
DOI 10.1007/s11005-013-0635-4
Lett Math Phys (2013) 103:1079–1101

Representations of the Witt Algebra and
Gl(n)-Opers

FRANCISCO JOSE PLAZA MARTÍN
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1. Introduction

During the last decades, representation theory of Virasoro (and Witt) algebra has
been studied in depth; in particular, its study has led to significant results in the
theory of vertex operator algebras. Indeed, opers have emerged as a fundamental
object in the approach to the geometric Langlands program which makes use of
VOA too. More recently, representations of Virasoro algebras are playing a signifi-
cant role within the framework of intersection theory and the so-called topological
recursion.

In this paper we exhibit a simple and direct procedure to go back and forth
between representations of the Witt algebra and opers. On the other hand, the
structure of the Virasoro operators of [19,22] is unveiled. Let us state the precise
claims.

THEOREM 1.1. To every n-cyclic action of W+ on D1 one associates a Gl(n)-oper
on the punctured disc D× :=Spec C((zn)).

Furthermore, every Gl(n)-oper structure of C((z)), as a rank n vector bundle on
D× :=Spec C((zn)), arises in this way (up to conjugation).

This work is supported by the research contract MTM2012-32342 of MINECO.
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Let us explain the notions used in the statement. W is the Witt algebra; that
is, the Lie algebra that is freely generated by {Lk |k ∈ Z} as a C-vector space and
endowed with the following Lie bracket [Li , L j ] = (i − j)Li+ j . Let us denote by
W+ ⊂W the Lie subalgebra generated by {Lk |k ≥−1}. Let D1 :=D1

C((z))/C(C((z)),
C((z))) be the Lie algebra generated by first-order differential operators. An action
of W+ is a Lie algebra homomorphism ρ :W+ →D1. The notions of n-cyclic and
conjugation will be introduced in Section 2.

Here, it suffices to recall that a Gl(n)-oper on the punctured disc, D×, is a rank
n vector bundle E on D× equipped with a flag E0 := (0)⊂E1 ⊂· · ·⊂En−1 ⊂En =E
of subbundles and a flat connection ∇ :E →E ⊗�D× such that the induced maps
Ei/Ei−1 → (Ei+1/Ei )⊗�D× are a isomorphisms of OD×-bundles for all i (transver-
sality).

Section 3 shows how additional hypothesis satisfied by the action are reflected
in the corresponding oper. Indeed, the Gl(2)-opers associated to certain 2-cyclic
actions are actually defined on Spec(C[z−2]) (see Theorem 3.9). In this situation,
there is a third character in this play, namely, a point in the Sato Grassmannian
of C((z)). Furthermore, its τ -function satisfies the KdV hierarchy and Virasoro-like
constraints simultaneously. Strickingly, the τ -functions arising in 2D gravity [14,17]
fall into this situation.

The paper ends with a further application of our results; namely, we show that
the families of Virasoro algebras used in the study of the Topological Recursion
[19,21,22] also fit into our framework and have a natural geometrical interpreta-
tion (see Section 4). In particular, it is shown that a family of τ -functions satis-
fying KdV and Virasoro is equivalent to a family of actions of the Witt algebra
(Theorem 4.1). It is worth noticing that some instances of such 1-parameter fam-
ilies (e.g. the sine curve in [22]) are indeed the spectral curve in Eynard–Orantin
theory [6]. Thus, we hope that our techniques might shed some light to the under-
lying geometry of Eynard–Orantin approach.

2. From Representations of W+ to Opers

2.1. ACTIONS OF WITT ALGEBRAS

Let V denote a 1-dimensional C((z))-vector space and let D1
C((z))/C(V,V ) be the

Lie algebra generated by first-order differential operators. The symbol map is

σ :D1
C((z))/C(V,V )−→DerC (C((z)))=C((z))∂z

∼→C((z))

where the last map sends f (z)∂z to f (z).
We are interested in pairs (V, ρ) consisting of a 1-dimensional C((z))-vector

space, V , and a Lie algebra homomorphism

W+ ρ−→ D1
C((z))/C(V,V )

The pair (V, ρ) will be called an action of W+.
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This subsection is concerned with explicit descriptions of the actions of W+
on D1

C((z))/C(C((z)),C((z))) that, albeit many properties of W-modules are known,
seems to be brand new. Nevertheless, similar results can be proved for V arbitrary
by fixing an isomorphism V 	 C((z)) (see Section 2.2 for the dependence on the
choice of the isomorphism).

There are two reasons for restricting ourselves to the case of first-order differen-
tial operators of V . First, this is the relevant situation when dealing with 2D grav-
ity. Second, the equivalence of categories between Atiyah algebras and differential
operator algebras [2] means that D1

C((z))/C(V,V ) is a natural object to study.

THEOREM 2.1. Let V be C((z)) and ρ :W+ →D1
C((z))/C(V,V ) be a C-linear map

such that ρ 
=0. Then, the map ρ is a Lie algebra homomorphism if and only if there
exist functions h(z),b(z)∈C((z)) and a constant c ∈C such that h′(z) 
=0 and

ρ(Li ) = −h(z)i+1

h′(z)
∂z − (i +1)c ·h(z)i + h(z)i+1

h′(z)
b(z) (1)

Proof. The converse is straightforward. Let us prove the direct one.
Let us write ρ(Lk)=ak(z)∂z +bk(z). Since ρ is a map of Lie algebras, the expres-

sion of the bracket [Li , L j ] = (i − j)Li+ j yields

ai (z)a
′
j (z)−a j (z)a

′
i (z)= (i − j)ai+ j (z) (2)

ai (z)b
′
j (z)−a j (z)b

′
i (z)= (i − j)bi+ j (z) (3)

Observe that if a−1(z)=σ(ρ(L−1))=0, then we let i be equal to −1 in Equation
(2) and have that a j (z)= 0 for all j ≥−1. Substituting in Equation (3), it follows
that ρ≡0.

Hence, we now assume that a−1(z)= σ(ρ(L−1)) 
= 0. Let us fix L−1 and solve
this system in terms of its coefficients.

Letting i = −1 in Equation (2), dividing by a−1(z)2 and integrating, it follows
that a j (z)= −(1 + j)a−1(z)

∫ z a j−1(t)a−1(t)−2 d t . Hence, a j (z) can be determined
recursively from a−1(z). Indeed, the case j = 0 yields a0(z)= a−1(z)(α− ∫ z d t

a−1(t)
)

for α ∈ C. Since a−1(z),a0(z) ∈ C((z)), it follows that (α − ∫ z d t
a−1(t)

) must lie in
C((z)); i.e., there exists h(z)∈C((z)) such that

a−1(z)= −1
h′(z)

Thus, setting the free term of h(z) to be equal to that constant, it follows that

a0(z)= −h(z)

h′(z)
Now, induction procedure proves straightforwardly that

ai (z)= −h(z)i+1

h′(z)
i ≥−1
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Let us now focus on bi ’s. Firstly, let us deal with the case h(z)= zn ; hence, ai (z)=
− 1

n zni+1 and Equation (3) acquires the following shape

−1
n

zni+1b′
j (z)+

1
n

znj+1b′
i (z)= (i − j)bi+ j (z) (4)

Let us write b j (z) as
∑

k b j,k zk , where b j,k =0 for k 0. Computing the coefficients
of zk , in Equation (4) one has the relation

−1
n
(k −ni)b j,k−ni + 1

n
(k −nj)bi,k−nj = (i − j)bi+ j,k

The case j = 0 implies that (k − ni)bi,k = (k − ni)b0,k−ni and, therefore bi,k =
b0,k−ni for k 
=ni ; that is, the difference between z−ni bi (z) and b0(z) is a constant.
Expressing this condition in terms of b−1(z), the following formula for bi (z) holds

bi (z) = (ci +b−1(z)z
n)zni (5)

for some ci ∈C and c−1 =0. Plugging this into Equation (3) and setting i equal to
−1, we find a constraint for the ci

jc j + c−1 − ( j +1)c j−1 = 0 c−1 =0

whose general solution is

c j = −c · ( j +1) (6)

for a complex number c =−c0 ∈C. Bearing in mind that h′(z) is invertible, there is
no harm in assuming that b−1(z) is of the form 1

h′(z)b(z). Thus, from equations (5)
and (6), the general solution for the case h(z)= zn is

bi (z) =
(

−(i +1)c + zn b(z)

nzn−1

)

zni (7)

The general case, i.e. for h(z) arbitrary, follows from the fact that there is a
C-algebra automorphism of C[[z]], φ, such that φ(h(z))= zn where h(z)= anzn +
an+1zn+1 + . . . and an 
= 0. That is, in order to solve Equation (3), we consider φ,
such that φ(h(z))= zn . We transform Equation (3) by φ, which is Equation (4), and
consider its solutions (7). Thus, transforming the solutions by the inverse automor-
phism, φ−1, we have that the general solution for Equation (3) is as follows

bi (z) =
(

−(i +1)c +h(z)
b(z)

h′(z)

)

h(z)i

��

Remark 2.2. It is worth to observe, from the proof above, that the action ρ is
determined by its restriction to the subalgebra

sl2(C)	〈L−1, L0, L1〉 ⊂ W+
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Let us point out some consequences of Theorem 2.1. First, note that

[ρ(Lk),h(z)
j ] = − j ·h(z)k+ j (8)

as C-linear operators on V . Second, if σ(ρ(L−1)) 
=0, then ρ and σ ◦ρ are injective
and

Im(σ ◦ρ)= 1
h′(z)

C[h(z)] (9)

EXAMPLE 2.3. Let D̂ (a.k.a. W1+∞) denote the unique non-trivial central exten-
sion of the Lie algebra of differential operators on the circle. The authors of [7]
carried out an in-depth study of its representations with the help of the theory of
vertex operator algebras. In this context, they consider two 1-parameter families of
Virasoro algebras (see [7, Equation (1.7)])

{L+
k (β)=−zk+1∂z −β(k +1)zk | k ≥−1}

{L−
k (β)=−zk+1∂z − (k +β(−k +1))zk | k ≥−1}

Observe that these families correspond to the data h(z)= z, c =β and b(z)=0 and
h(z)= z, c =1−β and b(z)= (1−2β)z−1, respectively.

EXAMPLE 2.4. From the point of view of mathematical physics, recall the
so-called Virasoro constraints arising in 2D quantum gravity [5,11,14,15,17].
Indeed, let us show that such differential equations are an instance of our previous
Theorem. First, let us recall that a differential operator of V =C((z)) also acts on
the Sato Grassmannian Gr(V ) [25]. Since it preserves the determinant bundle, it
yields a transformation of H0(Gr(V ),Det∗)=	∞

2 V . Having in mind that W+ has
no non-trivial central extensions and the bosonization isomorphism, we conclude
that an action ρ :W+ →D1

C((z))/C(V,V ) can be lifted to

ρ̃ :W+ →End(C[[t1, t2, . . .]])

We address the reader to [16] and references therein for this standard construction.
An alternative approach to this construction is based on a quantization procedure
[11]. Let us review some instances of actions appearing in this setup (see [24] for
the details).

If we look for ρ such that ρ̃(Lk) coincide with the operators of [15, Section
2.2], we find out that it corresponds to the data h(z)= z−1, c = 1

2 ,b(z)=−z−1. The
choice h(z)= z−2, c = 1

2 ,b(z)=− 3
2 z−1 produces, up to rescaling, the operators con-

sider by Dijkgraff–Verlinde–Verlinde [5, Equation 3.5] and Givental [11, Section 3].
The latter set of data can be obtained from the former by considering the subal-
gebra { 1

2 ρ̃(L2k)}. Analogously, the operators considered in [14] and [17] come from
the triple h(z)= z−2, c = 1

2 ,b(z)= z−4 − 3
2 z−1.
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Sometimes, it is not relevant the precise expression of each operator ρ(Lk) but
what is important is the Lie algebra generated by them; that is, Im(ρ). It is, there-
fore, natural to wonder whether ρ is determined by the Lie algebra Im(ρ).

For studying this problem, let v : C((z))→ Z ∪ {∞} be the valuation associated
with z; that is, v(0)= ∞ and, for h(z) 
= 0, v(h(z))= a iff a is the largest integer
number such that h(z)∈ za

C[[z]] and, in this situation, a will be called the order
of h.

THEOREM 2.5. Let (V =C((z)), ρi ) (for i =1,2) be the action of W+ associated
with elements hi (z), ci ,bi (z) as in Theorem 2.1. Assume that h′

i (z) 
=0.
If Imρ1 = Imρ2 and the signs of v(h1(z)) and v(h2(z)) are equal, then b1(z)=

b2(z), c1 = c2 and h1(z)=αh2(z)+β for some α∈C
∗, β ∈C.

Conversely, if b1(z)= b2(z), c1 = c2 and h1(z)= αh2(z)+ β for some α ∈ C
∗, β ∈

C, then Imρ1 = Imρ2. Moreover, there exists a Lie algebra automorphism φ of W+
such that ρ2 =ρ1 ◦φ.

Proof. From the hypothesis Imρ1 = Imρ2, it holds that there exist {λkl |k, l ≥−1}
such that

ρ1(Lk) =
∑

l≥−1

λklρ2(Ll)

By the explicit expression obtained in Theorem 2.1, this identity is equivalent to
the equations

h1(z)k+1

h′
1(z)

=
∑

l≥−1

λkl
h2(z)l+1

h′
2(z)

(10)

and

h1(z)k+1

h′
1(z)

b1(z)− (k +1)c1h1(z)
k

=
∑

l≥−1

λkl

(
h2(z)l+1

h′
2(z)

b2(z)− (l +1)c2h2(z)
l

)

(11)

Observe that the derivative of Equation (10) w.r.t. z yields

(k +1)h1(z)
k − h1(z)k+1h′′

1(z)

h′
1(z)

2
=

∑

l≥−1

λkl

(

(l +1)h2(z)
l − h2(z)l+1h′′

2(z)

h′
2(z)

2

)

=
∑

l≥−1

λkl(l +1)h2(z)
l − h1(z)k+1

h′
1(z)

· h′′
2(z)

h′
2(z)

(12)
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One computes Equation (11) plus Equation (10) times (−b2(z)) plus Equation (12)
multiplied by c2, and one obtains

h1(z)k+1

h′
1(z)

(

(b1(z)−b2(z))− (k +1)(c1 − c2)
h′

1(z)

h1(z)
−

(
h′′

1(z)

h′
1(z)

− h′′
2(z)

h′
2(z)

)

c2

)

= 0

Since this holds for all k ≥−1, it follows that

c1 − c2 = 0 (13)

(b1(z)−b2(z))−
(

h′′
1(z)

h′
1(z)

− h′′
2(z)

h′
2(z)

)

c2 = 0 (14)

Hence c1 = c2.
Further, identity (9) shows that 1

h′
1(z)

C[h1(z)] = 1
h′

2(z)
C[h2(z)]. Hence, there are

polynomials pi such that 1
h′

1(z)
= p2(h2(z))

h′
2(z)

and 1
h′

2(z)
= p1(h1(z))

h′
1(z)

. These identities imply
that

p1(h1(z)) · p2(h2(z)) = 1

The assumption about the signs of v(hi (z)) implies that pi is constant for i =
1,2, say p1(x)= α ∈ C

∗. And, therefore, h′
1(z)= αh′

2(z), so that there exists β ∈ C

with h1(z)=αh2(z)+β.
Finally, substituting in Equation (14), one has that b1(z)=b2(z).
Let us now prove the converse. Using the formula (1), a long although straight-

forward computation shows

ρ2(L−1)= 1
α
ρ1(L−1)

ρ2(Li )=h2(z)
i
(

h2(z)

α
ρ1(L−1)− (i +1)c

)

=
(
β

α

)i+1

ρ1(L−1)+
i−1∑

j=0

((
i

j

)

+
(

i

j +1

))(
β

α

)i− j

ρ1(L j )+ρ1(Li ) ∀i ≥−1

This explicit expression shows at once that Imρ2 = Imρ1.
Finally, consider

φ(Li ) :=
(
β

α

)i+1

L−1 +
i−1∑

j=0

(
i +1
j +1

)(
β

α

)i− j

L j + Li (15)

The fact that φ= (ρ1|Imρ1)
−1 ◦ρ2 implies that φ is a Lie algebra automorphism

of W+ and that ρ2 =ρ1 ◦φ. ��
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2.2. CONJUGATION OF ACTIONS

Let us begin with an example that will illustrate us how the notion of conjugated
action (gauge action) should be generalized. Assume that a differential equation,
Pψ(z)=0, is to be solved it by virtue of a replacement ψ(z)=v(z)φ(z), for a given
function v(z). That is, we must solve P(v(z)φ(z))= 0 for an unknown function
φ(z). This is equivalent to solving (v(z)−1 ◦ P ◦v(z))φ(z)=0, where v(z) is regarded
as an operator; namely, the homothety of ratio v(z). For instance, if P is a first-
order differential operator with symbol σ(P), it holds that

v(z)−1 (Pψ(z)) = (v(z)−1 ◦ P ◦v(z))φ(z) =
(

P +σ(P)v
′(z)
v(z)

)

φ(z)

Therefore, solving the differential equation Pψ(z) = 0 is equivalent to solving(
P +σ(P) v′(z)

v(z)

)
φ(z)=0.

Let us recall from [12] the definition of the group of semilinear transformations
and some of its properties. The group of semilinear transformations of a finite
dimensional C((z))-vector space V , denoted by SGlC((z))(V ), consists of C-linear
automorphisms γ : V → V such that there exists a C-algebra automorphism of
C((z)), g, satisfying

γ ( f (z) ·v) = g( f (z)) ·γ (v) ∀ f (z)∈C((z)), v∈ V (16)

and, therefore, SGl(C((z)))=AutC−alg C((z))�C((z))∗.
The Lie algebra of SGlC((z))(V ) consists of first-order differential operators on

V with scalar symbol, D1
C((z))/C(V,V ), and the symbol coincides with the map

induced by the group homomorphism that sends γ to g (related by Equation (16))
between their Lie algebras.

THEOREM 2.6. The space HomLie-alg(W+,D1)\{0} carries an action of the group
SGl(C((z))) by conjugation and the quotient space is

Z×C×
(
C((z))/Zz−1 +C[[z]]

)

More explicitly, an action ρ, corresponding to a triple (h(z), c,b(z)) is mapped to
(v(h(z)), c, b̄(z)) (b̄(z) being the equivalence class of b(z)).

Proof. Let us begin studying the action of the automorphism group G:=AutC−alg

C((z)) (for a study and applications of this group, see [23]). Let us denote elements
of G with big Greek letters (,�, . . .) and, for each of them, let the corresponding
small Greek letter denote the image of z; that is

( f (z)) = f (φ(z))

and observe that v(φ(z))=1 in order for  to be an isomorphism.
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Consider the action of G on the space of actions by conjugation; i.e.

(,ρ) �→ ρ where ρ(Lk) :=◦ρ(Lk)◦−1 ∀k

Let us check that this definition makes sense. Let ρ be given by a triple (h(z),
c,b(z)). It is straightforward that

ρ(L−1) f (z) = (◦ρ(L−1)◦−1) f (z) = 

((

− 1
h′(z)

∂z + b(z)

h′(z)

)

f (φ(z))

)

=
(

−φ
′(φ−1(z))

h′(φ−1(z))
∂z + b(φ−1(z))

h′(φ−1(z))

)

f (z)

Note that expanding and derivating the identity ( ◦−1)(z)= z, one gets that
φ′(φ−1(z)) ·φ(z)−2φ′(z)=1 and, thus

φ′(φ−1(z))

h′(φ−1(z))
= 1

∂zh(φ−1(z))

Summing up, the transformation  acts on triples as follows

(, (h(z), c,b(z))) �→ (h(φ−1(z)), c,b(φ−1(z)))

Second, we study the action of C((z))∗. Bearing in mind the discussion of the
beginning of this subsection, we consider the action

(s(z), ρ) �→
(

s(z)◦ρ ◦ s(z)−1
)

so that, in terms of triples, it holds that

(s(z), (h(z), c,b(z))) �→
(

h(z), c,b(z)− s′(z)
s(z)

)

One checks easily that the first defined action intertwines the second one. Hence,
they yield an action of the SGl(C((z))). ��

Remarkably, the conjugation also makes sense if v(z) is replaced by any linear
operator on the space of functions such that v′(z)

v(z) can be identified with an ele-
ment in C((z)). This is the case of the example at the beginning of this subsection;
of functions v(z) admitting an asymptotic expansion at 0; and of formal expres-
sions v(z) :=exp(

∫
s(z)d z) where s(z)∈C((z)). In the latter case, the quotient v′(z)

v(z)

will be identified with s(z). The conjugation by exp(− 2
3 z−3) was used in [14] when

solving a differential equation. For another example, let us consider v(z) to be a
solution of the second-order differential equation v′′(z)+ 1

2 S(h)v(z)=0, where S(h)

denotes the Schwarzian derivative of h, such that v′(z)
v(z) ∈C((z)), which holds true in

many cases (e.g. whenever S(h)∈C((z))).
It is worth noticing that once v′(z)

v(z) is thought of as an element of C((z)), v
′′(z)
v(z)

will be identified with
(
v′(z)
v(z)

)2 +
(
v′(z)
v(z)

)′ ∈ C((z)). By abuse of notation, we define

d log v(z) := v′(z)
v(z) .



1088 FRANCISCO JOSE PLAZA MARTÍN

Thus, for P ∈D1(C((z))) and v(z) as above, we consider another first-order dif-
ferential operator Pv ∈D1(C((z))⊗C Cv(z)) defined by

Pv( f (z)⊗v(z)) :=
((

P +σ(P)v
′(z)
v(z)

)

( f )

)

⊗v(z)

The induced map from D1(C((z))) to D1(C((z))⊗C Cv(z)) is a Lie algebra homo-
morphism.

DEFINITION 2.7. The conjugated action of (V, ρ) by v(z) is the pair (V v, ρv),
consisting of the 1-dimensional C((z))-vector space V v := V ⊗C Cv(z) together with
the action defined by

ρv(Lk)( f (z)⊗v(z)) :=
(

ρ(Lk)( f (z))+σ(ρ(Lk)) f (z)
v′(z)
v(z)

)

⊗v(z)) (17)

In particular, if the data h(z), c,b(z) define an action ρ, then h(z), c,b(z)− v′(z)
v(z)

define ρv .

2.3. OPERS ON THE PUNCTURED DISC

Regarding the definition of the opers, which were introduced by Drinfeld and
Sokolov and generalized by Beilinson and Drinfeld, we refer interested readers to
[8,9].

DEFINITION 2.8. An action (V, ρ) is said to be n-cyclic if

{1, ρ(L−1)(1), . . . , ρ(L−1)
n−1(1)}

is a basis of V as C[h(z)]̂
(0)-module. Here ρ is given by the triple (h(z), c,b(z)), n

is the absolute value of v(h), the subindex (0) denotes the function field and the
superscript ̂ is the z-adic completion.

Now, we are ready to prove our main result.

Proof of Theorem 1.1. We deal with the case v(h)<0 being the opposite one sim-
ilar. Consider an automorphism  of C((z)) as C-algebra such that (z−n)=h(z)
and conjugate the action by  (see 2.2). That is, it can be assumed that h(z)= z−n .

Let E be the vector bundle on Spec C((h(z)−1)) defined by C((z)). Hence, the
subbundles Ei , associated with

C((h(z)−1))⊗C <1, ρ(L−1)(1), . . . , ρ(L−1)
i (1)>⊆ C((z)) i =1, . . . ,n

define a flag of vector bundles 0 ⊂E1 ⊂ . . .⊂En−1 ⊂En =E . Further, the inclusions
are strict since ρ is n-cyclic.
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Let us see that E carries a connection. Indeed, let d :C((h(z)−1))→�C((h(z)−1))/C

be the differential and consider the C-linear map ρ(L−1)⊗d h −1⊗d:

C((z))⊗C C((h(z)−1))−→ C((z))⊗C�C((h(z)−1))/C

f ⊗a �−→ρ(L−1) f ⊗a d h − f ⊗d a (18)

One checks that when composing it with the canonical map C((z))⊗C�C((h(z)−1))/C

→ C((z))⊗C((h(z)−1)) �C((h(z)−1))/C, the images of f ⊗ a and of a f ⊗ 1 do coincide
and, therefore, we obtain a C-linear map

C((z)) −→ C((z))⊗C((h(z)−1)) �C((h(z)−1))/C (19)

which defines a connection ∇ : E → E ⊗ �Spec C((h(z)−1)). Furthermore, from the
equations (8) and (18) it follows that the map induced by ∇

Ei/Ei−1 −→ (Ei+1/Ei )⊗�Spec C((h(z)−1))

sends ρ(L−1)
i (1) to ρ(L−1)

i+1(1)⊗d h and that it is an isomorphism of line bun-
dles.

Let us now prove the converse. Let ∇ be the connection of the oper struc-
ture on C((z)). For the sake of clarity, let us denote h(z) := z−n . Recall that
Der(C((h(z)−1))) is generated by

{

h(z)k+1 ∂

∂h
=−1

n
z−kn+1 ∂

∂z
| k ∈Z

}

Let 〈, 〉 be the pairing of differentials with derivations. We claim that

∇D( f ) := 〈∇ f, D〉 for f ∈C((z)) , D ∈Der(C((h(z)−1)))

is a differential operator of C((z)) as a C((h(z)−1))-module or, what amounts to
the same, that ∇D,a

∇D,a( f ) := ∇D(a f )−a∇D( f ) for f ∈C((z)) , a ∈C((h(z)−1))

is an endomorphism of C((z)) as a C((h(z)−1))-module. Using the properties of
the connection ∇, one obtains that

∇D,a( f ) = 〈∇(a f ), D〉 − a〈∇( f ), D〉
= 〈a∇( f )+ f d a, D〉 − a〈∇( f ), D〉 = f D(a)

where d is the differential, f ∈C((z)) and a ∈C((h(z)−1)). Accordingly, ∇D,a is the
homothety of ratio D(a) and, therefore, linear. The same argument shows that

[∇D,a] = Da for a ∈C((h(z)−1))

where a and Da are regarded as operators on C((z)) (by homotheties).
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Let us now set D = 1
n zn+1 ∂

∂z = − 1
h′(z)

∂
∂z . Since ∇D is a first order differential

operator of C((z)), it can be written as − 1
α′ ∂

∂z + β
α′ for certain functions α,β ∈

C((z)). It follows that

1
n

zn+1 ∂a

∂z
= Da = [∇D,a] =

[

− 1
α′

∂

∂z
+ β

α′ , a

]

= − 1
α′

∂a

∂z
a ∈C((h(z)−1))

and, thus, α′ =h′(z). Similarly, one has that the symbol of the differential operator
∇D is equal to D.

Let us consider the linear map

W+ ρ−→ D1
C((z))/C(C((z)),C((z)))

Li �→ ρ(Li ) :=∇Di

where Di := − h(z)i+1

h′(z)
∂
∂z . The fact that ρ is a morphism of Lie algebras is derived

from the flatness of ∇ as follows

[ρ(Li ), ρ(L j )] = [∇Di ,∇D j ] = ∇[Di ,D j ] = ∇(i− j)Di+ j = (i − j)ρ(Li+ j )

It remains to check the compatibility with the construction given in the first half
of the proof. For this goal, recall from [4, Lemma 1.3] that there exists a cyclic
vector v(z) ∈ C((z)) for the oper (C((z)),∇). In particular, this fact implies that
{v(z), ρ(L−1)(v), . . . , ρ(L−1)

n−1(v)} is a basis of C((z)) as C((zn))-vector space.
Conjugate ρ by 1

v(z) so that

{1, ρ 1
v (L−1)(1), . . . , (ρ

1
v (L−1))

n−1(1)}
becomes a basis of C((z)). Considering the action (C((z)), ρ

1
v ), the conclusion

follows.

Remark 2.9. Recalling the close relationship between vertex algebras and infinite
dimensional representations of the Virasoro algebra (e.g. [13]), we expect to inter-
pret the action of W+ on C[[t1, t2, . . .]] in terms of vertex operators. Further,
the techniques of [8, Chap. 5] can be applied to the above results in order to
associate to a general action (V, ρ) a Gl(n)-oper on the abstract punctured disc
D× =Spec C((z̄)). Both facts will help to understand our approach within Frenkel’s
framework of the geometric Langlands program [9]. It is worth noticing the salient
role of the punctured disc in this picture [10, Remark 1]

3. The KdV Hierarchy and Gl(2)-Opers

3.1. STABILIZER

Following Section 2.1, let (V, ρ) be an action of W+.
Let U ⊂ V denote a C-vector subspace and let AU denote its stabilizer; that is,

AU := Stab(U ) = { f ∈C((z))| f U ⊆U }
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We say that U is L−1-stable when ρ(L−1)U ⊆U . Similarly, we say that U is W+-
stable when ρ(L)U ⊆U for all L ∈W+; or, what is tantamount to this, ρ(Lk)U ⊆U
for all k ≥−1.

Let us fix the following notation. Let V+ ⊆ V denote a C[[z]]-submodule of V
and, as above, let v be the valuation defined by z. Recall that the Sato Grass-
mannian of V, Gr(V ), consists of those subspaces U ⊆ V such that U ∩ V+ and
V/(U + V+) are finite dimensional.

THEOREM 3.1. Let (V, ρ) be an action of W+ and let h(z) be given as in Theo-
rem 2.1. Let U be a subspace of Gr(V ).

If U is L−1-stable and AU 
=C, then U is W+-stable and AU =C[h(z)].

Proof. First, let us show that v( f (z)) < 0 for each f (z) ∈ AU non-constant.
Indeed, if v( f (z)) > 0 then U ∩ V+ cannot be finite-dimensional since U 
= (0).
On the other hand, if v( f (z))= 0, then f̄ (z) := f (z)− f (0) belongs to AU and
v( f̄ (z)) > 0, which again contradicts the hypotheses. Thus, it must hold that
v( f (z))<0.

We shall now prove that AU ⊆ C[h(z)]. From the previous paragraph, let us
take f (z) ∈ AU \ C[h(z)] such that v( f (z)) attains the value max{v( f (z))| f (z) ∈
AU \C[h(z)]}. Since U is stable under L−1 and under the multiplication by f (z),
it follows that [ f (z), ρ(L−1)]= f ′(z)

h′(z) ∈ AU . Note that v( f ′(z)
h′(z) )= v( f (z))− v(h(z))>

v( f (z)), since v(h(z)) is negative and v( f (z)) 
=0. Bearing in mind that f (z) is such
that v( f (z)) is maximal among elements of AU \C[h(z)], we have that

f ′(z)
h′(z)

∈ C[h(z)]

and, thus, f (z)∈C[h(z)]. That is, AU ⊆C[h(z)].
Let us see that AU =C[h(z)]. Since AU 
=C, let p(x) be a non-constant polyno-

mial of minimal degree such that p(h(z))∈ AU . Similar to the above, one has that
[p(h(z)), ρ(L−1)]= p′(h(z))∈ AU and, thus, p′(x) must be constant and p(x) is of
the form ax +b. Therefore, C[h(z)]=C[p(h(z))]⊆ AU ⊆C[h(z)].

It remains to show that, in the case AU =C[h(z)], U is W+-stable. This follows
from the fact that h(z)U ⊆ U and from the relation ρ(Li )= h(z)i (h(z)ρ(L−1)−
(i +1)c) for all i ≥0. ��

Remark 3.2. Observe that, in the case AU =C[h(z)], the connection of Theorem 1.1
can be introduced in an alternative way. Indeed, the map h(z)n∂h �→ Ln−1, for n ≥0,
provides a section of the canonical map D1

AU /C
(U )→DerC(AU ) which, by [2, Sec-

tion 1.1]), is an integrable connection on E on Spec C((h(z)−1)).

Remark 3.3. The previous result can be generalized by dropping out the condition
on the dimension of U ∩ V+. Under the remaining hypotheses, one can prove that
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if U is Li -stable for i = −1,0 and AU 
= C, then C((h(z)−1))⊆ (AU )̂(0). Further-
more, [ , ρ(Li )] induces a derivation on (AU )(0) and on (AU )̂(0). Here (AU )(0)

denote the function field of AU and (AU )̂(0) its z-adic completion.

Given an action (V, ρ), let us introduce the first-order stabilizer of a subspace
U ⊂ V as

A1
U := {D ∈D1

C((z))/C(V,V ) | D(U )⊆U }
For a W+-stable subspace U ⊂ V such that AU = C[h(z)], there is a canonical

exact sequence of Lie algebras

0 �� AU �� A1
U

�� DerC(AU ) �� 0 , (20)

and, bearing in mind that Im(ρ)⊆ A1
U , one concludes that ρ induces a splitting

and, accordingly,

A1
U = C[h(z)]⊗C<1, ρ(L−1)>= AU ⊕ Im(ρ)

as Lie subalgebras of D1
C((z))/C(V,V ).

Remark 3.4. It is worth mentioning the paper [1, Section 2.1] where the authors
study subspaces of the Sato Grassmannian, which are stable by the multiplication
by a power of z as well as by the action of a first-order differential operator. Then,
they investigate the matrix integral representation of the corresponding τ -function.

3.2. STABLE SUBSPACES

In this section we aim to construct explicitly a subspace fulfilling our requirements;
namely, invariance under the action and under the homothety z−2. Because of this
fact and of Theorem 3.1, we shall assume, henceforth, that h(z)= z−2.

A naive candidate would be the C[h(z)]-module generated by 1 under the action
of ρ(L−1). Nevertheless, we shall need to consider a conjugate of it (Section 2.2).
For this, we shall choose a solution of the Airy equation and decompose b(z) in
a suitable way. Let us be more precise.

First, we choose w(z), a formal solution of the Airy equation

w′′(z)+ 1
2

S(h(z))w(z)=0 (21)

where S denotes the Schwarzian derivative; that is,

S(h) := h′′′(z)
h′(z)

− 3
2

(
h′′(z)
h′(z)

)2

It is a straightforward check that w(z) satisfies the Airy equation iff f (z)= w′(z)
w(z)

satisfies the Riccati equation
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f (z)2 + f ′(z)+ 1
2

S(h(z)) = 0 (22)

Note, in particular, that h′(z)−1/2 satisfies the Equation (21); or, equivalently,
d log(h′(z)−1/2)=− 1

2
h′′(z)
h′(z) satisfies Equation (22).

Recalling from [18, Chapters 6 and 9] the basic properties of the solutions of the
Airy and Riccati equations, we know that in our situation the solutions of Equa-
tion (22) are meromorphic; i.e. w′(z)

w(z) ∈C((z)). Thus, it makes sense to conjugate a
given action by w(z) (see Section 2.2).

Let the following operator be given

P =− 1
h′(z)

∂z + b(z)

h′(z)
and let us express b(z) w.r.t. the decomposition

C((z))	C[h(z)]h′(z)⊕
(
C[h(z)]+C[[z]]z−1

)

	C[z−2]z−3 ⊕
(
C[z−2]+C[[z]]z−1

)

since h(z)= z−2 and h′(z)=−2z−3. That is, we write

b(z) = u(h(z))h′(z) +
(
v′(z)
v(z)

− 1
2

h′′(z)
)

(23)

where u(h(z)), v(z) are uniquely determined by: u(x) is a polynomial; and, v(z) is
the formal expression

v(z) := exp
∫ (

b(z)−u(h(z))h′(z)+ 1
2

h′′(z)
)

d z.

Note that v(z) satisfies that v′(z)
v(z) ∈C[h(z)]+ z−1

C[[z]].

LEMMA 3.5. Given P =− 1
h′(z)∂z + b(z)

h′(z) , let w(z),u(h(z)), v(z) be as above. It then
holds that

(
P2 − 2u(h(z))P + (u′(h(z))+u(h(z))2)

)
(1⊗w(z)⊗v(z)) = 0

Proof. Note that the l.h.s. in the statement is rewritten as

(P −u(h(z)))2 (1⊗w(z)⊗v(z))
=

((

P −u(h(z))− 1
h′(z)

v′(z)
v(z)

)2

(1⊗w(z))
)

⊗v(z)

=
((

− 1
h′(z)

∂z − 1
2

h′′(z)
h′(z)

)2

(1⊗w(z))
)

⊗v(z)

= 1
h′(z)2

((

∂2
z + 1

2
S(h(z))

)

(1⊗w(z))
)

⊗v(z)
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In order to see that the last expression vanishes, note that

∂2
z (1⊗w(z)) = ∂z (∂z(1⊗w(z)))∂z

((

∂z + w′(z)
w(z)

)

(1)⊗w(z)
)

= ∂z

(
w′(z)
w(z)

⊗w(z)
)

=
((

w′(z)
w(z)

)′
+

(
w′(z)
w(z)

)2
)

⊗w(z)

= −1
2

S(h(z))

where the last equality comes from the fact that w′(z)
w(z) solves the Riccati Equa-

tion (22). ��

Remark 3.6. In [14], the authors are able to solve the second-order differential

equation
(

3
2 z̄ + 1

2z̄ ∂z̄ − 1
4z̄2

)2
φ(z̄)= z̄2φ(z̄) (their z̄ variable and our z variable are

related by z̄ = ( 1
3 )

1
3 z−1) by the substitution φ(z̄)= z̄1/2 exp( 2

3 z̄−3)ψ(z̄) where ψ(z̄) is
a solution of the Airy equation. However, this makes sense since they show that
φ(z̄) has an asymptotic expansion in C[[z̄−1]]. Observe that the previous Lemma
can be thought of as an abstract formalization of this procedure.

THEOREM 3.7 (Existence). Let w(z) be a solution of the Airy Equation (21) lin-
early independent with h′(z)−

1
2 . Let (C((z)), ρ) be defined by (h(z)= z−2, c,b(z)) and

let v(z) be a formal function such that Equation (23) is fulfilled. Let Vwv be the
C((z))-vector space C((z))⊗w(z)⊗v(z) with the conjugated action ρwv .

It then holds that the C-vector subspace of Vwv

U(w) := 〈1⊗w(z)⊗v(z), ρwv(L−1)(1⊗w(z)⊗v(z))〉⊗C C[h(z)]
is W+-stable, it is a C[h(z)]-module of rank 2 and it belongs to Gr(Vwv).

For the basics of Sato Grassmannian and τ -functions, see [25].

Proof. Let us denote P :=ρwv(L−1). Lemma 3.5 implies that U(w) is a P-stable
C[h(z)]-module. The W+-stability follows from those facts and from the following
relations

ρwv(Li ) = h(z)i (h(z)ρwv(L−1)− (i +1)c)

ρwv(L−1)(p(h(z))⊗v(z)) = p(h(z))ρwv(L−1)(1⊗v(z))− p′(h(z))⊗v(z)
Let us prove that P(1⊗w(z)⊗v(z)) /∈U(w)⊗C[h(z)] C((h(z)−1)). Being w(z) and

h′(z)−
1
2 linearly independent solutions of the Airy equation, it follows that S(w(z) ·

h′(z)
1
2 )= S(h(z)), and they therefore differ by a Möbius transformation

w(z) ·h′(z)
1
2 = αh(z)+β

γ h(z)+ δ for some
(
α β

γ δ

)

∈PGL(2,C) (24)
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Noting that h(z)= z−2 and Equation (24), it holds that

1
h′(z)

w′(z)
w(z)

= 1
h′(z)

d log
(
w(z)h′(z)

1
2

)
− 1

2
h′′(z)
h′(z)2

∈C[[z2]]

Computing how P acts, we have

P( f (z)⊗w(z)⊗v(z))
=

(

− 1
h′(z)

∂z +u(h(z))− 1
2

h′′(z)
h′(z)

− 1
h′(z)

w′(z)
w(z)

)

( f (z))⊗w(z)⊗v(z)

and note that the term 1
2

h′′(z)
h′(z) on the r.h.s. shifts the order by an odd integer

while all the other terms shift it by an even integer. Hence, U(w) is a free C[h(z)]-
module of rank 2.

Finally, in order to prove that U(w) lies in the Sato Grassmannian, where we are
considering Vwv+ :=C[[z]]⊗w(z)⊗ v(z), one has to show the following two condi-
tions

dimC (C[[z]]⊗w(z)⊗v(z)∩U(w)) < ∞
dimC C((z))⊗w(z)⊗v(z)/ (C[[z]]⊗w(z)⊗v(z)+U(w)) < ∞ (25)

Bearing in mind that u(h(z))− 1
2

h′′(z)
h′(z) − 1

h′(z)
w′(z)
w(z) does not belong to C((z2)), both

conditions follow from the previous claims. ��
The above constructed subspace depends clearly on the choice of a solution of

the Airy equation. The following result studies what this dependence looks like.

PROPOSITION 3.8. Let (C((z)), ρ) be an action of W+ defined by the data {h(z)=
z−2, c,b(z)}. Let w1(z),w2(z) be two solutions of (21).

Then, up to C
∗, there is a unique isomorphism of C((z))-vector spaces Vw1

∼→ Vw2

which is compatible w.r.t. the actions of the conjugated actions ρw1 and ρw2 .

Proof. We begin by constructing one isomorphism; we shall then prove the
uniqueness.

Let us consider (Vwi , ρwi ) as the conjugated action by wi (z) (for i = 1,2); that
is, the C((z))-vector space Vwi is given by C((z))⊗C Cwi (z) and ρwi by Equa-
tion (17).

From [18, Chapter 6], we know that the fact that w1,w2 solve (21) yields

S

(
w1(z)

w2(z)

)

= S(h)

and, therefore,

w1(z)

w2(z)
= αh(z)+β
γ h(z)+ δ for some

(
α β

γ δ

)

∈PGL(2,C) (26)
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Let us now check that the C((z))-linear map

C((z))⊗C Cw1(z) −→ C((z))⊗C Cw2(z)

1⊗w1(z) �→ αh(z)+β
γ h(z)+ δ ⊗w2(z)

(27)

gives rise to an isomorphism that is compatible with the actions of ρw1 on the
l.h.s. and of ρw2 on the r.h.s.; that is, one has to show that

(
αh(z)+β
γ h(z)+ δ

)

·ρw1(Lk)( f (z)⊗w1(z)) = ρw2(Lk)

((
αh(z)+β
γ h(z)+ δ

)

f (z)⊗w2(z)

)

We shall only prove the case k =−1, f (z)=1, since the general case goes along the
same lines.

First, taking logarithms and derivatives in Equation (26), we obtain

w′
1(z)

w1(z)
= w′

2(z)

w2(z)
+

(
αh(z)+β
γ h(z)+ δ

)−1

·∂z

(
αh(z)+β
γ h(z)+ δ

)

(28)

On the one hand, one computes the image of

ρw1(L−1)(1⊗w1(z)) =
(

− 1
h′(z)

w′
1(z)

w1(z)
+ b(z)

h′(z)

)

⊗w1(z)

by the map (27) and one obtains

αh(z)+β
γ h(z)+ δ

(

− 1
h′(z)

· w
′
1(z)

w1(z)
+ b(z)

h′(z)

)

⊗w2(z)

= − 1
h′(z)

(
αh(z)+β
γ h(z)+ δ · w

′
2(z)

w2(z)
+∂z

(
αh(z)+β
γ h(z)+ δ

)

− αh(z)+β
γ h(z)+ δ ·b(z)

)

⊗w2(z)

(29)

where we have used the identity (28).
On the other hand, one has

ρw2(L−1)

(
αh(z)+β
γ h(z)+ δ ⊗w2(z)

)

=
(
αh(z)+β
γ h(z)+ δ

)

·
(

− 1
h′(z)

· w
′
2(z)

w2(z)
+ b(z)

h′(z)

)

⊗w2(z)

− 1
h′(z)

∂z

(
αh(z)+β
γ h(z)+ δ

)

⊗w2(z)

and, since this expression coincides with Equation (29), it follows that (27) is an
isomorphism compatible with the actions.

Let us denote by φ the isomorphism (27) and let ψ : Vw1 → Vw2 be another
isomorphism compatible with the actions. The statement will be proved if we can
show that φ ◦ψ−1 belongs to C

∗.
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Let f (z) be defined by ψ(1⊗w1(z))= f (z)⊗w2(z). Thus

(φ ◦ψ−1)(1⊗w2(z)) = f (z)−1αh(z)+β
γ h(z)+ δ ⊗w2(z)

is a C((z))-linear automorphism of Vw2 that is compatible with the action of ρw2 ;
that is, (φ ◦ψ−1)◦ρw2 =ρw2 ◦ (φ ◦ψ−1) and, bearing in mind Equation (8), it fol-
lows that

1
h′(z)

∂z

(

f (z)−1αh(z)+β
γ h(z)+ δ

)

= 0

and, hence, f (z)=λ · αh(z)+β
γ h(z)+δ for λ∈C

∗ and the statement follows. ��

3.3. Gl(2)-OPERS

THEOREM 3.9. Let (C((z)), ρ) be defined by (h(z)= z−2, c,b(z)). If Resz=0
b(z)
h′(z) =

3
2 , then it defines a Gl(2)-oper E on Spec C[h(z)]. Moreover, the τ -function of E ,
which is a point of the Sato Grassmannian, satisfies the KdV hierarchy and a set of
Virasoro-like constraints.

Proof. The condition Resz=0
b(z)
h′(z) = 3

2 means that there exist a polynomial u and
a formal function v such that Equation (23) is fulfilled. Let Vwv be the C((z))-
vector space C((z))⊗w(z)⊗ v(z) with the conjugated action ρwv where w(z) is a
solution of the Airy Equation (21) linearly independent with h′(z)−

1
2 .

Now, Theorem 3.7 gives us an C-vector subspace U(w)⊂ Vwv which is W+-
stable, it is a C[h(z)]-module of rank 2 and it belongs to Gr(Vwv). Applying to
U(w) similar arguments to those used in the proof of Theorem 1.1, the first state-
ment follows.

Finally, bearing in mind Theorem 3.7, we know that the C[z−2]-module attached
to the Gl(2)-oper fulfills:

(i) U(w) belongs to the Sato Grassmannian,
(ii) z−2U(w)⊂U(w),

(iii) ρ(Lk)U(w)⊆U for k ≥−1.

One can now translate this properties into properties of the τ -function of U
(w), τU(w)(t)∈C[[t1, t2, . . .]]. Proceeding along the lines of Example 2.4 (see also[25]),
one obtains that the above conditions are equivalent to:

(i’) KP-hierarchy,
(ii’) ∂t2i τ(t)=0 (KdV hierarchy, provided that KP is fulfilled),

(iii’) L̄kτ(t)=0, for k ≥−1 (Virasoro constraints), for certain differential operators
{L̄k}k≥−1 with [L̄i , L̄ j ]= (i − j)L̄i+ j . ��

Let us say a word on the significance of this Theorem. We have shown that
there is a deep relationship among the following three sets: (a) 2-cyclic actions of
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W+; (b) functions τ(t) satisfying the KdV hierarchy and Virasoro-like constraints;
(c) Gl(2)-opers on Spec(C[z−2]). Surprisingly, the τ -functions arising in 2D gravity
[14,17] fall into this scheme (see [24] for the details).

4. Universal Family and Topological Recursion

Recent results on the so-called topological recursion involve families of τ -functions
depending on an infinite number of parameters such that the whole family lies
entirely on the space of functions satisfying KdV and Virasoro constraints (see,
for instance, [16,19,21,22]). One of these families already appeared in Kontsevich’s
work [17, Section 3.4]. It is worth mentioning the existence of relevant 1-parameter
families; for instance, the one connecting the Witten–Kontsevich partition function
with the Hurwitz partition function ([20], see also [3]), another one connecting
Witten–Kontsevich and Mirzakhani theories [22], and a third one the Witten–
Kontsevich partition function with the generating function of linear Hodge inte-
grals defined on the moduli space of stable curves [16].

In this section, a natural a general procedure to obtain the above-mentioned
families will be provided.

Let us consider a family of independent variables s := (s1, s2, . . .). For a sequence
of non-negative integers, m := (m1,m2, . . .), with mi =0 for all i �0 define:

|m| :=
∑

i≥1

imi ‖m‖ :=
∑

i≥1

mi m! :=
∏

i≥1

mi ! sm :=
∏

i≥1

smi
i

Based on Mulase–Safnuk’s approach [22], Liu–Xu considered the operators [19,
Equation (9)]:

L̄ ′
n(s) := −1

2

∑

m

(−1)‖m‖

m!(2|m|+1)!! sm∂q|m|+n+1 +
∞∑

i=0

(i + 1
2
)qi∂qi+n

+ 1
2

n∑

i=1

∂qi−1∂qn−i + q0
2

4
δn,−1 + 1

16
δn,0

for n ≥−1 (their exact expression corresponds to a rescaling by a double factorial).
They showed that

[L̄ ′
i (s), L̄ ′

j (s)] = (i − j)L̄ ′
i+ j (s) for i, j ≥−1

and, therefore, they generate a family of Witt algebras depending on the parame-
ters s. We may write

L̄ ′
n(s) = −1

2

∑

m

(−1)‖m‖

m!(2|m|+1)!! sm∂q|m|+n+1 + L̄ ′
n(0)

where L̄ ′
n(0) denotes the value of L̄ ′

n(s) at s =0. Observe that the operators L̄ ′
n(0)

coincide with those of [5, Equation 3.5] and [11, Section 3] (up to rescaling of the
variables qi ).
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Recalling Example 2.4, the action on C((z)) corresponding to the above opera-
tors can be written down explicitly

ρ′
s(Ln) := 1

2

∑

m

(−1)‖m‖

m!(2|m|+1)!! smz−2(|m|+n)−3 + 1
2

z−2n
(

z∂z + 1−2n

2

)

∀n ≥−1

By Theorem 2.1, the action ρ′
s is attached to a triple (h(z), c,b(z)). Actually,

bearing in mind that h(z)n+1

h′(z) =− 1
2 z−2n+1, and regarding s as parameters, we obtain

that the action ρ′
s is attached to the data (h(z)= z−2, c = 1

2 ,bs(z)) where

bs(z) := −
∑

m

(−1)‖m‖

m!(2|m|+1)!! smz−2|m|−4 − 3
2

z−1

The fact that we are concerned with the KdV case can be equivalently stated
in three forms: (a) the associated triple has h(z)= z−2; (b) the subspace U of the
Sato Grassmannian satisfies that z−2U ⊆U ; and, (c) the corresponding τ -function,
τU (t), does not depend on t2i ; i.e. τU (t)∈C[[t1, t3, . . .]]. Thus, if no confusion arises
ρ′

s(Ln) can be thought of as operators acting on C[[t1, t3, . . .]].
We conclude that the action induced by ρ′

s on C[[t1, t3, . . .]] is the universal
action for the case of KdV (i.e. h(z)= z−2). In particular, this agrees with the idea
addressed in [22] that a certain 1-parameter family, which would correspond to
Eynard–Orantin’s spectral curve, deforms the Witten–Kontsevich theory to other
cases where the Virasoro also appears. Thus, we are led to the following general-
ization of [22, Theorem 1.2] (see also [16, Theorem 2.1] and [19, Theorem 4.4]).

THEOREM 4.1. Let τs(t)∈C[[t1, t3, . . .]] be the τ -function associated to ρ′
s. Then,

τs(t) satisfies the Virasoro constraints corresponding to operators L̄ ′
n(s) above (as

in Section 3.2) and, moreover, it holds that

τs(t) = τ0(t̃)

where t̃2i+1 is equal to ti for i = 0,1 and to t2i+1 − 1
(2i+1)!!

∑
|m|=i−1

(−1)‖m‖
m! sm

for i >1.
Conversely, let τ(t)∈C[[t1, t3, . . .]] be a τ -function for the KdV satisfying the Vira-

soro constraints. Then, there exist values of s, say s0 := (s1, s2, . . .) such that

τ(t) = τs0(t)

Proof. It is enough to observe that under that change of variables, the operators
L̄ ′

n(s) in t2i+1 are transformed into the operators L̄ ′
n(0) in t̃2i+1.

Bearing in mind that, regarding s as parameters, the action ρ′
s is universal, the

converse follows. ��
Finally, the previous Theorem can be used to strengthen Theorem 3.9 and it

provides a link between Gl(2)-opers and τ -functions fulfilling the KdV hierarchy
and the Virasoro constraints simultaneously. These promising facts deserve further
research.
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