<1

c1t−d∂/dw ≤ t−d f /dwG

(
log

1
t

)
− ZL(t)≤ c2t−d∂/dw (5)

where G is a periodic function bounded above and away from zero with period
log(τ )>0, while for t ≥1 there exist c3, c4 ≥0 such that

|ZL(t)|≤ c3e−c4t . (6)

Then, for any γ >−c4, ζ(s, γ ) has a meromorphic continuation for Re(s)>2 d∂
dw

.
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Proof. Note that inverse Mellin transformations are linear so that we may trans-
form each of the asymptotics separately. By assumption there exist bounded mea-
surable functions B(t) and C(t) such that for t<1

ZL(t)= t−d f /dwG

(
log

1
t

)
+ B(t)t−d∂/dw (7)

and for t ≥1

ZL(t)=C(t)e−c4t . (8)

Then the Mellin transform of ZL(t)e−γ t is

ζ(2s, γ )= 1
�(s)

1∫

0

t s−1t−d f /dwG

(
log

1
t

)
e−γ t B(t) dt (9)

+ 1
�(s)

1∫

0

t s−1 B(t)t−d∂/dwe−γ t dt (10)

+ 1
�(s)

∞∫

1

t s−1C(t)e−c4t e−γ t dt (11)

= I1(s, γ )+ I2(s, γ )+ I3(s, γ ). (12)

Since B(t) and C(t) are bounded functions, they do not contribute to the diver-
gence or convergence of these integrals and may be ignored without loss of gen-
erality. Note that for all γ ∈R, I1(s, γ ) converges for Re(s)>

d f
dw

and I2(s, γ ) con-
verges for Re(s)> d∂

dw
, while I3(s, γ ) converges for all s ∈C and γ >−c4. It suffices

to show that I1(s, γ ) can be meromorphically extended to Re(s)> d∂
dw

.
Let log(τ ) be the period of G(T ) so that G(log(τ )T ) has period 1 in the variable

T . Recall that τ is the time scaling factor. Using the change of variables t �→ τ T

then

I1(s, γ )= log(τ )
�(s)

0∫

−∞
(τ T )s−d f /dwe−γ τ T

G(log(τ )T ) dT (13)

= log(τ )
�(s)

−1∑

p=−∞

p+1∫

p

τ T (s−d f /dw)e−γ τ T
G(log(τ )T ) dT . (14)

The issue of convergence is only at T =−∞ and thus the integral I1(s, γ ) will con-
verge if the summation converges absolutely. This can be established by using the
Taylor series in γ . Moreover if the integral I1(s, γ ) converges for a specific pair
(s, γ ) it will be analytic in s in some small neighborhood of s for that value of γ .
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Note that if s = x + iy with x>
d f
dw

, then

|I1(s, γ )|≤ log(τ )
|�(s)| G∗ max{1, e−γ }

−1∑

p=−∞
τ (p+1)(x−d f /dw)

where G∗ = ∫ p+1
p G(log(τ )T )dt which is independent of p by the periodicity of

G(log(τ )T ). This last sum is geometric in p so if x is replaced by s = x + iy this
bound on |I1(s, γ )| has a meromorphic extension to the complex plane with poles
at s = d f

dw
+ 2iπn

log(τ ) for all fixed γ ∈R.
The integrand in (13) is for γ >−c4 smooth in γ and bounded by a T -integrable

function independent of γ in the region Re(s)>
d f
dw

. One can then take the deriv-
ative with respect to γ inside the integral and obtain (4). Repeating this argument
it is possible to find dl

dγ l I1(s, γ ) iteratively for γ >−c4 and Re(s) >
d f
dw

− l. Since
I1(s, γ ) analytic in a right half-plane this implies that it varies smoothly in γ ∈
(−c4,∞) and I1(s, γ ) can be recovered by integrating dl

dγ l I1(s, γ ) over γ . This not

only gives a meromorphic extension of I1(s, γ ) to Re(s)> d∂
dw

but also to the whole
complex plane (see next lemma for the use of this fact). Notice that if Re(s) >
d f
dw

− l this definition is consistent with the definition of I1(s, γ ) for Re(s)>
d f
dw

.

LEMMA 2. Suppose that for t<1

ZL(t)=
d∑

k=0

t−
dk
dw Gk

(
log

1
t

)
+ O

(
exp (−ct−

1
dw−1 )

)
(15)

where the Gk are periodic functions bounded above, and for t ≥1 there exist c5, c6 ≥0
such that

−c5e−c6t ≤ ZL(t)≤ c3e−c6t . (16)

Then ζ(s, γ ) has a meromorphic continuation to the complex plane for γ >−c6.

Proof. The technique for handling the I1 term in Lemma 1 is repeated for each

of the t−
dk
dw Gk

(
log 1

t

)
terms with their respective periods, giving their Mellin trans-

forms and meromorphic continuations. Each of these meromorphic function have
poles at s = dk

dw
− 2m + 2iπn

log(τ ) for n ∈ Z and m ≥ 0. There is no analogue of the
I2(s, γ ) term. The I3(s, γ ) term of Lemma 1 is now replaced with a term of the
form

1
�(s)

1∫

0

t s−1e

(
−ct

− 1
dw−1

)

e−γ t dt, (17)

which converges if the same integral from 0 to ∞ converges. It is known that the
inverse Mellin transform of such an exponential term is the product of a complex
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exponential with base c and a shifted Gamma function which is meromorphically
extendable to the whole plane with well known poles in the left half-plane. The
existence of the meromorphic extension of the integral of t s−1e−c6t−γ t is standard
and also is precisely the argument of Lemma 1 concerning the I3 term. The sum of
these meromorphic function has discrete poles in a finite number of towers that do
not accumulate thus ζ(s, γ ) is meromorphic with complex dimensions whose real
parts are given by dk

dw
, where d0 =d f and G0 is not identically zero. Thus a mero-

morphic extension of ζ(2s, γ ) can be given for the complex plane provided that
γ >−c6.

COROLLARY 1. Under the assumptions of Lemma 2, the functional equation of
Theorem 2 holds in the whole complex plane.
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Appendix: Cited Results by N. Kajino from [28]

In our work we use [28, Theorem 7.7] and [28, Corollary 7.8] by N. Kajino,
which we cite in Theorem 3 and Corollary 2 in the end of this Appendix section.
Although it is not possible to provide all the background for these important and
interesting results, we make a somewhat abbreviated exposition in this section. The
reader is encourage to look in [28] for more details.

Unless mentioned otherwise, in this section we use notation, definitions and
results from [28]. Let K be the attractor of the iterated functions system {Fi }i∈S for
a finite index set S, where Fi are contraction similarities in R

d . Then K is a com-
pact subset of R

d , and V0 denotes the boundary between K and the unbounded
component of its complement. Furthermore, let L = ((K , S, {Fi }i∈S),μ,E,F , r =
(ri )i∈S) be a self-similar Dirichlet space, where μ is a self-similar measure with
weights (μi )i∈S , and E is a self-similar Dirichlet form on K with domain F and
resistance weights (μi )i∈S . Note that in our work μi , ri = 1

ρF
, γi are constant,

which means they do not depend on i , and the self-similarity relation for Dirichlet
form E is the relation (3).

Denote by W∗ the set of finite length words in the symbols S, by W# the set
of non-empty words of finite length, and by � the collection of words of infinite
length. We use |w| to denote the length of a word in W∗. Then there is a self-
similar scale S = {s}s∈(0,1], defined below, with weights γ = (γi )i∈S , γi := √

riμi .
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We first define the gauge function g(w)=√
r |w|μ(Kw)=∏|w|

i=1 γwi , and then define

s := {w1 · · ·wm ∈ W∗|g(w1 · · ·wm−1)> s ≥ g(w1 · · ·wm)}
with the convention that g(w1w2 . . .wm−1) = 2 when m = 0. The collection S =
{s}s∈(0,1] is called the scale associated with the Dirichlet space. This scale defines
the spectral dimension dS :=d(γ )=dimS K >0 by the usual self-similarity relation∑

i∈S γ
dS
i = 1. If v ∈s , then Kv = v�, that is all infinite words beginning with v,

can be roughly thought of as a set of “radius” s. When there is a metric which
gives an equivalent topology we say the metric is adapted to the scale.

Below we present a brief overview of the necessary conditions for a Dirichlet
space to satisfy the conditions of [28, Theorem 7.7], cited in Theorem 3, which
is needed for our Theorem 2. These conditions are satisfied by the class of gen-
eralized Sierpinski carpets, as in [7,9–11], and for finitely ramified symmetric frac-
tals. Naturally more detailed accounts of these conditions and examples of fractals
which satisfy them can be found in [28].

A Dirichlet form (E,F) satisfies condition (C H K ) if it admits a jointly continu-
ous heat kernel. It satisfies (U H K ) if the heat kernel satisfies a sub-Gaussian esti-
mate with a metric that is adapted to the self-similar structure of L. Intersection
type finite is the property of K that the intersection between cells at the same scale
can be of only some finite collection of homomorphic types. For example, the stan-
dard Sierpinski gasket’s self-similar structure (the cells of the same scale are the
same as the cells at some particular depth in the construction which only inter-
sect at most one point) or for the Sierpinski carpet (two cells of at the same scale
intersect either along a whole edge or at a corner) are intersection type finite.

The local weight type finite (LW T F) condition holds if the set of ratios between
the energy scaling factors, rw, of neighboring cells and the set of ratios of the
measure scaling factors μw of neighboring cells are both finite. That is, the ratio
between the energy and measure scalings between neighboring cells of any size can
take only finitely many values. The strong domain self-similarity (SSDF3S) con-
dition holds when the action of a L-isomorphism takes the set of localized contin-
uous functions of finite energy to itself. A localized function is one whose support
is not the entire set F .

A subset X ⊂ W# is independent if there is an injection of �(X) into �(S). Fur-
thermore, the subset X is separated if it is non-empty, finite, independent, and
the number of n such that σ n(w) ∈ σx� is finite for all w ∈� for some x ∈ W#.
Here σ n is the n’th iterate of the shift map and σx� are all words beginning with
the prefix x . Note the difference between the usage of the superscipt and sub-
script. The rational boundary (RB) condition holds when there exists some inte-
ger N ∈ N and a separated set Xk ⊂ W# and wk ∈ W∗ for each k = 1, . . . , N such
that the post-critical set associated with the iterated function system satisfies PL =⋃N

i=1�wk[Xk]. To quote Kajino: “[r]oughly speaking, (RB) says that the bound-
ary V0 is a finite union of self-similar sets.” The notion of rational boundary for
a self-similar set was introduced in [33].
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In the following, the functions Zb are partition functions with various boundary
conditions, where the value of b indicates where Dirichlet conditions are imposed
(in particular, Z D is the partition function where the Dirichlet conditions are
imposed only at the boundary of L), and d∂ will be the cell-counting dimension
of V0 with respect to the scale S.

THEOREM 3. [28, Theorem 7.7] Assume that K is connected and that (E,F)
is conservative. Suppose that (L,S) is intersection type finite and that (LW T F),
(SSDF3S), (C H K ) and (U H K ) hold. Let F ⊂ K be a closed subset of K , let w∈
W∗ and let X ⊂ W# be separated and satisfy CapE (K [X ])> 0. Set L := F ∪ Kw[X ]
and d∂ :=d(γ, X) and suppose F ⊂ L ⊂ K . Then there exists c1, c2 ∈ (0,∞) such that
for any t ∈ (0,1],

c1t−d∂/2 ≤ Z Fc(t)− ZLc (t)≤ c2t−d∂/2.

COROLLARY 2. [28, Corollary 7.8] Assume that K is connected and that (E,F)
is conservative. Suppose that (L,S) is intersection type finite and that (LW T F),
(SSDF F3S), (C H K ) and (U H K ) hold. Suppose also that γi =γ for any i ∈ S for
some γ ∈ (0,1) and that L satisfies (RB) with N ∈N and Xk ⊂ W# for k ∈{1, . . . , N }.
Let d∂ := max1≤k≤N d(γ, Xk) and let G be the continuous log(γ−1)−periodic func-
tion given in Corollary 5.3. If CapE (K [X J ]) > for some J ∈ {1, . . . , N } satisfying
d(γ, X j )=d∂ then there exists c1, c2 ∈ (0,∞) such that for any t ∈ (0,1],

c1t−d∂/2 ≤ t−ds/2G

(
1
2

log
1
t

)
− Z D(t)≤ c2t−d∂/2.
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