Representations of the Witt Algebra and Gl(n)-Opers

FRANCISCO JOSE PLAZA MARTÍN

Departamento de Matemáticas y IUFFYM, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain. e-mail: fplaza@usal.es

Received: 2 July 2012 / Revised: 8 May 2013 / Accepted: 11 May 2013

Published online: 13 June 2013 – © Springer Science+Business Media Dordrecht 2013

Abstract. We exhibit a new link between certain representations of the Witt algebra and some Gl(n)-opers on the punctured disc. As applications, we discuss the connection with the KdV hierarchy and Virasoro constraints and how the Virasoro constraints of the so-called topological recursion fit in our approach.

Mathematics Subject Classification (2010). Primary 17B68; Secondary 14H70, 14N10, 81R10.

Keywords. Witt algebra, Virasoro algebra, Gl(n)-opers, KdV hierarchy, topological recursion.

1. Introduction

During the last decades, representation theory of Virasoro (and Witt) algebra has been studied in depth; in particular, its study has led to significant results in the theory of vertex operator algebras. Indeed, opers have emerged as a fundamental object in the approach to the geometric Langlands program which makes use of VOA too. More recently, representations of Virasoro algebras are playing a significant role within the framework of intersection theory and the so-called topological recursion.

In this paper we exhibit a simple and direct procedure to go back and forth between representations of the Witt algebra and opers. On the other hand, the structure of the Virasoro operators of [19,22] is unveiled. Let us state the precise claims.

THEOREM 1.1. To every n-cyclic action of W^+ on \mathcal{D}^1 one associates a Gl(n)-oper on the punctured disc $D^{\times} := \operatorname{Spec} \mathbb{C}((z^n))$.

Furthermore, every G1(n)-oper structure of $\mathbb{C}((z))$, as a rank n vector bundle on $D^{\times} := \operatorname{Spec} \mathbb{C}((z^n))$, arises in this way (up to conjugation).

This work is supported by the research contract MTM2012-32342 of MINECO.

Let us explain the notions used in the statement. \mathcal{W} is the Witt algebra; that is, the Lie algebra that is freely generated by $\{L_k|k\in\mathbb{Z}\}$ as a \mathbb{C} -vector space and endowed with the following Lie bracket $[L_i,L_j]=(i-j)L_{i+j}$. Let us denote by $\mathcal{W}^+\subset\mathcal{W}$ the Lie subalgebra generated by $\{L_k|k\geq -1\}$. Let $\mathcal{D}^1:=\mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(\mathbb{C}((z)),\mathbb{C}((z)))$ be the Lie algebra generated by first-order differential operators. An *action* of \mathcal{W}^+ is a Lie algebra homomorphism $\rho:\mathcal{W}^+\to\mathcal{D}^1$. The notions of *n-cyclic* and *conjugation* will be introduced in Section 2.

Here, it suffices to recall that a Gl(n)-oper on the punctured disc, D^{\times} , is a rank n vector bundle \mathcal{E} on D^{\times} equipped with a flag $\mathcal{E}_0 := (0) \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_{n-1} \subset \mathcal{E}_n = \mathcal{E}$ of subbundles and a flat connection $\nabla : \mathcal{E} \to \mathcal{E} \otimes \Omega_{D^{\times}}$ such that the induced maps $\mathcal{E}_i/\mathcal{E}_{i-1} \to (\mathcal{E}_{i+1}/\mathcal{E}_i) \otimes \Omega_{D^{\times}}$ are a isomorphisms of $\mathcal{O}_{D^{\times}}$ -bundles for all i (transversality).

Section 3 shows how additional hypothesis satisfied by the action are reflected in the corresponding oper. Indeed, the Gl(2)-opers associated to certain 2-cyclic actions are actually defined on Spec($\mathbb{C}[z^{-2}]$) (see Theorem 3.9). In this situation, there is a third character in this play, namely, a point in the Sato Grassmannian of $\mathbb{C}((z))$. Furthermore, its τ -function satisfies the KdV hierarchy and Virasoro-like constraints simultaneously. Strickingly, the τ -functions arising in 2D gravity [14,17] fall into this situation.

The paper ends with a further application of our results; namely, we show that the families of Virasoro algebras used in the study of the Topological Recursion [19,21,22] also fit into our framework and have a natural geometrical interpretation (see Section 4). In particular, it is shown that a family of τ -functions satisfying KdV and Virasoro is equivalent to a family of actions of the Witt algebra (Theorem 4.1). It is worth noticing that some instances of such 1-parameter families (e.g. the sine curve in [22]) are indeed the spectral curve in Eynard–Orantin theory [6]. Thus, we hope that our techniques might shed some light to the underlying geometry of Eynard–Orantin approach.

2. From Representations of W^+ to Opers

2.1. ACTIONS OF WITT ALGEBRAS

Let V denote a 1-dimensional $\mathbb{C}((z))$ -vector space and let $\mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V,V)$ be the Lie algebra generated by first-order differential operators. The symbol map is

$$\sigma: \mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V, V) \longrightarrow \mathrm{Der}_{\mathbb{C}}\left(\mathbb{C}((z))\right) = \mathbb{C}((z))\partial_z \stackrel{\sim}{\to} \mathbb{C}((z))$$

where the last map sends $f(z)\partial_z$ to f(z).

We are interested in pairs (V, ρ) consisting of a 1-dimensional $\mathbb{C}((z))$ -vector space, V, and a Lie algebra homomorphism

$$\mathcal{W}^+ \stackrel{\rho}{\longrightarrow} \mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V,V)$$

The pair (V, ρ) will be called an *action* of W^+ .

This subsection is concerned with explicit descriptions of the actions of \mathcal{W}^+ on $\mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(\mathbb{C}((z)),\mathbb{C}((z)))$ that, albeit many properties of \mathcal{W} -modules are known, seems to be brand new. Nevertheless, similar results can be proved for V arbitrary by fixing an isomorphism $V \simeq \mathbb{C}((z))$ (see Section 2.2 for the dependence on the choice of the isomorphism).

There are two reasons for restricting ourselves to the case of first-order differential operators of V. First, this is the relevant situation when dealing with 2D gravity. Second, the equivalence of categories between Atiyah algebras and differential operator algebras [2] means that $\mathcal{D}^1_{\mathbb{C}((\mathbb{Z}))/\mathbb{C}}(V,V)$ is a natural object to study.

THEOREM 2.1. Let V be $\mathbb{C}((z))$ and $\rho: \mathcal{W}^+ \to \mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V,V)$ be a \mathbb{C} -linear map such that $\rho \neq 0$. Then, the map ρ is a Lie algebra homomorphism if and only if there exist functions $h(z), b(z) \in \mathbb{C}((z))$ and a constant $c \in \mathbb{C}$ such that $h'(z) \neq 0$ and

$$\rho(L_i) = \frac{-h(z)^{i+1}}{h'(z)} \partial_z - (i+1)c \cdot h(z)^i + \frac{h(z)^{i+1}}{h'(z)} b(z)$$
(1)

Proof. The converse is straightforward. Let us prove the direct one.

Let us write $\rho(L_k) = a_k(z)\partial_z + b_k(z)$. Since ρ is a map of Lie algebras, the expression of the bracket $[L_i, L_i] = (i - j)L_{i+j}$ yields

$$a_i(z)a_i'(z) - a_i(z)a_i'(z) = (i - j)a_{i+j}(z)$$
(2)

$$a_i(z)b'_i(z) - a_j(z)b'_i(z) = (i-j)b_{i+j}(z)$$
 (3)

Observe that if $a_{-1}(z) = \sigma(\rho(L_{-1})) = 0$, then we let i be equal to -1 in Equation (2) and have that $a_j(z) = 0$ for all $j \ge -1$. Substituting in Equation (3), it follows that $\rho \equiv 0$.

Hence, we now assume that $a_{-1}(z) = \sigma(\rho(L_{-1})) \neq 0$. Let us fix L_{-1} and solve this system in terms of its coefficients.

Letting i=-1 in Equation (2), dividing by $a_{-1}(z)^2$ and integrating, it follows that $a_j(z)=-(1+j)a_{-1}(z)\int^z a_{j-1}(t)a_{-1}(t)^{-2} dt$. Hence, $a_j(z)$ can be determined recursively from $a_{-1}(z)$. Indeed, the case j=0 yields $a_0(z)=a_{-1}(z)(\alpha-\int^z \frac{dt}{a_{-1}(t)})$ for $\alpha\in\mathbb{C}$. Since $a_{-1}(z),a_0(z)\in\mathbb{C}((z))$, it follows that $(\alpha-\int^z \frac{dt}{a_{-1}(t)})$ must lie in $\mathbb{C}((z))$; i.e., there exists $h(z)\in\mathbb{C}((z))$ such that

$$a_{-1}(z) = \frac{-1}{h'(z)}$$

Thus, setting the free term of h(z) to be equal to that constant, it follows that

$$a_0(z) = \frac{-h(z)}{h'(z)}$$

Now, induction procedure proves straightforwardly that

$$a_i(z) = \frac{-h(z)^{i+1}}{h'(z)}$$
 $i \ge -1$

Let us now focus on b_i 's. Firstly, let us deal with the case $h(z) = z^n$; hence, $a_i(z) = -\frac{1}{n}z^{ni+1}$ and Equation (3) acquires the following shape

$$-\frac{1}{n}z^{ni+1}b'_{j}(z) + \frac{1}{n}z^{nj+1}b'_{i}(z) = (i-j)b_{i+j}(z)$$
(4)

Let us write $b_j(z)$ as $\sum_k b_{j,k} z^k$, where $b_{j,k} = 0$ for $k \ll 0$. Computing the coefficients of z^k , in Equation (4) one has the relation

$$-\frac{1}{n}(k-ni)b_{j,k-ni} + \frac{1}{n}(k-nj)b_{i,k-nj} = (i-j)b_{i+j,k}$$

The case j = 0 implies that $(k - ni)b_{i,k} = (k - ni)b_{0,k-ni}$ and, therefore $b_{i,k} = b_{0,k-ni}$ for $k \neq ni$; that is, the difference between $z^{-ni}b_i(z)$ and $b_0(z)$ is a constant. Expressing this condition in terms of $b_{-1}(z)$, the following formula for $b_i(z)$ holds

$$b_i(z) = (c_i + b_{-1}(z)z^n)z^{ni}$$
(5)

for some $c_i \in \mathbb{C}$ and $c_{-1} = 0$. Plugging this into Equation (3) and setting i equal to -1, we find a constraint for the c_i

$$jc_{j} + c_{-1} - (j+1)c_{j-1} = 0$$
 $c_{-1} = 0$

whose general solution is

$$c_j = -c \cdot (j+1) \tag{6}$$

for a complex number $c = -c_0 \in \mathbb{C}$. Bearing in mind that h'(z) is invertible, there is no harm in assuming that $b_{-1}(z)$ is of the form $\frac{1}{h'(z)}b(z)$. Thus, from equations (5) and (6), the general solution for the case $h(z) = z^n$ is

$$b_i(z) = \left(-(i+1)c + z^n \frac{b(z)}{nz^{n-1}} \right) z^{ni}$$
 (7)

The general case, i.e. for h(z) arbitrary, follows from the fact that there is a \mathbb{C} -algebra automorphism of $\mathbb{C}[[z]]$, ϕ , such that $\phi(h(z)) = z^n$ where $h(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots$ and $a_n \neq 0$. That is, in order to solve Equation (3), we consider ϕ , such that $\phi(h(z)) = z^n$. We transform Equation (3) by ϕ , which is Equation (4), and consider its solutions (7). Thus, transforming the solutions by the inverse automorphism, ϕ^{-1} , we have that the general solution for Equation (3) is as follows

$$b_i(z) = \left(-(i+1)c + h(z)\frac{b(z)}{h'(z)}\right)h(z)^i$$

Remark 2.2. It is worth to observe, from the proof above, that the action ρ is determined by its restriction to the subalgebra

$$\mathfrak{sl}_2(\mathbb{C}) \simeq \langle L_{-1}, L_0, L_1 \rangle \subset \mathcal{W}^+$$

Let us point out some consequences of Theorem 2.1. First, note that

$$[\rho(L_k), h(z)^j] = -j \cdot h(z)^{k+j}$$
(8)

as \mathbb{C} -linear operators on V. Second, if $\sigma(\rho(L_{-1})) \neq 0$, then ρ and $\sigma \circ \rho$ are injective and

$$\operatorname{Im}(\sigma \circ \rho) = \frac{1}{h'(z)} \mathbb{C}[h(z)] \tag{9}$$

EXAMPLE 2.3. Let $\widehat{\mathcal{D}}$ (a.k.a. $\mathcal{W}_{1+\infty}$) denote the unique non-trivial central extension of the Lie algebra of differential operators on the circle. The authors of [7] carried out an in-depth study of its representations with the help of the theory of vertex operator algebras. In this context, they consider two 1-parameter families of Virasoro algebras (see [7, Equation (1.7)])

$$\begin{aligned} \{L_k^+(\beta) &= -z^{k+1} \partial_z - \beta(k+1) z^k \mid k \ge -1 \} \\ \{L_k^-(\beta) &= -z^{k+1} \partial_z - (k+\beta(-k+1)) z^k \mid k \ge -1 \} \end{aligned}$$

Observe that these families correspond to the data h(z) = z, $c = \beta$ and b(z) = 0 and h(z) = z, $c = 1 - \beta$ and $b(z) = (1 - 2\beta)z^{-1}$, respectively.

EXAMPLE 2.4. From the point of view of mathematical physics, recall the so-called Virasoro constraints arising in 2D quantum gravity [5,11,14,15,17]. Indeed, let us show that such differential equations are an instance of our previous Theorem. First, let us recall that a differential operator of $V = \mathbb{C}((z))$ also acts on the Sato Grassmannian Gr(V) [25]. Since it preserves the determinant bundle, it yields a transformation of $H^0(Gr(V), Det^*) = \Lambda^{\frac{\infty}{2}} V$. Having in mind that W^+ has no non-trivial central extensions and the bosonization isomorphism, we conclude that an action $\rho: W^+ \to \mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V, V)$ can be lifted to

$$\tilde{\rho}: \mathcal{W}^+ \to \operatorname{End}(\mathbb{C}[[t_1, t_2, \ldots]])$$

We address the reader to [16] and references therein for this standard construction. An alternative approach to this construction is based on a *quantization* procedure [11]. Let us review some instances of actions appearing in this setup (see [24] for the details).

If we look for ρ such that $\tilde{\rho}(L_k)$ coincide with the operators of [15, Section 2.2], we find out that it corresponds to the data $h(z)=z^{-1}, c=\frac{1}{2}, b(z)=-z^{-1}$. The choice $h(z)=z^{-2}, c=\frac{1}{2}, b(z)=-\frac{3}{2}z^{-1}$ produces, up to rescaling, the operators consider by Dijkgraff-Verlinde-Verlinde [5, Equation 3.5] and Givental [11, Section 3]. The latter set of data can be obtained from the former by considering the subalgebra $\{\frac{1}{2}\tilde{\rho}(L_{2k})\}$. Analogously, the operators considered in [14] and [17] come from the triple $h(z)=z^{-2}, c=\frac{1}{2}, b(z)=z^{-4}-\frac{3}{2}z^{-1}$.

Sometimes, it is not relevant the precise expression of each operator $\rho(L_k)$ but what is important is the Lie algebra generated by them; that is, $\text{Im}(\rho)$. It is, therefore, natural to wonder whether ρ is determined by the Lie algebra $\text{Im}(\rho)$.

For studying this problem, let $v : \mathbb{C}((z)) \to \mathbb{Z} \cup \{\infty\}$ be the valuation associated with z; that is, $v(0) = \infty$ and, for $h(z) \neq 0$, v(h(z)) = a iff a is the largest integer number such that $h(z) \in z^a \mathbb{C}[[z]]$ and, in this situation, a will be called the *order* of h.

THEOREM 2.5. Let $(V = \mathbb{C}((z)), \rho_i)$ (for i = 1, 2) be the action of W^+ associated with elements $h_i(z), c_i, b_i(z)$ as in Theorem 2.1. Assume that $h'_i(z) \neq 0$.

If $\operatorname{Im} \rho_1 = \operatorname{Im} \rho_2$ and the signs of $\mathfrak{v}(h_1(z))$ and $\mathfrak{v}(h_2(z))$ are equal, then $b_1(z) = b_2(z)$, $c_1 = c_2$ and $h_1(z) = \alpha h_2(z) + \beta$ for some $\alpha \in \mathbb{C}^*$, $\beta \in \mathbb{C}$.

Conversely, if $b_1(z) = b_2(z)$, $c_1 = c_2$ and $h_1(z) = \alpha h_2(z) + \beta$ for some $\alpha \in \mathbb{C}^*$, $\beta \in \mathbb{C}$, then Im $\rho_1 = \text{Im } \rho_2$. Moreover, there exists a Lie algebra automorphism ϕ of \mathcal{W}^+ such that $\rho_2 = \rho_1 \circ \phi$.

Proof. From the hypothesis Im $\rho_1 = \text{Im } \rho_2$, it holds that there exist $\{\lambda_{kl} | k, l \ge -1\}$ such that

$$\rho_1(L_k) = \sum_{l \ge -1} \lambda_{kl} \rho_2(L_l)$$

By the explicit expression obtained in Theorem 2.1, this identity is equivalent to the equations

$$\frac{h_1(z)^{k+1}}{h_1'(z)} = \sum_{l > -1} \lambda_{kl} \frac{h_2(z)^{l+1}}{h_2'(z)}$$
(10)

and

$$\frac{h_1(z)^{k+1}}{h_1'(z)}b_1(z) - (k+1)c_1h_1(z)^k$$

$$= \sum_{l>-1} \lambda_{kl} \left(\frac{h_2(z)^{l+1}}{h_2'(z)} b_2(z) - (l+1)c_2h_2(z)^l \right) \tag{11}$$

Observe that the derivative of Equation (10) w.r.t. z yields

$$(k+1)h_1(z)^k - \frac{h_1(z)^{k+1}h_1''(z)}{h_1'(z)^2} = \sum_{l \ge -1} \lambda_{kl} \left((l+1)h_2(z)^l - \frac{h_2(z)^{l+1}h_2''(z)}{h_2'(z)^2} \right)$$
$$= \sum_{l \ge -1} \lambda_{kl} (l+1)h_2(z)^l - \frac{h_1(z)^{k+1}}{h_1'(z)} \cdot \frac{h_2''(z)}{h_2'(z)}$$
(12)

One computes Equation (11) plus Equation (10) times $(-b_2(z))$ plus Equation (12) multiplied by c_2 , and one obtains

$$\frac{h_1(z)^{k+1}}{h_1'(z)}\left((b_1(z)-b_2(z))-(k+1)(c_1-c_2)\frac{h_1'(z)}{h_1(z)}-\left(\frac{h_1''(z)}{h_1'(z)}-\frac{h_2''(z)}{h_2'(z)}\right)c_2\right)=0$$

Since this holds for all $k \ge -1$, it follows that

$$c_1 - c_2 = 0 (13)$$

$$(b_1(z) - b_2(z)) - \left(\frac{h_1''(z)}{h_1'(z)} - \frac{h_2''(z)}{h_2'(z)}\right)c_2 = 0$$
(14)

Hence $c_1 = c_2$.

Further, identity (9) shows that $\frac{1}{h_1'(z)}\mathbb{C}[h_1(z)] = \frac{1}{h_2'(z)}\mathbb{C}[h_2(z)]$. Hence, there are polynomials p_i such that $\frac{1}{h_1'(z)} = \frac{p_2(h_2(z))}{h_2'(z)}$ and $\frac{1}{h_2'(z)} = \frac{p_1(h_1(z))}{h_1'(z)}$. These identities imply that

$$p_1(h_1(z)) \cdot p_2(h_2(z)) = 1$$

The assumption about the signs of $\mathfrak{v}(h_i(z))$ implies that p_i is constant for i = 1, 2, say $p_1(x) = \alpha \in \mathbb{C}^*$. And, therefore, $h'_1(z) = \alpha h'_2(z)$, so that there exists $\beta \in \mathbb{C}$ with $h_1(z) = \alpha h_2(z) + \beta$.

Finally, substituting in Equation (14), one has that $b_1(z) = b_2(z)$.

Let us now prove the converse. Using the formula (1), a long although straightforward computation shows

$$\begin{split} & \rho_2(L_{-1}) = \frac{1}{\alpha} \rho_1(L_{-1}) \\ & \rho_2(L_i) = h_2(z)^i \left(\frac{h_2(z)}{\alpha} \rho_1(L_{-1}) - (i+1)c \right) \\ & = \left(\frac{\beta}{\alpha} \right)^{i+1} \rho_1(L_{-1}) + \sum_{i=0}^{i-1} \left(\binom{i}{j} + \binom{i}{j+1} \right) \left(\frac{\beta}{\alpha} \right)^{i-j} \rho_1(L_j) + \rho_1(L_i) \qquad \forall i \geq -1 \end{split}$$

This explicit expression shows at once that $\operatorname{Im} \rho_2 = \operatorname{Im} \rho_1$. Finally, consider

$$\phi(L_i) := \left(\frac{\beta}{\alpha}\right)^{i+1} L_{-1} + \sum_{i=0}^{i-1} \binom{i+1}{j+1} \left(\frac{\beta}{\alpha}\right)^{i-j} L_j + L_i$$
 (15)

The fact that $\phi = (\rho_1|_{\text{Im }\rho_1})^{-1} \circ \rho_2$ implies that ϕ is a Lie algebra automorphism of \mathcal{W}^+ and that $\rho_2 = \rho_1 \circ \phi$.

2.2. CONJUGATION OF ACTIONS

Let us begin with an example that will illustrate us how the notion of conjugated action (gauge action) should be generalized. Assume that a differential equation, $P\psi(z)=0$, is to be solved it by virtue of a replacement $\psi(z)=v(z)\phi(z)$, for a given function v(z). That is, we must solve $P(v(z)\phi(z))=0$ for an unknown function $\phi(z)$. This is equivalent to solving $(v(z)^{-1} \circ P \circ v(z))\phi(z)=0$, where v(z) is regarded as an operator; namely, the homothety of ratio v(z). For instance, if P is a first-order differential operator with symbol $\sigma(P)$, it holds that

$$v(z)^{-1} (P\psi(z)) = (v(z)^{-1} \circ P \circ v(z))\phi(z) = \left(P + \sigma(P) \frac{v'(z)}{v(z)}\right)\phi(z)$$

Therefore, solving the differential equation $P\psi(z) = 0$ is equivalent to solving $\left(P + \sigma(P) \frac{v'(z)}{v(z)}\right) \phi(z) = 0$.

Let us recall from [12] the definition of the group of semilinear transformations and some of its properties. The group of semilinear transformations of a finite dimensional $\mathbb{C}((z))$ -vector space V, denoted by $\mathrm{SGl}_{\mathbb{C}((z))}(V)$, consists of \mathbb{C} -linear automorphisms $\gamma: V \to V$ such that there exists a \mathbb{C} -algebra automorphism of $\mathbb{C}((z))$, g, satisfying

$$\gamma(f(z) \cdot v) = g(f(z)) \cdot \gamma(v) \qquad \forall f(z) \in \mathbb{C}((z)), v \in V$$
(16)

and, therefore, $\mathrm{SGl}(\mathbb{C}((z))) = \mathrm{Aut}_{\mathbb{C}-\mathrm{alg}}\,\mathbb{C}((z)) \ltimes \mathbb{C}((z))^*$.

The Lie algebra of $\mathrm{SGl}_{\mathbb{C}((z))}(V)$ consists of first-order differential operators on V with scalar symbol, $\mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V,V)$, and the symbol coincides with the map induced by the group homomorphism that sends γ to g (related by Equation (16)) between their Lie algebras.

THEOREM 2.6. The space $\operatorname{Hom}_{Lie\text{-}alg}(\mathcal{W}^+, \mathcal{D}^1) \setminus \{0\}$ carries an action of the group $\operatorname{SGl}(\mathbb{C}((z)))$ by conjugation and the quotient space is

$$\mathbb{Z} \times \mathbb{C} \times \left(\mathbb{C}((z)) / \mathbb{Z} z^{-1} + \mathbb{C}[[z]] \right)$$

More explicitly, an action ρ , corresponding to a triple (h(z), c, b(z)) is mapped to $(\mathfrak{v}(h(z)), c, \bar{b}(z))$ $(\bar{b}(z))$ being the equivalence class of b(z).

Proof. Let us begin studying the action of the automorphism group $G:=\operatorname{Aut}_{\mathbb{C}-\operatorname{alg}}\mathbb{C}((z))$ (for a study and applications of this group, see [23]). Let us denote elements of G with big Greek letters (Φ, Ψ, \ldots) and, for each of them, let the corresponding small Greek letter denote the image of z; that is

$$\Phi(f(z)) = f(\phi(z))$$

and observe that $v(\phi(z)) = 1$ in order for Φ to be an isomorphism.

Consider the action of G on the space of actions by conjugation; i.e.

$$(\Phi, \rho) \mapsto \rho^{\Phi}$$
 where $\rho^{\Phi}(L_k) := \Phi \circ \rho(L_k) \circ \Phi^{-1} \quad \forall k$

Let us check that this definition makes sense. Let ρ be given by a triple (h(z), c, b(z)). It is straightforward that

$$\begin{split} \rho^{\Phi}(L_{-1})f(z) &= (\Phi\circ\rho(L_{-1})\circ\Phi^{-1})f(z) = \Phi\left(\left(-\frac{1}{h'(z)}\partial_z + \frac{b(z)}{h'(z)}\right)f(\phi(z))\right) \\ &= \left(-\frac{\phi'(\phi^{-1}(z))}{h'(\phi^{-1}(z))}\partial_z + \frac{b(\phi^{-1}(z))}{h'(\phi^{-1}(z))}\right)f(z) \end{split}$$

Note that expanding and derivating the identity $(\Phi \circ \Phi^{-1})(z) = z$, one gets that $\phi'(\phi^{-1}(z)) \cdot \phi(z)^{-2} \phi'(z) = 1$ and, thus

$$\frac{\phi'(\phi^{-1}(z))}{h'(\phi^{-1}(z))} = \frac{1}{\partial_z h(\phi^{-1}(z))}$$

Summing up, the transformation Φ acts on triples as follows

$$(\Phi, (h(z), c, b(z))) \mapsto (h(\phi^{-1}(z)), c, b(\phi^{-1}(z)))$$

Second, we study the action of $\mathbb{C}((z))^*$. Bearing in mind the discussion of the beginning of this subsection, we consider the action

$$(s(z), \rho) \mapsto (s(z) \circ \rho \circ s(z)^{-1})$$

so that, in terms of triples, it holds that

$$(s(z), (h(z), c, b(z))) \mapsto \left(h(z), c, b(z) - \frac{s'(z)}{s(z)}\right)$$

One checks easily that the first defined action intertwines the second one. Hence, they yield an action of the $SGl(\mathbb{C}((z)))$.

Remarkably, the conjugation also makes sense if v(z) is replaced by any linear operator on the space of functions such that $\frac{v'(z)}{v(z)}$ can be identified with an element in $\mathbb{C}((z))$. This is the case of the example at the beginning of this subsection; of functions v(z) admitting an asymptotic expansion at 0; and of formal expressions $v(z) := \exp(\int s(z) \, dz)$ where $s(z) \in \mathbb{C}((z))$. In the latter case, the quotient $\frac{v'(z)}{v(z)}$ will be identified with s(z). The conjugation by $\exp(-\frac{2}{3}z^{-3})$ was used in [14] when solving a differential equation. For another example, let us consider v(z) to be a solution of the second-order differential equation $v''(z) + \frac{1}{2}S(h)v(z) = 0$, where S(h) denotes the Schwarzian derivative of h, such that $\frac{v'(z)}{v(z)} \in \mathbb{C}((z))$, which holds true in many cases (e.g. whenever $S(h) \in \mathbb{C}((z))$).

It is worth noticing that once $\frac{v'(z)}{v(z)}$ is thought of as an element of $\mathbb{C}((z))$, $\frac{v''(z)}{v(z)}$ will be identified with $\left(\frac{v'(z)}{v(z)}\right)^2 + \left(\frac{v'(z)}{v(z)}\right)' \in \mathbb{C}((z))$. By abuse of notation, we define $d \log v(z) := \frac{v'(z)}{v(z)}$.

Thus, for $P \in \mathcal{D}^1(\mathbb{C}((z)))$ and v(z) as above, we consider another first-order differential operator $P^v \in \mathcal{D}^1(\mathbb{C}((z)) \otimes_{\mathbb{C}} \mathbb{C}v(z))$ defined by

$$P^v(f(z) \otimes v(z)) := \left(\left(P + \sigma(P) \frac{v'(z)}{v(z)} \right) (f) \right) \otimes v(z)$$

The induced map from $\mathcal{D}^1(\mathbb{C}((z)))$ to $\mathcal{D}^1(\mathbb{C}((z)) \otimes_{\mathbb{C}} \mathbb{C}v(z))$ is a Lie algebra homomorphism.

DEFINITION 2.7. The conjugated action of (V, ρ) by v(z) is the pair (V^v, ρ^v) , consisting of the 1-dimensional $\mathbb{C}((z))$ -vector space $V^v := V \otimes_{\mathbb{C}} \mathbb{C}v(z)$ together with the action defined by

$$\rho^{v}(L_{k})(f(z)\otimes v(z)) := \left(\rho(L_{k})(f(z)) + \sigma(\rho(L_{k}))f(z)\frac{v'(z)}{v(z)}\right)\otimes v(z)) \tag{17}$$

In particular, if the data h(z), c, b(z) define an action ρ , then h(z), c, $b(z) - \frac{v'(z)}{v(z)}$ define ρ^v .

2.3. OPERS ON THE PUNCTURED DISC

Regarding the definition of the opers, which were introduced by Drinfeld and Sokolov and generalized by Beilinson and Drinfeld, we refer interested readers to [8,9].

DEFINITION 2.8. An action (V, ρ) is said to be *n*-cyclic if

$$\{1, \rho(L_{-1})(1), \dots, \rho(L_{-1})^{n-1}(1)\}$$

is a basis of V as $\mathbb{C}[h(z)]_{(0)}$ -module. Here ρ is given by the triple (h(z), c, b(z)), n is the absolute value of $\mathfrak{v}(h)$, the subindex (0) denotes the function field and the superscript $\widehat{}$ is the z-adic completion.

Now, we are ready to prove our main result.

Proof of Theorem 1.1. We deal with the case v(h) < 0 being the opposite one similar. Consider an automorphism Φ of $\mathbb{C}((z))$ as \mathbb{C} -algebra such that $\Phi(z^{-n}) = h(z)$ and conjugate the action by Φ (see 2.2). That is, it can be assumed that $h(z) = z^{-n}$.

Let \mathcal{E} be the vector bundle on Spec $\mathbb{C}((h(z)^{-1}))$ defined by $\mathbb{C}((z))$. Hence, the subbundles \mathcal{E}_i , associated with

$$\mathbb{C}((h(z)^{-1})) \otimes_{\mathbb{C}} < 1, \rho(L_{-1})(1), \dots, \rho(L_{-1})^{i}(1) > \subseteq \mathbb{C}((z))$$
 $i = 1, \dots, n$

define a flag of vector bundles $0 \subset \mathcal{E}_1 \subset ... \subset \mathcal{E}_{n-1} \subset \mathcal{E}_n = \mathcal{E}$. Further, the inclusions are strict since ρ is *n*-cyclic.

Let us see that \mathcal{E} carries a connection. Indeed, let $d: \mathbb{C}((h(z)^{-1})) \to \Omega_{\mathbb{C}((h(z)^{-1}))/\mathbb{C}}$ be the differential and consider the \mathbb{C} -linear map $\rho(L_{-1}) \otimes dh - 1 \otimes d$:

$$\mathbb{C}((z)) \otimes_{\mathbb{C}} \mathbb{C}((h(z)^{-1})) \longrightarrow \mathbb{C}((z)) \otimes_{\mathbb{C}} \Omega_{\mathbb{C}((h(z)^{-1}))/\mathbb{C}}$$
$$f \otimes a \longmapsto \rho(L_{-1}) f \otimes a \, \mathrm{d} h - f \otimes \mathrm{d} a \tag{18}$$

One checks that when composing it with the canonical map $\mathbb{C}((z)) \otimes_{\mathbb{C}} \Omega_{\mathbb{C}((h(z)^{-1}))/\mathbb{C}}$ $\to \mathbb{C}((z)) \otimes_{\mathbb{C}((h(z)^{-1}))} \Omega_{\mathbb{C}((h(z)^{-1}))/\mathbb{C}}$, the images of $f \otimes a$ and of $af \otimes 1$ do coincide and, therefore, we obtain a \mathbb{C} -linear map

$$\mathbb{C}((z)) \longrightarrow \mathbb{C}((z)) \otimes_{\mathbb{C}((h(z)^{-1}))} \Omega_{\mathbb{C}((h(z)^{-1}))/\mathbb{C}}$$
(19)

which defines a connection $\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega_{\operatorname{Spec} \mathbb{C}((h(z)^{-1}))}$. Furthermore, from the equations (8) and (18) it follows that the map induced by ∇

$$\mathcal{E}_i/\mathcal{E}_{i-1} \longrightarrow (\mathcal{E}_{i+1}/\mathcal{E}_i) \otimes \Omega_{\operatorname{Spec} \mathbb{C}((h(z)^{-1}))}$$

sends $\rho(L_{-1})^i(1)$ to $\rho(L_{-1})^{i+1}(1) \otimes dh$ and that it is an isomorphism of line bundles.

Let us now prove the converse. Let ∇ be the connection of the oper structure on $\mathbb{C}((z))$. For the sake of clarity, let us denote $h(z) := z^{-n}$. Recall that $\mathrm{Der}(\mathbb{C}((h(z)^{-1})))$ is generated by

$$\left\{h(z)^{k+1}\frac{\partial}{\partial h} = -\frac{1}{n}z^{-kn+1}\frac{\partial}{\partial z} \mid k \in \mathbb{Z}\right\}$$

Let \langle , \rangle be the pairing of differentials with derivations. We claim that

$$\nabla_D(f) := \langle \nabla f, D \rangle$$
 for $f \in \mathbb{C}((z)), D \in \text{Der}(\mathbb{C}((h(z)^{-1})))$

is a differential operator of $\mathbb{C}((z))$ as a $\mathbb{C}((h(z)^{-1}))$ -module or, what amounts to the same, that $\nabla_{D,a}$

$$\nabla_{D,a}(f) := \nabla_D(af) - a\nabla_D(f)$$
 for $f \in \mathbb{C}((z)), a \in \mathbb{C}((h(z)^{-1}))$

is an endomorphism of $\mathbb{C}((z))$ as a $\mathbb{C}((h(z)^{-1}))$ -module. Using the properties of the connection ∇ , one obtains that

$$\nabla_{D,a}(f) = \langle \nabla(af), D \rangle - a \langle \nabla(f), D \rangle$$
$$= \langle a \nabla(f) + f \, d \, a, D \rangle - a \langle \nabla(f), D \rangle = f \, D(a)$$

where d is the differential, $f \in \mathbb{C}((z))$ and $a \in \mathbb{C}((h(z)^{-1}))$. Accordingly, $\nabla_{D,a}$ is the homothety of ratio D(a) and, therefore, linear. The same argument shows that

$$[\nabla_D, a] = Da$$
 for $a \in \mathbb{C}((h(z)^{-1}))$

where a and Da are regarded as operators on $\mathbb{C}((z))$ (by homotheties).

Let us now set $D = \frac{1}{n}z^{n+1}\frac{\partial}{\partial z} = -\frac{1}{h'(z)}\frac{\partial}{\partial z}$. Since ∇_D is a first order differential operator of $\mathbb{C}((z))$, it can be written as $-\frac{1}{\alpha'}\frac{\partial}{\partial z} + \frac{\beta}{\alpha'}$ for certain functions $\alpha, \beta \in \mathbb{C}((z))$. It follows that

$$\frac{1}{n}z^{n+1}\frac{\partial a}{\partial z} = Da = [\nabla_D, a] = \left[-\frac{1}{\alpha'}\frac{\partial}{\partial z} + \frac{\beta}{\alpha'}, a\right] = -\frac{1}{\alpha'}\frac{\partial a}{\partial z} \qquad a \in \mathbb{C}((h(z)^{-1}))$$

and, thus, $\alpha' = h'(z)$. Similarly, one has that the symbol of the differential operator ∇_D is equal to D.

Let us consider the linear map

$$\mathcal{W}^{+} \stackrel{\rho}{\longrightarrow} \mathcal{D}^{1}_{\mathbb{C}((z))/\mathbb{C}}(\mathbb{C}((z)), \mathbb{C}((z)))$$

$$L_{i} \mapsto \rho(L_{i}) := \nabla_{D_{i}}$$

where $D_i := -\frac{h(z)^{i+1}}{h'(z)} \frac{\partial}{\partial z}$. The fact that ρ is a morphism of Lie algebras is derived from the flatness of ∇ as follows

$$[\rho(L_i), \rho(L_j)] = [\nabla_{D_i}, \nabla_{D_i}] = \nabla_{[D_i, D_i]} = \nabla_{(i-j)D_{i+j}} = (i-j)\rho(L_{i+j})$$

It remains to check the compatibility with the construction given in the first half of the proof. For this goal, recall from [4, Lemma 1.3] that there exists a cyclic vector $v(z) \in \mathbb{C}((z))$ for the oper $(\mathbb{C}((z)), \nabla)$. In particular, this fact implies that $\{v(z), \rho(L_{-1})(v), \ldots, \rho(L_{-1})^{n-1}(v)\}$ is a basis of $\mathbb{C}((z))$ as $\mathbb{C}((z^n))$ -vector space. Conjugate ρ by $\frac{1}{v(z)}$ so that

$$\{1, \, \rho^{\frac{1}{v}}(L_{-1})(1), \, \dots, (\rho^{\frac{1}{v}}(L_{-1}))^{n-1}(1)\}$$

becomes a basis of $\mathbb{C}((z))$. Considering the action $(\mathbb{C}((z)), \rho^{\frac{1}{v}})$, the conclusion follows.

Remark 2.9. Recalling the close relationship between vertex algebras and infinite dimensional representations of the Virasoro algebra (e.g. [13]), we expect to interpret the action of W^+ on $\mathbb{C}[[t_1, t_2, \ldots]]$ in terms of vertex operators. Further, the techniques of [8, Chap. 5] can be applied to the above results in order to associate to a general action (V, ρ) a Gl(n)-oper on the abstract punctured disc $D^{\times} = \operatorname{Spec} \mathbb{C}((\bar{z}))$. Both facts will help to understand our approach within Frenkel's framework of the geometric Langlands program [9]. It is worth noticing the salient role of the punctured disc in this picture [10, Remark 1]

3. The KdV Hierarchy and Gl(2)-Opers

3.1. STABILIZER

Following Section 2.1, let (V, ρ) be an action of W^+ .

Let $U \subset V$ denote a \mathbb{C} -vector subspace and let A_U denote its stabilizer; that is,

$$A_U := \operatorname{Stab}(U) = \{ f \in \mathbb{C}((z)) | fU \subseteq U \}$$

We say that U is L_{-1} -stable when $\rho(L_{-1})U \subseteq U$. Similarly, we say that U is \mathcal{W}^+ -stable when $\rho(L)U \subseteq U$ for all $L \in \mathcal{W}^+$; or, what is tantamount to this, $\rho(L_k)U \subseteq U$ for all $k \ge -1$.

Let us fix the following notation. Let $V_+ \subseteq V$ denote a $\mathbb{C}[[z]]$ -submodule of V and, as above, let \mathfrak{v} be the valuation defined by z. Recall that the Sato Grassmannian of V, Gr(V), consists of those subspaces $U \subseteq V$ such that $U \cap V_+$ and $V/(U+V_+)$ are finite dimensional.

THEOREM 3.1. Let (V, ρ) be an action of W^+ and let h(z) be given as in Theorem 2.1. Let U be a subspace of Gr(V).

If U is L_{-1} -stable and $A_U \neq \mathbb{C}$, then U is W^+ -stable and $A_U = \mathbb{C}[h(z)]$.

Proof. First, let us show that $\mathfrak{v}(f(z)) < 0$ for each $f(z) \in A_U$ non-constant. Indeed, if $\mathfrak{v}(f(z)) > 0$ then $U \cap V_+$ cannot be finite-dimensional since $U \neq (0)$. On the other hand, if $\mathfrak{v}(f(z)) = 0$, then $\bar{f}(z) := f(z) - f(0)$ belongs to A_U and $\mathfrak{v}(\bar{f}(z)) > 0$, which again contradicts the hypotheses. Thus, it must hold that $\mathfrak{v}(f(z)) < 0$.

We shall now prove that $A_U \subseteq \mathbb{C}[h(z)]$. From the previous paragraph, let us take $f(z) \in A_U \setminus \mathbb{C}[h(z)]$ such that $\mathfrak{v}(f(z))$ attains the value $\max\{\mathfrak{v}(f(z))|f(z)\in A_U \setminus \mathbb{C}[h(z)]\}$. Since U is stable under L_{-1} and under the multiplication by f(z), it follows that $[f(z), \rho(L_{-1})] = \frac{f'(z)}{h'(z)} \in A_U$. Note that $\mathfrak{v}(\frac{f'(z)}{h'(z)}) = \mathfrak{v}(f(z)) - \mathfrak{v}(h(z)) > \mathfrak{v}(f(z))$, since $\mathfrak{v}(h(z))$ is negative and $\mathfrak{v}(f(z)) \neq 0$. Bearing in mind that f(z) is such that $\mathfrak{v}(f(z))$ is maximal among elements of $A_U \setminus \mathbb{C}[h(z)]$, we have that

$$\frac{f'(z)}{h'(z)} \in \mathbb{C}[h(z)]$$

and, thus, $f(z) \in \mathbb{C}[h(z)]$. That is, $A_U \subseteq \mathbb{C}[h(z)]$.

Let us see that $A_U = \mathbb{C}[h(z)]$. Since $A_U \neq \mathbb{C}$, let p(x) be a non-constant polynomial of minimal degree such that $p(h(z)) \in A_U$. Similar to the above, one has that $[p(h(z)), \rho(L_{-1})] = p'(h(z)) \in A_U$ and, thus, p'(x) must be constant and p(x) is of the form ax + b. Therefore, $\mathbb{C}[h(z)] = \mathbb{C}[p(h(z))] \subseteq A_U \subseteq \mathbb{C}[h(z)]$.

It remains to show that, in the case $A_U = \mathbb{C}[h(z)]$, U is \mathcal{W}^+ -stable. This follows from the fact that $h(z)U \subseteq U$ and from the relation $\rho(L_i) = h(z)^i (h(z)\rho(L_{-1}) - (i+1)c)$ for all $i \ge 0$.

Remark 3.2. Observe that, in the case $A_U = \mathbb{C}[h(z)]$, the connection of Theorem 1.1 can be introduced in an alternative way. Indeed, the map $h(z)^n \partial_h \mapsto L_{n-1}$, for $n \ge 0$, provides a section of the canonical map $\mathcal{D}^1_{A_U/\mathbb{C}}(U) \to \mathrm{Der}_{\mathbb{C}}(A_U)$ which, by [2, Section 1.1]), is an integrable connection on \mathcal{E} on $\mathrm{Spec}\,\mathbb{C}((h(z)^{-1}))$.

Remark 3.3. The previous result can be generalized by dropping out the condition on the dimension of $U \cap V_+$. Under the remaining hypotheses, one can prove that

if U is L_i -stable for i = -1, 0 and $A_U \neq \mathbb{C}$, then $\mathbb{C}((h(z)^{-1})) \subseteq (A_U)_{(0)}$. Furthermore, $[, \rho(L_i)]$ induces a derivation on $(A_U)_{(0)}$ and on $(A_U)_{(0)}$. Here $(A_U)_{(0)}$ denote the function field of A_U and $(A_U)_{(0)}$ its z-adic completion.

Given an action (V, ρ) , let us introduce the *first-order stabilizer* of a subspace $U \subset V$ as

$$A_U^1 := \{ D \in \mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V, V) \mid D(U) \subseteq U \}$$

For a W^+ -stable subspace $U \subset V$ such that $A_U = \mathbb{C}[h(z)]$, there is a canonical exact sequence of Lie algebras

$$0 \longrightarrow A_U \longrightarrow A_U^1 \longrightarrow \operatorname{Der}_{\mathbb{C}}(A_U) \longrightarrow 0, \tag{20}$$

and, bearing in mind that $\operatorname{Im}(\rho) \subseteq A_U^1$, one concludes that ρ induces a splitting and, accordingly,

$$A_U^1 = \mathbb{C}[h(z)] \otimes_{\mathbb{C}} \langle 1, \rho(L_{-1}) \rangle = A_U \oplus \operatorname{Im}(\rho)$$

as Lie subalgebras of $\mathcal{D}^1_{\mathbb{C}((z))/\mathbb{C}}(V,V)$.

Remark 3.4. It is worth mentioning the paper [1, Section 2.1] where the authors study subspaces of the Sato Grassmannian, which are stable by the multiplication by a power of z as well as by the action of a first-order differential operator. Then, they investigate the matrix integral representation of the corresponding τ -function.

3.2. STABLE SUBSPACES

In this section we aim to construct explicitly a subspace fulfilling our requirements; namely, invariance under the action and under the homothety z^{-2} . Because of this fact and of Theorem 3.1, we shall assume, henceforth, that $h(z) = z^{-2}$.

A naive candidate would be the $\mathbb{C}[h(z)]$ -module generated by 1 under the action of $\rho(L_{-1})$. Nevertheless, we shall need to consider a conjugate of it (Section 2.2). For this, we shall choose a solution of the Airy equation and decompose b(z) in a suitable way. Let us be more precise.

First, we choose w(z), a formal solution of the Airy equation

$$w''(z) + \frac{1}{2}S(h(z))w(z) = 0$$
(21)

where S denotes the Schwarzian derivative; that is,

$$S(h) := \frac{h'''(z)}{h'(z)} - \frac{3}{2} \left(\frac{h''(z)}{h'(z)}\right)^2$$

It is a straightforward check that w(z) satisfies the Airy equation iff $f(z) = \frac{w'(z)}{w(z)}$ satisfies the Riccati equation

$$f(z)^{2} + f'(z) + \frac{1}{2}S(h(z)) = 0$$
(22)

Note, in particular, that $h'(z)^{-1/2}$ satisfies the Equation (21); or, equivalently, $d\log(h'(z)^{-1/2}) = -\frac{1}{2}\frac{h''(z)}{h'(z)}$ satisfies Equation (22).

Recalling from [18, Chapters 6 and 9] the basic properties of the solutions of the Airy and Riccati equations, we know that in our situation the solutions of Equation (22) are meromorphic; i.e. $\frac{w'(z)}{w(z)} \in \mathbb{C}((z))$. Thus, it makes sense to conjugate a given action by w(z) (see Section 2.2).

Let the following operator be given

$$P = -\frac{1}{h'(z)}\partial_z + \frac{b(z)}{h'(z)}$$

and let us express b(z) w.r.t. the decomposition

$$\mathbb{C}((z)) \simeq \mathbb{C}[h(z)]h'(z) \oplus \left(\mathbb{C}[h(z)] + \mathbb{C}[[z]]z^{-1}\right)$$
$$\simeq \mathbb{C}[z^{-2}]z^{-3} \oplus \left(\mathbb{C}[z^{-2}] + \mathbb{C}[[z]]z^{-1}\right)$$

since $h(z) = z^{-2}$ and $h'(z) = -2z^{-3}$. That is, we write

$$b(z) = u(h(z))h'(z) + \left(\frac{v'(z)}{v(z)} - \frac{1}{2}h''(z)\right)$$
(23)

where u(h(z)), v(z) are uniquely determined by: u(x) is a polynomial; and, v(z) is the formal expression

$$v(z) := \exp \int \left(b(z) - u(h(z))h'(z) + \frac{1}{2}h''(z) \right) dz.$$

Note that v(z) satisfies that $\frac{v'(z)}{v(z)} \in \mathbb{C}[h(z)] + z^{-1}\mathbb{C}[[z]]$.

LEMMA 3.5. Given $P = -\frac{1}{h'(z)}\partial_z + \frac{b(z)}{h'(z)}$, let w(z), u(h(z)), v(z) be as above. It then holds that

$$\left(P^2 - 2u(h(z))P + (u'(h(z)) + u(h(z))^2)\right)(1 \otimes w(z) \otimes v(z)) = 0$$

Proof. Note that the l.h.s. in the statement is rewritten as

$$(P - u(h(z)))^{2} (1 \otimes w(z) \otimes v(z))$$

$$= \left(\left(P - u(h(z)) - \frac{1}{h'(z)} \frac{v'(z)}{v(z)} \right)^{2} (1 \otimes w(z)) \right) \otimes v(z)$$

$$= \left(\left(-\frac{1}{h'(z)} \partial_{z} - \frac{1}{2} \frac{h''(z)}{h'(z)} \right)^{2} (1 \otimes w(z)) \right) \otimes v(z)$$

$$= \frac{1}{h'(z)^{2}} \left(\left(\partial_{z}^{2} + \frac{1}{2} S(h(z)) \right) (1 \otimes w(z)) \right) \otimes v(z)$$

In order to see that the last expression vanishes, note that

$$\begin{split} \partial_z^2(1\otimes w(z)) &= \partial_z \left(\partial_z(1\otimes w(z))\right) \partial_z \left(\left(\partial_z + \frac{w'(z)}{w(z)}\right)(1)\otimes w(z)\right) \\ &= \partial_z \left(\frac{w'(z)}{w(z)}\otimes w(z)\right) = \left(\left(\frac{w'(z)}{w(z)}\right)' + \left(\frac{w'(z)}{w(z)}\right)^2\right) \otimes w(z) \\ &= -\frac{1}{2}S(h(z)) \end{split}$$

where the last equality comes from the fact that $\frac{w'(z)}{w(z)}$ solves the Riccati Equation (22).

Remark 3.6. In [14], the authors are able to solve the second-order differential equation $\left(\frac{3}{2}\bar{z}+\frac{1}{2\bar{z}}\partial_{\bar{z}}-\frac{1}{4\bar{z}^2}\right)^2\phi(\bar{z})=\bar{z}^2\phi(\bar{z})$ (their \bar{z} variable and our z variable are related by $\bar{z}=(\frac{1}{3})^{\frac{1}{3}}z^{-1}$) by the substitution $\phi(\bar{z})=\bar{z}^{1/2}\exp(\frac{2}{3}\bar{z}^{-3})\psi(\bar{z})$ where $\psi(\bar{z})$ is a solution of the Airy equation. However, this makes sense since they show that $\phi(\bar{z})$ has an asymptotic expansion in $\mathbb{C}[[\bar{z}^{-1}]]$. Observe that the previous Lemma can be thought of as an abstract formalization of this procedure.

THEOREM 3.7 (Existence). Let w(z) be a solution of the Airy Equation (21) linearly independent with $h'(z)^{-\frac{1}{2}}$. Let $(\mathbb{C}((z)), \rho)$ be defined by $(h(z) = z^{-2}, c, b(z))$ and let v(z) be a formal function such that Equation (23) is fulfilled. Let V^{wv} be the $\mathbb{C}((z))$ -vector space $\mathbb{C}((z)) \otimes w(z) \otimes v(z)$ with the conjugated action ρ^{wv} .

It then holds that the \mathbb{C} -vector subspace of V^{wv}

$$\mathcal{U}(w) := \langle 1 \otimes w(z) \otimes v(z), \rho^{wv}(L_{-1})(1 \otimes w(z) \otimes v(z)) \rangle \otimes_{\mathbb{C}} \mathbb{C}[h(z)]$$

is W^+ -stable, it is a $\mathbb{C}[h(z)]$ -module of rank 2 and it belongs to $Gr(V^{wv})$.

For the basics of Sato Grassmannian and τ -functions, see [25].

Proof. Let us denote $P := \rho^{wv}(L_{-1})$. Lemma 3.5 implies that $\mathcal{U}(w)$ is a P-stable $\mathbb{C}[h(z)]$ -module. The \mathcal{W}^+ -stability follows from those facts and from the following relations

$$\rho^{wv}(L_i) = h(z)^i (h(z)\rho^{wv}(L_{-1}) - (i+1)c)$$

$$\rho^{wv}(L_{-1})(p(h(z)) \otimes v(z)) = p(h(z))\rho^{wv}(L_{-1})(1 \otimes v(z)) - p'(h(z)) \otimes v(z)$$

Let us prove that $P(1 \otimes w(z) \otimes v(z)) \notin \mathcal{U}(w) \otimes_{\mathbb{C}[h(z)]} \mathbb{C}((h(z)^{-1}))$. Being w(z) and $h'(z)^{-\frac{1}{2}}$ linearly independent solutions of the Airy equation, it follows that $S(w(z) \cdot h'(z)^{\frac{1}{2}}) = S(h(z))$, and they therefore differ by a Möbius transformation

$$w(z) \cdot h'(z)^{\frac{1}{2}} = \frac{\alpha h(z) + \beta}{\gamma h(z) + \delta}$$
 for some $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in PGL(2, \mathbb{C})$ (24)

Noting that $h(z) = z^{-2}$ and Equation (24), it holds that

$$\frac{1}{h'(z)} \frac{w'(z)}{w(z)} = \frac{1}{h'(z)} d \log \left(w(z) h'(z)^{\frac{1}{2}} \right) - \frac{1}{2} \frac{h''(z)}{h'(z)^2} \in \mathbb{C}[[z^2]]$$

Computing how P acts, we have

$$P(f(z) \otimes w(z) \otimes v(z))$$

$$= \left(-\frac{1}{h'(z)}\partial_z + u(h(z)) - \frac{1}{2}\frac{h''(z)}{h'(z)} - \frac{1}{h'(z)}\frac{w'(z)}{w(z)}\right)(f(z)) \otimes w(z) \otimes v(z)$$

and note that the term $\frac{1}{2}\frac{h''(z)}{h'(z)}$ on the r.h.s. shifts the order by an odd integer while all the other terms shift it by an even integer. Hence, $\mathcal{U}(w)$ is a free $\mathbb{C}[h(z)]$ -module of rank 2.

Finally, in order to prove that $\mathcal{U}(w)$ lies in the Sato Grassmannian, where we are considering $V_+^{wv} := \mathbb{C}[[z]] \otimes w(z) \otimes v(z)$, one has to show the following two conditions

$$\dim_{\mathbb{C}} (\mathbb{C}[[z]] \otimes w(z) \otimes v(z) \cap \mathcal{U}(w)) < \infty$$

$$\dim_{\mathbb{C}} \mathbb{C}((z)) \otimes w(z) \otimes v(z) / (\mathbb{C}[[z]] \otimes w(z) \otimes v(z) + \mathcal{U}(w)) < \infty$$
(25)

Bearing in mind that $u(h(z)) - \frac{1}{2} \frac{h''(z)}{h'(z)} - \frac{1}{h'(z)} \frac{w'(z)}{w(z)}$ does not belong to $\mathbb{C}((z^2))$, both conditions follow from the previous claims.

The above constructed subspace depends clearly on the choice of a solution of the Airy equation. The following result studies what this dependence looks like.

PROPOSITION 3.8. Let $(\mathbb{C}((z)), \rho)$ be an action of \mathcal{W}^+ defined by the data $\{h(z) = z^{-2}, c, b(z)\}$. Let $w_1(z), w_2(z)$ be two solutions of (21).

Then, up to \mathbb{C}^* , there is a unique isomorphism of $\mathbb{C}((z))$ -vector spaces $V^{w_1} \xrightarrow{\sim} V^{w_2}$ which is compatible w.r.t. the actions of the conjugated actions ρ^{w_1} and ρ^{w_2} .

Proof. We begin by constructing one isomorphism; we shall then prove the uniqueness.

Let us consider (V^{w_i}, ρ^{w_i}) as the conjugated action by $w_i(z)$ (for i = 1, 2); that is, the $\mathbb{C}((z))$ -vector space V^{w_i} is given by $\mathbb{C}((z)) \otimes_{\mathbb{C}} \mathbb{C} w_i(z)$ and ρ^{w_i} by Equation (17).

From [18, Chapter 6], we know that the fact that w_1, w_2 solve (21) yields

$$S\left(\frac{w_1(z)}{w_2(z)}\right) = S(h)$$

and, therefore,

$$\frac{w_1(z)}{w_2(z)} = \frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \qquad \text{for some } \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in PGL(2, \mathbb{C})$$
 (26)

Let us now check that the $\mathbb{C}((z))$ -linear map

$$\mathbb{C}((z)) \otimes_{\mathbb{C}} \mathbb{C}w_1(z) \longrightarrow \mathbb{C}((z)) \otimes_{\mathbb{C}} \mathbb{C}w_2(z)$$

$$1 \otimes w_1(z) \mapsto \frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \otimes w_2(z)$$
(27)

gives rise to an isomorphism that is compatible with the actions of ρ^{w_1} on the l.h.s. and of ρ^{w_2} on the r.h.s.; that is, one has to show that

$$\left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta}\right) \cdot \rho^{w_1}(L_k)(f(z) \otimes w_1(z)) = \rho^{w_2}(L_k) \left(\left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta}\right) f(z) \otimes w_2(z)\right)$$

We shall only prove the case k=-1, f(z)=1, since the general case goes along the same lines.

First, taking logarithms and derivatives in Equation (26), we obtain

$$\frac{w_1'(z)}{w_1(z)} = \frac{w_2'(z)}{w_2(z)} + \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta}\right)^{-1} \cdot \partial_z \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta}\right) \tag{28}$$

On the one hand, one computes the image of

$$\rho^{w_1}(L_{-1})(1 \otimes w_1(z)) = \left(-\frac{1}{h'(z)} \frac{w_1'(z)}{w_1(z)} + \frac{b(z)}{h'(z)} \right) \otimes w_1(z)$$

by the map (27) and one obtains

$$\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \left(-\frac{1}{h'(z)} \cdot \frac{w_1'(z)}{w_1(z)} + \frac{b(z)}{h'(z)} \right) \otimes w_2(z)$$

$$= -\frac{1}{h'(z)} \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \cdot \frac{w_2'(z)}{w_2(z)} + \partial_z \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \right) - \frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \cdot b(z) \right) \otimes w_2(z)$$
(29)

where we have used the identity (28).

On the other hand, one has

$$\begin{split} &\rho^{w_2}(L_{-1}) \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \otimes w_2(z) \right) \\ &= \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \right) \cdot \left(-\frac{1}{h'(z)} \cdot \frac{w_2'(z)}{w_2(z)} + \frac{b(z)}{h'(z)} \right) \otimes w_2(z) \\ &\quad -\frac{1}{h'(z)} \partial_z \left(\frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \right) \otimes w_2(z) \end{split}$$

and, since this expression coincides with Equation (29), it follows that (27) is an isomorphism compatible with the actions.

Let us denote by ϕ the isomorphism (27) and let $\psi: V^{w_1} \to V^{w_2}$ be another isomorphism compatible with the actions. The statement will be proved if we can show that $\phi \circ \psi^{-1}$ belongs to \mathbb{C}^* .

Let f(z) be defined by $\psi(1 \otimes w_1(z)) = f(z) \otimes w_2(z)$. Thus

$$(\phi \circ \psi^{-1})(1 \otimes w_2(z)) = f(z)^{-1} \frac{\alpha h(z) + \beta}{\gamma h(z) + \delta} \otimes w_2(z)$$

is a $\mathbb{C}((z))$ -linear automorphism of V^{w_2} that is compatible with the action of ρ^{w_2} ; that is, $(\phi \circ \psi^{-1}) \circ \rho^{w_2} = \rho^{w_2} \circ (\phi \circ \psi^{-1})$ and, bearing in mind Equation (8), it follows that

$$\frac{1}{h'(z)}\partial_z\left(f(z)^{-1}\frac{\alpha h(z)+\beta}{\gamma h(z)+\delta}\right)=0$$

and, hence, $f(z) = \lambda \cdot \frac{\alpha h(z) + \beta}{\gamma h(z) + \delta}$ for $\lambda \in \mathbb{C}^*$ and the statement follows.

3.3. Gl(2)-OPERS

THEOREM 3.9. Let $(\mathbb{C}((z)), \rho)$ be defined by $(h(z) = z^{-2}, c, b(z))$. If $\operatorname{Res}_{z=0} \frac{b(z)}{h'(z)} = \frac{3}{2}$, then it defines a Gl(2)-oper \mathcal{E} on $\operatorname{Spec} \mathbb{C}[h(z)]$. Moreover, the τ -function of \mathcal{E} , which is a point of the Sato Grassmannian, satisfies the KdV hierarchy and a set of Virasoro-like constraints.

Proof. The condition $\operatorname{Res}_{z=0} \frac{b(z)}{h'(z)} = \frac{3}{2}$ means that there exist a polynomial u and a formal function v such that Equation (23) is fulfilled. Let V^{wv} be the $\mathbb{C}((z))$ -vector space $\mathbb{C}((z)) \otimes w(z) \otimes v(z)$ with the conjugated action ρ^{wv} where w(z) is a solution of the Airy Equation (21) linearly independent with $h'(z)^{-\frac{1}{2}}$.

Now, Theorem 3.7 gives us an \mathbb{C} -vector subspace $\mathcal{U}(w) \subset V^{wv}$ which is \mathcal{W}^+ -stable, it is a $\mathbb{C}[h(z)]$ -module of rank 2 and it belongs to $Gr(V^{wv})$. Applying to $\mathcal{U}(w)$ similar arguments to those used in the proof of Theorem 1.1, the first statement follows.

Finally, bearing in mind Theorem 3.7, we know that the $\mathbb{C}[z^{-2}]$ -module attached to the Gl(2)-oper fulfills:

- (i) $\mathcal{U}(w)$ belongs to the Sato Grassmannian,
- (ii) $z^{-2}\mathcal{U}(w) \subset \mathcal{U}(w)$,
- (iii) $\rho(L_k)\mathcal{U}(w) \subseteq U$ for $k \ge -1$.

One can now translate this properties into properties of the τ -function of \mathcal{U} (w), $\tau_{\mathcal{U}(w)}(t) \in \mathbb{C}[[t_1, t_2, \ldots]]$. Proceeding along the lines of Example 2.4 (see also[25]), one obtains that the above conditions are equivalent to:

- (i') KP-hierarchy,
- (ii') $\partial_{t_{2i}} \tau(t) = 0$ (KdV hierarchy, provided that KP is fulfilled),
- (iii') $\bar{L}_k \tau(t) = 0$, for $k \ge -1$ (Virasoro constraints), for certain differential operators $\{\bar{L}_k\}_{k \ge -1}$ with $[\bar{L}_i, \bar{L}_j] = (i-j)\bar{L}_{i+j}$.

Let us say a word on the significance of this Theorem. We have shown that there is a deep relationship among the following three sets: (a) 2-cyclic actions of

 W^+ ; (b) functions $\tau(t)$ satisfying the KdV hierarchy and Virasoro-like constraints; (c) Gl(2)-opers on Spec($\mathbb{C}[z^{-2}]$). Surprisingly, the τ -functions arising in 2D gravity [14,17] fall into this scheme (see [24] for the details).

4. Universal Family and Topological Recursion

Recent results on the so-called *topological recursion* involve *families* of τ -functions depending on an infinite number of parameters such that the whole family lies entirely on the space of functions satisfying KdV and Virasoro constraints (see, for instance, [16,19,21,22]). One of these families already appeared in Kontsevich's work [17, Section 3.4]. It is worth mentioning the existence of relevant 1-parameter families; for instance, the one *connecting* the Witten–Kontsevich partition function with the Hurwitz partition function ([20], see also [3]), another one *connecting* Witten–Kontsevich and Mirzakhani theories [22], and a third one the Witten–Kontsevich partition function with the generating function of linear Hodge integrals defined on the moduli space of stable curves [16].

In this section, a natural a general procedure to obtain the above-mentioned families will be provided.

Let us consider a family of independent variables $s := (s_1, s_2, ...)$. For a sequence of non-negative integers, $\mathbf{m} := (m_1, m_2, ...)$, with $m_i = 0$ for all $i \gg 0$ define:

$$|\mathbf{m}| := \sum_{i \ge 1} i m_i \qquad \|\mathbf{m}\| := \sum_{i \ge 1} m_i \qquad \mathbf{m}! := \prod_{i \ge 1} m_i! \qquad \mathbf{s}^{\mathbf{m}} := \prod_{i \ge 1} s_i^{m_i}$$

Based on Mulase–Safnuk's approach [22], Liu–Xu considered the operators [19, Equation (9)]:

$$\begin{split} \bar{L}_n'(\mathbf{s}) &:= -\frac{1}{2} \sum_{\mathbf{m}} \frac{(-1)^{\|\mathbf{m}\|}}{\mathbf{m}! (2|\mathbf{m}|+1)!!} \mathbf{s}^{\mathbf{m}} \partial_{q_{|\mathbf{m}|+n+1}} + \sum_{i=0}^{\infty} (i + \frac{1}{2}) q_i \partial_{q_{i+n}} \\ &+ \frac{1}{2} \sum_{i=1}^{n} \partial_{q_{i-1}} \partial_{q_{n-i}} + \frac{q_0^2}{4} \delta_{n,-1} + \frac{1}{16} \delta_{n,0} \end{split}$$

for $n \ge -1$ (their exact expression corresponds to a rescaling by a double factorial). They showed that

$$[\bar{L}'_{i}(\mathbf{s}), \bar{L}'_{i}(\mathbf{s})] = (i-j)\bar{L}'_{i+j}(\mathbf{s})$$
 for $i, j \ge -1$

and, therefore, they generate a family of Witt algebras depending on the parameters s. We may write

$$\bar{L}'_n(\mathbf{s}) = -\frac{1}{2} \sum_{\mathbf{m}} \frac{(-1)^{\|\mathbf{m}\|}}{\mathbf{m}!(2|\mathbf{m}|+1)!!} \mathbf{s}^{\mathbf{m}} \partial_{q_{|\mathbf{m}|+n+1}} + \bar{L}'_n(0)$$

where $\bar{L}'_n(0)$ denotes the value of $\bar{L}'_n(\mathbf{s})$ at $\mathbf{s} = 0$. Observe that the operators $\bar{L}'_n(0)$ coincide with those of [5, Equation 3.5] and [11, Section 3] (up to rescaling of the variables q_i).

Recalling Example 2.4, the action on $\mathbb{C}((z))$ corresponding to the above operators can be written down explicitly

$$\rho_{\mathbf{s}}'(L_n) := \frac{1}{2} \sum_{\mathbf{m}} \frac{(-1)^{\|\mathbf{m}\|}}{\mathbf{m}!(2\|\mathbf{m}|+1)!!} \mathbf{s}^{\mathbf{m}} z^{-2(|\mathbf{m}|+n)-3} + \frac{1}{2} z^{-2n} \left(z \partial_z + \frac{1-2n}{2} \right) \forall n \ge -1$$

By Theorem 2.1, the action $\rho_{\bf s}'$ is attached to a triple (h(z),c,b(z)). Actually, bearing in mind that $\frac{h(z)^{n+1}}{h'(z)} = -\frac{1}{2}z^{-2n+1}$, and regarding $\bf s$ as parameters, we obtain that the action $\rho_{\bf s}'$ is attached to the data $(h(z)=z^{-2},c=\frac{1}{2},b_{\bf s}(z))$ where

$$b_{\mathbf{s}}(z) := -\sum_{\mathbf{m}} \frac{(-1)^{\|\mathbf{m}\|}}{\mathbf{m}!(2|\mathbf{m}|+1)!!} \mathbf{s}^{\mathbf{m}} z^{-2|\mathbf{m}|-4} - \frac{3}{2} z^{-1}$$

The fact that we are concerned with the KdV case can be equivalently stated in three forms: (a) the associated triple has $h(z) = z^{-2}$; (b) the subspace U of the Sato Grassmannian satisfies that $z^{-2}U \subseteq U$; and, (c) the corresponding τ -function, $\tau_U(t)$, does not depend on t_{2i} ; i.e. $\tau_U(t) \in \mathbb{C}[[t_1, t_3, \ldots]]$. Thus, if no confusion arises $\rho'_{\mathbf{s}}(L_n)$ can be thought of as operators acting on $\mathbb{C}[[t_1, t_3, \ldots]]$.

We conclude that the action induced by ρ'_s on $\mathbb{C}[[t_1, t_3, \ldots]]$ is the *universal* action for the case of KdV (i.e. $h(z) = z^{-2}$). In particular, this agrees with the idea addressed in [22] that a certain 1-parameter family, which would correspond to Eynard–Orantin's *spectral curve*, deforms the Witten–Kontsevich theory to other cases where the Virasoro also appears. Thus, we are led to the following generalization of [22, Theorem 1.2] (see also [16, Theorem 2.1] and [19, Theorem 4.4]).

THEOREM 4.1. Let $\tau_{\mathbf{s}}(t) \in \mathbb{C}[[t_1, t_3, \ldots]]$ be the τ -function associated to $\rho'_{\mathbf{s}}$. Then, $\tau_{\mathbf{s}}(t)$ satisfies the Virasoro constraints corresponding to operators $\bar{L}'_n(\mathbf{s})$ above (as in Section 3.2) and, moreover, it holds that

$$\tau_{\mathbf{s}}(t) = \tau_0(\tilde{t})$$

where \tilde{t}_{2i+1} is equal to t_i for i = 0, 1 and to $t_{2i+1} - \frac{1}{(2i+1)!!} \sum_{|\mathbf{m}|=i-1} \frac{(-1)^{\|\mathbf{m}\|}}{\mathbf{m}!} \mathbf{s}^{\mathbf{m}}$ for i > 1.

Conversely, let $\tau(t) \in \mathbb{C}[[t_1, t_3, \ldots]]$ be a τ -function for the KdV satisfying the Virasoro constraints. Then, there exist values of \mathbf{s} , say $\mathbf{s}_0 := (s_1, s_2, \ldots)$ such that

$$\tau(t) = \tau_{\mathbf{s}_0}(t)$$

Proof. It is enough to observe that under that change of variables, the operators $\bar{L}'_n(\mathbf{s})$ in t_{2i+1} are transformed into the operators $\bar{L}'_n(0)$ in \tilde{t}_{2i+1} .

Bearing in mind that, regarding s as parameters, the action ρ'_s is universal, the converse follows.

Finally, the previous Theorem can be used to strengthen Theorem 3.9 and it provides a link between Gl(2)-opers and τ -functions fulfilling the KdV hierarchy and the Virasoro constraints simultaneously. These promising facts deserve further research.

Acknowledgements

I wish to thank Edward Frenkel and Motohico Mulase for stimulating discussions and remarks. I also thank the referee for his/her pertinent comments.

References

- 1. Adler, M., Morozov, A., Shiota, T., van Moerbeke, P.: A matrix integral solution to [P, Q] = P and matrix Laplace transforms. Commun. Math. Phys. **180**(1), 233–263 (1996)
- Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118(4), 651–701 (1988)
- Bouchard, V., Mariño, M.: Hurwitz numbers, matrix models and enumerative geometry. In: From Hodge Theory to Integrability and tQFT: tt*-geometry. Proceedings of Symposia in Pure Mathematics, AMS (2008)
- 4. Deligne, P.: Equations Diffrentielles Points Singuliers Rguliers. LNM, vol. 163. Springer, Berlin (1970)
- Dijkgraaf, R., Verlinde, H., Verlinde, E.: Loop equations and Virasoro constraints in non-perturbative 2D quantum gravity. Nucl. Phys. B 348(3), 435–456 (1991). IASSNS-HEP-90/48
- 6. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347 (2007)
- 7. Frenkel, E., Kac, V., Radul, A., Wang, W.: $W_{1+\infty}$ and $W(\mathfrak{gl}_N)$ with central charge N. Commun. Math. Phys. **170**(2), 337–357 (1995)
- 8. Frenkel, E.; Ben-Zvi, D.: Vertex algebras and algebraic curves, 2nd edn. Mathematical Surveys and Monographs, vol. 88. AMS, Providence (2004) ISBN: 0-8218-3674-9
- 9. Frenkel, E.: Langlands correspondence for loop groups. In: Cambridge Studies in Advanced Mathematics, vol. 103. CUP, Cambridge (2007). ISBN: 978-0-521-85443-6
- 10. Frenkel, E., Zhu, X.: Any flat bundle on a punctured disc has an oper structure. Math. Res. Lett. 17(1), 27–37 (2010)
- 11. Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1(4), 551–568 (2001)
- Gómez González, E., Hernández Serrano, D., Muñoz Porras, J.M., Plaza Martín,
 F.J.: Geometric approach to Kac-Moody and Virasoro algebras. J. Geom. Phys. 62(9),
 1984–1997 (2012)
- 13. Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. In: Advanced Series in Mathematical Physics, vol. 2. World Scientific Publishing Co. Inc., Teaneck (1987)
- 14. Kac, V., Schwarz, A.: Geometric interpretation of the partition function of 2D gravity. Phys. Lett. B **257**, 329–334 (1991)
- 15. Katsura, T., Shimizu, Y., Ueno, K.: Complex cobordism ring and conformal field theory over Z. Math. Ann. **291**, 551–571 (1991)
- 16. Kazarian, M.: KP hierarchy for Hodge integrals. Adv. Math. 221, 1–21 (2009)
- 17. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. **147**(1), 1–23 (1992)
- Laine, I.: Nevanlinna theory and complex differential equations. In: de Gruyter Studies in Mathematics, vol. 15. Walter de Gruyter & Co., Berlin (1993). ISBN: 3-11-013422-5
- 19. Liu, K., Xu, H.: Recursion formulae of higher Weil-Petersson volumes. Int. Math. Res. Not. 5, 835–859 (2009)

- 20. Mironov, A., Morozov, A.: Virasoro constraints for Kontsevich-Hurwitz partition function. J. High Energy Phys. **2**, 024 (2009)
- 21. Mirzakhani, M.: Weil-Petersson volumes and intersection theory on the moduli space of curves. J. Am. Math. Soc. **20**(1), 1-23 (2007)
- 22. Mulase, M., Safnuk, B.: Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy. Indian J. Math. **50**, 189–228 (2008)
- 23. Muñoz Porras, J.M., Plaza Martín, F.J.: Automorphism group of k((t)): applications to the bosonic string. Commun. Math. Phys. **216**(3), 609–634 (2001)
- 24. Plaza Martn, F.J.: Algebro-geometric solutions of the string equation. arXiv:1110.0729 [math.AG]
- 25. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. I.H.E.S. 61, 5–64 (1985)
- 26. Witten, E.: Two dimensional gravity and intersection theory on moduli space. Surv. Diff. Geom. 1, 243–310 (1991)