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Abstract. Inversion symmetry is a very non-trivial discrete symmetry of Frobenius mani-
folds. It was obtained by Dubrovin from one of the elementary Schlesinger transforma-
tions of a special ODE associated to a Frobenius manifold. In this paper, we review the
Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain
an interpretation of the inversion symmetry in terms of the action of the Givental group.
We also consider the implication of this interpretation of the inversion symmetry for the
Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.
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1. Introduction

A Frobenius manifold is a differential-geometric structure that was introduced
by Dubrovin in the early 1990s as a mathematical framework for the study of
two-dimensional topological field theory in genus zero [5,6]. It has appeared to
be a quite universal structure that has many naturally arising examples. In par-
ticular, Frobenius manifolds can serve as a classification tool for (dispersionless)
bi-Hamiltonian hierarchies of hydrodynamic type [7,8]. Nowadays there is a num-
ber of standard textbooks on Frobenius manifolds, see [6,14,23].

One of the key questions is what would be a proper extension of a given struc-
ture of Frobenius manifold to higher genera. The main result states that under
some assumptions (semi-simplicity and homogeneity), there is an unambiguous
genus expansion for a Frobenius manifolds. In different languages, this can be
described as a reconstruction of a dispersive hierarchy from its dispersionless limit,
as a classification of cohomological field theories (that is, representations of the
modular operad of homology of moduli spaces of curves with marked points),
and as an explicit formula that emulates the localization formula for the Gromov–
Witten partition functions of the projective spaces.
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In early 2000s, Givental, van de Leur, and Losev-Polyubin independently
observed that there exists an action of the loop group of GL(n) on the space of
n-dimensional Frobenius manifolds [11,19,21], see also [4]. Givental proposed a
quantization of this group action and, in terms of the quantized group elements,
an explicit formula for the genus expansion that we mentioned above. The three
different approaches to this group action are identified in [10,26].

Nowadays Givental’s quantized group action seems to be the most important
tool in the theory of Frobenius manifolds (and, in particular, in Gromov–
Witten theory) used in most of the applications. Its applications include new rela-
tions between Gromov–Witten and Fan–Jarvis–Ruan–Witten theory and integrable
hierarchies, formulations of the crepant resolution conjecture, mirror symmetry,
general properties of the dispersive hierarchies constructed by Dubrovin and Zhang,
relations to the homotopy BV algebras and BCOV theory, and this is still an
incomplete list.

One of the most convenient tools for applying of Givental’s theory is the explicit
computation of the Lie algebra action of the Givental group, first proposed and
used by Lee [17,18]. The computation of the infinitesimal deformations of various
structures associated with Frobenius manifolds allows us to understand the general
properties of these structures, but it is usually very hard to obtain explicit formu-
las for the action of the particular elements of the Givental group. Let us mention
two examples where the Givental action can be computed explicitly and appears
to represent known important constructions. One is the BCOV mirror construction
the way it was explained in [25], another one is Shramchenko’s family of Frobenius
structures associated to a Hurwitz space [1].

In [6], Dubrovin derived some symmetries of Frobenius manifolds coming from
the elementary Schlesinger transformations of the associated special ODE. One
type of transformations, the so-called Legendre-type transformations, refers to the
possible choices of flat coordinates for the associated pencil of flat connections that
let it be integrated to a solution of the WDVV equation (we are not sure that it is
presented in that way anywhere, but implicitly it is explained in [21,22]). Another
transformation is called the inversion symmetry and it really looks completely unex-
pected in terms of the solution of the WDVV equation and its flat coordinates.

Recently, Liu, Xu, and Zhang studied the action of the inversion symmetry on
the integrable hierarchies associated to Frobenius manifolds [20]. They described
the action of the inversion symmetry on the principal (dispersionless) hierarchies
completely; it turns out to be a particular reciprocal transformation. They made
some interesting conjectures on the topological deformations of those hierarchies
and the genus expansion of the corresponding tau-function.

1.1. GOALS OF THE PAPER

The main result of this paper is an explanation of the inversion symmetry in terms
of the Givental group action. We find it very interesting for several reasons. First,
we really feel it to be a theoretical gap if some discrete symmetry of Frobenius
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manifolds is not understood in universal Givental terms. Second, at least formally,
this gives a complete description of the transformation of the associated princi-
pal hierarchy and its topological deformation since the corresponding Lie algebra
action on the bracket, the Hamiltonians, and the equations are computed in [2,3].

Third, the Givental operator representing the inversion transformation appears
to be very simple, it is just the exponent of the quantization of a particular matrix
unit multiplied by z, and we can really integrate it to obtain explicit formulas for
different natural pairs of Frobenius structures. Thus, it provides a new example
where the infinitesimal action of the Lie algebra of the Givental group can be inte-
grated to the group action. This way we reproduce the results of Liu, Xu, and
Zhang on the Hamiltonians of the principal hierarchy under inversion symmetry
as well as Dubrovin’s original action on the associated differential operator (all
the ingredients of that differential operator associated to a Frobenius manifold are
best reproduced in the multi-component KP approach of van de Leur [1,10,19],
and the corresponding formulas for the Lie algebra action of the Givental group
were computed in [1,10]).

Meanwhile, the paper contains an exposition of the original Givental formalism
in terms of Feynman diagrams. In some sense, there is nothing new there, though
we propose this way of thinking about Givental group as the most convenient one
for the practical need to find a particular element that maps one given Frobenius
structure to another one. The inversion symmetry can then be considered as an
important example where this approach to Givental theory works especially nice.

1.2. ORGANIZATION OF THE PAPER

In Section 2, we recall Lee’s formulas for the operators of the infinitesimal defor-
mation and explain them in terms of graphs. In Section 3, we use the graphical
representation of the Givental group action to find a particular group element that
performs the inversion symmetry. In Section 4, we reproduce the elementary Schle-
singer transformation that was the origin of the inversion symmetry (for that we
heavily use the results obtained in [1] in multi-KP approach to Frobenius mani-
fold structures). Finally, in Section 5, we reproduce the formulas of Liu, Xu, and
Zhang for the transformation of the Hamiltonians of the principle hierarchy under
the inversion symmetry (this comes as a very special case of the general deforma-
tion formulas for the Hamiltonians obtained in [2]).

2. Givental Group Action as a Sum Over Graphs

In this section, we explain an interpretation of the Givental group action [11,13]
on cohomological field theories as a sum over graphs.

2.1. COHOMOLOGICAL FIELD THEORIES AND FROBENIUS MANIFOLDS

Consider the space of partition functions for n-dimensional cohomological field
theories
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Z = exp

⎛
⎝∑

g≥0

�
g−1Fg

⎞
⎠ (1)

in variables td,μ, d ≥ 0, μ= 1, . . . ,n. Such a partition function is always tame; the
weighted degree of any monomial �

gtd1,μ1 · · · tdk ,μk occurring with non-zero coeffi-
cient is not more than 3g −3+k, where the weight of � is 0, and the weight of td,μ

is d. There is a fixed scalar product η on the vector space V := 〈e1, . . . , en〉 of pri-
mary fields corresponding to the indices μ=1, . . . ,n. Furthermore, we will denote
by e1 the vector in V that plays the role of the unit in the underlying family of
Frobenius algebras.

In this paper, we will always work in flat coordinates, that is, ηαβ = δα,n−β
and e1 = e1.

The information of the genus zero part of a cohomological field theory is equiv-
alent to the information of a Frobenius manifold. That is, given a cohomological
field theory with genus zero partition funcion F0, we obtain the potential F of a
Frobenius manifold by

F(t1, . . . , tn)=F0(t
d,μ)|td,μ=0 for d>0

where we identify tμ := t0,μ.
On the other hand, given a Frobenius manifold we can uniquely reconstruct the

genus zero descendant part using topological recursion ([23]). Although the con-
struction we describe below is for the full genus expansion of a cohomological field
theory, it can be restricted to the genus zero part (with or without descendants),
and thus interpreted as an action on the space of Frobenius manifolds. This is
what we will do in Example 2.3.8 and the subsequent sections.

NOTATION 2.1. Define the so-called correlators

〈
τd1(α1)τd2(α2) · · · τdk (αk)

〉
g

by

Fg =
∑ 〈

τd1(α1)τd2(α2) · · · τdk (αk)
〉
g

|Aut((αi ,di )
k
i=1)|

td1,α1 · · · tdk ,αk , (2)

where |Aut((αi ,di )
k
i=1)| denotes the number of automorphisms of the collection

of multi-indices (αi ,di ) and where the sum is such that it includes each mono-
mial td1,α1 · · · tdn ,αn exactly once.

2.2. DIFFERENTIAL OPERATORS

Let us remind the reader of the original formulation, due to Lee, of the infinites-
imal Givental group action in terms of differential operators [16–18].
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Consider a sequence of operators rl ∈ Hom(V,V ), l ≥ 1, such that the opera-
tors with odd (resp., even) indices are symmetric (resp., skew-symmetric). Then we
denote by (rl zl)ˆ the following differential operator:

(rl z
l)ˆ :=− (rl)

μ

1
∂

∂t l+1,μ
+

∞∑
d=0

td,ν(rl)
μ
ν

∂

∂td+l,μ

+ �

2

l−1∑
i=0

(−1)i+1(rl)
μ,ν ∂2

∂t i,μ∂t l−1−i,ν
. (3)

Givental observed that the action of the operators

R̂ := exp

( ∞∑
l=1

(rl z
l)ˆ

)

on formal power series preserves tameness. The main theorem of [9] states that this
action preserves the property that Z is the generating function of the correlators
of a cohomological field theory with the target space (V, η) (see also [15,27]).

Remark 2.2. The action of the operators described above is usually referred to as
the action of the upper triangular group. There is also a lower triangular group
action, but we do not consider it in the present paper.

2.3. EXPRESSIONS IN TERMS OF GRAPHS

We now describe the Givental action in terms of graphs. Consider a connected
graph γ of arbitrary genus, and with leaves. To such a graph we assign some addi-
tional structure. First, we choose an orientation on each edge of the graph, in an
arbitrary way (the contribution of a graph will not depend on these choices). Sec-
ond, to each element of the graph (a leaf, an edge, a vertex) we associate some ten-
sor over the vector space V [[z]] (where z is a formal variable) that also depends on
� and td,μ for d ≥0 and 1≤μ≤n. This graph equipped with an additional struc-
ture of such a type we denote by γ̌ .

NOTATION 2.3. By a half-edge, we mean either an edge together with a choice
of one of the two adjacent vertices, or a leaf. If we want to talk only about the
first of these two, we will use half of an internal edge.

2.3.1. Leaves

Leaves are decorated by one of two types of vectors. The first type corresponds to
the second term of the operator (3) and is given by
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L := exp

( ∞∑
l=1

rl z
l

)⎛
⎝

∞∑
d=0

n∑
μ=1

eμtd,μzd

⎞
⎠ . (4)

The second type of decoration is given by the vector

L0 :=−z ·
(

exp

( ∞∑
l=1

rl z
l

)
− I

)
(e1) (5)

and corresponds to the dilaton shift [the first term of the operator (3)].

2.3.2. Edges

An edge is already oriented. We expect to decorate it with a bivector. Using the
scalar product we can turn any (skew-)symmetric operator into a bivector. How-
ever, this requires a choice of sign. Some choice of sign was already made in the
differential operator (3) when we used the symbol (rl)

μν . Let us fix this choice. In
the case of a skew-symmetric operator, the bivector is also skew-symmetric, so we
have to use the orientation of the underlying edge to fix the ambiguity. It will be
obvious later on that nothing depends on the choice of orientations on edges.

So, we are going to assign a bivector E ∈ (V [[z]])⊗2 to an oriented edge. The first
copy of V [[z]] is associated to the input, the second to the output of the oriented
edge. For clarity, we will denote the formal variable corresponding to the first copy
by z, and the one corresponding to the second copy by w. We put

E = Ẽη,

where Ẽ ∈Hom(V,V )[[z,w]] is given by

Ẽ :=−� · exp
(∑∞

l=1(−1)l−1rl zl
)

exp
(∑∞

l=1 rlw
l
)− I

z +w .

Let us rewrite this formula in a more convenient way. Denote by r(z) the series∑∞
l=1 rl zl . Then Ẽ is equal to

Ẽ =−� · exp(r(z)∗) exp(r(w))− I
z +w

=−� · exp (−r(−z)) exp(r(w))− I
z +w . (6)

(cf. the same formula in [27]).
The change of the orientation of an edge corresponds to the replacement of

an operator with its adjoint and the simultaneous interchange of z and w. From
Equation (6), it is obvious that Ẽ∗|z↔w= Ẽ . Using the symmetry of the metric, we
see that nothing depends on the choice of orientations on edges.
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2.3.3. Vertices

The collection of correlators of order n corresponding to a formal power series Fg

in variables td,μ can be considered as a tensor Vg[n]∈ (V ∗[[z]])⊗n . Namely, the ten-
sor Vg[n] sends eμ1 zd1

1 ⊗· · ·⊗ eμn zdn
n to the correlator

〈
τd1(eμ1) · · · τdn (eμn )g

〉
(which

is just a number), and we extend this definition linearly.
We want to apply an element of the Givental group to the series Z ; this means

that we decorate the vertices of index n exactly by the tensor

V[n] :=
∑
g≥0

�
g−1Vg[n]. (7)

2.3.4. Contraction of Tensors

Consider a decorated graph γ̌ . We have associated vectors in V [[z]] to leaves and
bivectors in (V [[z]])⊗2 to edges (the former depending on � and td,μ, the later
depending on �). Furthermore, for each edge we have associated one copy of
V [[z]] with the input of the edge and the other with the output. At each vertex, we
now contract the tensor V[n] with the tensor product of the decorations of the half
edges corresponding to the vertex, where n is the index of the vertex. The result is
a number depending on � and td,μ which we denote by C(γ̌ ).

2.3.5. The Final Formula

Finally, we sum over all possible decorated graphs like this, weighted by the inverse
order of their automorphisms to obtain a formal power series in td,μ that also
depends on �. In a formula:

log(R̂(Z))=
∑

γ̌∈	̌

1
#Aut(γ̌ )

C(γ̌ ) (8)

where 	̌ denotes the set of all decorated graphs as above, and Aut(γ̌ ) is the set of
automorphisms of γ̌ . From now on we will use a decorated graph and the func-
tion of � and td,μ assigned to it by the graphical formalism interchangeably.

It follows directly from the combinatorics of graphs that the result is represented
as a formal power series of the same form as in Equation (1).

Remark 2.4. Note that for any graph the only choice in the decoration is that for
each leaf, it can either be decorated by L or L0.

Furthermore, the decorations on the edges and leaves are defined as sums. Using
the linearity of the functions with which we contract at the vertices, we can replace
a graph with a leaf or edge decorated with a sum by a sum of graphs which only
differ from the original one by replacing this sum with its individual terms. We will
use this freedom in computations; thus, we will work graphs that are not elements
of 	̌ as well.
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Remark 2.5. The formal variable z. The contraction of tensors couples the power
of the formal variable z to the first index of the variable td,μ. Thus, in the con-
text of cohomological field theory, the power of z should be interpreted as keeping
track of the power of the ψ-class appearing at the corresponding half-edge.

2.3.6. The Trivial Example

We discuss the trivial example of the Givental action, that is, we assume that rl =
0, l =1,2, . . .. In this case E =0, so the only connected graphs that give a non-triv-
ial contribution are the graphs with one vertex and no edges. Furthermore, L0 is
also zero, so we only need to compute

1
n!V[n](L⊗· · ·⊗L︸ ︷︷ ︸

n times

)

which is the nth homogeneous component of
∑

g≥0 �
g−1Fg, as we can see directly

from the definition of V[n]. Therefore, the sum over all graphs just gives us the
initial series Z .

2.3.7. Dilaton Equation and Topological Recursion Relation

We remind the reader of the well-known topological recursion relation and dilaton
equation [28] which hold for any cohomological field theory.

In terms of correlators, the dilaton equation is given by
〈
τ1(1)τb1(α1) . . . τbk (αk)

〉
g = (2g −2+ k)

〈
τb1(α1) . . . τbk (αk)

〉
g (9)

for any g.
In terms of graphical formalism, the dilaton equation has the following inter-

pretation: whenever we are given a graph with a leaf that is marked by e1z, the
dilaton equation allows us to remove that leaf entirely, at the same time multiply-
ing the resulting graph by (2g −2+k), where k is the number of leaves/edges going
from the corresponding vertex (the removed leaf is not counted).

Consider the generating function for descendant classes

D = exp

⎛
⎝∑

d,α

td,ατd(α)

⎞
⎠

Then the genus zero topological recursion relation takes the following form (for
d1>0):
〈
τd1(α1)τd2(α2)τd3(α3)D

〉
0=

∑
λ,σ

〈
τd1−1(α1)τ0(λ)D

〉
0 η

λσ
〈
τ0(σ )τd2(α2)τd3(α3)D

〉
0 (10)

The topological recursion relation has the following graphical interpretation.
Whenever we are given a graph with a leaf marked by ei zk for some i and k>0,
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we can remove a ψ-class (lower the power of z) in the following way. Pick any two
other half-edges on the same vertex (vertices in graphs that have a non-zero contri-
bution are always at least trivalent) and split the vertex into two vertices connected
by an edge marked by

∑
α,β η

αβeα⊗eβ . Put the two chosen half-edges on one ver-
tex and the original leaf on the other, now marked by ei zk−1. Take the sum over
all possible distributions of the other half edges of the original vertex over the two
new vertices. It is easy to see that this procedure does not depend on the choice
of two half-edges, and represents the topological recursion relation. In an equation
(dotted lines represent either edges which connect the vertices to some other parts
of the graph or just leaves):

2.3.8. Example: Inversion Symmetry in Two Dimensions

To illustrate the graphical formalism in practice, we explicitly compute one of the
terms of the two-dimensional case of the inversion transformation defined and stud-
ied in general in Section 3. Let F0 be the potential of a two-dimensional Frobenius
manifold given by

F0(t
1, t2)= (t1)2t2

2
+

∑
k≥3

σk

k! (t
2)k (11)

for some set of numbers {σk |k ≥3}, and let r(z)=∑
k rk zk be the matrix series given

by

r := r1 =
(

0 1
0 0

)
, rk =0 for all k>1. (12)

As above, using the topological recursion relation in genus zero we can con-
sider F0(t1, t2) as a restriction to the small phase space of some full descendant
genus zero potential F0

({t1,d , t2,d}∞d=0

)
, identifying t1, t2 with t1,0, t2,0 and set-

ting all other variables equal to zero. Define F̃0 to be the genus zero part of
log(exp(r̂(z)) exp(�−1F0)). We compute the coefficient σ̃5 of (t2,0)5 in F̃0 using the
graphical formalism (as usual, we regard F̃0 as the exponential generating series
for its coefficients).

Since the variables td,μ only appear in the formalism when we have leaves dec-
orated by L, graphs contributing to σ̃5 must have precisely five leaves decorated
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Figure 1. Two of the graphs contributing to σ̃5 where one of the leaves is decorated using L0.
Note that in this case, both of their contributions are zero, because L0 =0.

by L. Furthermore, in these decorations, only the terms which depend solely on t0,2

out of all td,μ contribute to σ̃5. By Equation (12), we have

exp

( ∞∑
l=1

rl z
l

)
=1+ r z, (13)

therefore, after total expansion using the linearity of Remark 2.4, leaves that were
originally decorated by L have at most one ψ-class.

In principle, there could be extra leaves which are decorated by L0 (note that the
variables td,μ do not appear in L0). We have drawn two graphs with such leaves in
Figure 1. However, it follows immediately from Equation (12) that L0 = 0, so the
dilaton term plays no role in this computation.

Once again using Equation (12), we see that in this case the edge decoration
simplifies to

E =−
∑
μ,ν

rμ,νeμ⊗ eν . (14)

By the tameness property, any vertex for which the total number of ψ-classes
(that is, the total power of z) at half-edges connected to it is equal to some d, must
have valence at least d + 3 for the graph to have a non-zero contribution. Taking
into account that vertices at which no ψ-class appears must have either precisely
three leaves, two of which are decorated with e1 and one with e2, or only leaves
decorated with e2, it is easy to see that σ̃5 is given by the following sum:
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Let us explain the notation. The coefficients in front of the graphs are just the
inverse orders of the corresponding automorphism groups. The labels at the leaves
are the ones coming from L, where we have left out the variables td,μ, and where
we have replaced z by ψ to remind the reader that it keeps track of the power of
ψ-class at that leaf. The decorations at the edges are split between the input, out-
put and middle of the edge. For instance, an edge decorated by r22e2 ⊗e2 is shown
with a label e2 near the input and output of the edge, and a label r22 in the mid-
dle. The minus signs in the third line come from the minus sign in Equation (14).

Note that in the original description of the algorithm, the first three graphs
would have appeared as one graph with the sums of different decortions on the
leaves, as would the second three graphs and also the last two graphs. We have
used the linearity described in Remark 2.4 to write them as the sums of graphs
that appear above.

To get the result of this computation we first note that rμν =rμρ ηρν . In our case
this means that r11 =1, and all other entries are 0. Thus, only the first three terms
survive. Using either the dilaton equation or topological recursion, and using that
r(e2)= e1 in this case, we see immediately that

σ̃5 =σ5 +10σ4 +20σ3.

This agrees with formula (22) for the inversion transformed potential, as it should.

2.4. EQUIVALENCE OF DESCRIPTIONS

It follows directly from the standard correspondence between differential opera-
tors of the type (3) and Feynman-type formulas in terms of graphs ([12], cf. [24])
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that the descriptions of the Givental group action given in Sections 2.2 and 2.3 are
equivalent. For simplicity, we will first assume that rl(e1)=0 for all l, allowing us
to ignore the dilaton term. In that case, the only thing we have to show is that

R̂ := exp

⎛
⎝ ∑

d≥0,l≥1

td,ν(rl)
μ
ν ∂d+l,μ+ �

2

∑
i, j≥0

(−1)i+1∂i,μ(ri+ j+1)
μν∂ j,ν

⎞
⎠

= exp

⎛
⎝ ∑

d≥0,l≥1

td,ν(rl)
μ
ν ∂d+l,μ

⎞
⎠ exp

⎛
⎝ ∑

k,l≥0

(Vk,l)
μν∂k,μ∂l,ν

⎞
⎠ (15)

where ∂d,μ= ∂
∂t d,μ and Vk,l is defined by

−�

2
exp(−r(−z)) exp(r(w))− I

z +w =
∑

Vk,l z
kwl

and we assume summation over repeated Greek indices (we will do so for the
rest of this section). Equation (15) follows from the Campbell–Baker–Hausdorff
formula in the following way. Write

X =
∑

l≥1,d≥0

(rl)
μ
ν td,ν∂d+l,μ, Y = �

2

∑
i, j≥0

(−1)i+1(ri+ j+1)
μν∂i,μ∂ j,ν

for the linear and quadratic parts in the exponent in R̂ respectively. Then Y com-
mutes with any (iterated) commutator of X and Y containing at least one copy
of Y . Therefore, it follows from Campbell–Baker–Hausdorff that eX+Y = eX eZ ,
where

Z := −e−adX +1
adX

Y =
∑
p≥0

(−1)p(adX )
p

(p +1)! Y

= �

2

∑
p≥0

∑
s+t=p

∑
f1,..., fs≥0

∑
g1,...,gt ≥0

∑
i, j≥0

(p
s

)

(p +1)! (−1)i+1+ f1+···+ fs+s ·

·(r fs · · · r f1ri+ j+1rg1 · · · rgt )
μν∂i+ f1+···+ fs ,μ∂ j+g1+···+gt ,ν . (16)

In the last equality we use the fact that rl is symmetric when l is odd, and skew-
symmetric when l is even. Writing Z =∑

k,l Zkl∂k∂l , it is easy to see that

(z +w)
∑
k,l

Zkl z
kwl =−�

2
(exp(−r(−z)) exp(r(w))− I) (17)

by expanding the right hand side and using the equality

1
k!(n − k −1)!n + 1

(k −1)!(n − k)!n = 1
k!(n − k)! .

This completes the proof of the equivalence of descriptions for the case where
rle1 =0.
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For the general case, it is clear that replacing X by

X̃ = X1 + X2 =−
∑
l≥1

(rl)
μ

1 ∂l+1,μ+
∑

l≥1,d≥0

(rl)
μ
ν td,ν∂d+l,μ,

will not affect any of the arguments made above. That is, since X1 commutes
with Y , the same argument proves that eX̃+Y =eX̃ eZ . Therefore, it remains to show
that

exp

⎛
⎝−

∑
l≥1

(rl)
μ

1 ∂l+1,μ +
∑

d≥0,l≥1

(rl)
μ
ν td,ν∂d+l,μ

⎞
⎠

= exp

⎛
⎝ ∑

d≥0,l≥1

(rl)
μ
ν td,ν∂d+l,μ

⎞
⎠

⎛
⎝∑

l≥1

(Wl)
μ

1 ∂l,μ

⎞
⎠ (18)

where Wl is defined by

∑
l≥1

Wl z
l = (−z)

⎛
⎝exp

⎛
⎝∑

l≥1

rl z
l

⎞
⎠− I

⎞
⎠ .

Since X1 commutes with any iterated commutator of X1 and X2 including X1 at
least once, we have eX1+X2 = eX2 eT , where

T := −e−adX2 +1
adX2

X1

= −
∑
p,l

∑
f1,..., f p

1
(p +1)! (r f p · · · r f1rl)

μ

1 ∂ f1+···+ f p+l+1,μ=
∑
l≥1

(Wl)
μ

1 ∂l,μ. (19)

This completes the proof of the equivalence of the graphical and operator repre-
sentation of Givental’s theory.

3. Inversion Transformation

The so-called inversion transformation is an important example of a transforma-
tion that gives a discrete symmetry of Frobenius structures. Namely, if one applies
this transformation to any given Frobenius manifold, the resulting object is again
a Frobenius manifold.

It turns out that in terms of the Givental group action one can express this
transformation in a particularly nice way.

Let us recall the definition of the inversion transformation ([6]). Given a Frobe-
nius manifold M with flat coordinates (t1, . . . , tn) and potential F , this transfor-
mation consists of the following change of coordinates:

t̂1 = 1
2

tσ tσ

tn
,
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t̂α = tα

tn
for α �=1, n,

t̂ n =− 1
tn
,

together with the following change of the potential and the metric:

F̂(t̂)= (tn)−2
[

F(t)− 1
2

t1tσ tσ
]

= (t̂ n)2 F + 1
2

t̂1 t̂σ t̂σ ,

η̂αβ =ηαβ.
We will also need the inverse of the inversion transformation:

t1 = 1
2

t̂σ t̂σ

t̂ n
,

tα =− t̂α

t̂ n
for α �=1, n,

tn =− 1

t̂ n
.

We prove the following

THEOREM 3.1. The inversion transformation is given by the Givental transforma-
tion R̂ = exp

(∑
k≥1

(
rk zk

) ˆ) with

r1 =

⎛
⎜⎜⎜⎝

0 . . . 0 1
0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

⎞
⎟⎟⎟⎠ ,

rk =0, k>1.

More precisely, if F̂(t̂) is the inversion transformation of F(t), then the local
expansion of F̂(t̂) at (0, . . . ,0,−1) is the same as the genus zero part without descen-
dants of the R̂-transformed potential of the cohomological field theory corresponding
to the local expansion of F(t) at (0, . . . ,0,1).

Proof of Theorem 3.1. We are going to check that the coefficients of the local
expansion of F̂(t̂) at (0, . . . ,0,−1) and the coefficients of the genus zero part with-
out the descendants of the R̂-transformed cohomological field theory potential cor-
responding to the local expansion of F(t) at (0, . . . ,0,1) agree.

Let us determine the coefficients of F̂ . Recall that in flat coordinates, the metric
is given by ηαβ = δα+β,n+1. Thus, the potential has the form

F(t)= 1
2

t1
(

t1tn +· · ·+ tnt1
)

− 1
2

t1t1tn + H
(

t2, . . . , tn
)
, (20)

for some function H .
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Note that we consider cohomological field theories as well as Frobenius poten-
tials to be defined up to addition of any terms of order 2 or lower in t ’s, so we
disregard such terms here and below.

Computing the inversion-transformed potential, we have

F̂(t̂)= 1
2

t̂1
(

t̂1 t̂ n +· · ·+ t̂ n t̂1
)

− 1
2

t̂1 t̂1 t̂ n

+ 1

8t̂ n

(
t̂2 t̂ n−1 +· · ·+ t̂ n−1 t̂2

)2 + t̂ n t̂ n H

(
− t̂2

t̂ n
, . . . ,− t̂ n−1

t̂ n
,− 1

t̂ n

)
. (21)

Recall the correlator notation for the coefficients of the potential and denote by

1
|Aut((α))|

〈
τ̂0 (α1) . . . τ̂0 (αN )

〉I
H

the coefficient of t̂α1 . . . t̂αN in the inversion-transformed potential coming from the
last term of (21), and by

1
|Aut((α))|

〈
τ̂0 (α1) . . . τ̂0 (αN )

〉I
Q

the coefficient of t̂α1 . . . t̂αN in the inversion-transformed potential coming from
the second-to-last term of (21), where |Aut((α))| denotes the number of automor-
phisms of the collection of indices αi .

We are interested in the local expansion near (0, . . . ,0,−1), so we put t̂ n=−1+ε.
Then, for the last term we have

(1− ε)2 H

(
t̂2

1− ε , . . . ,
t̂ n−1

1− ε ,
1

1− ε

)

=
∑

N+p≥3

∑
2≤α1≤···≤αN ≤n−1

t̂α1 . . . t̂αN ε p (1− ε)2−p−N

|Aut((α))| p! Hα1...αN n...n︸︷︷︸
p

=
∑

N+p≥3
k≥0

∑
2≤α1≤···≤αN ≤n−1

(N+k+p−3
k

)

|Aut((α))| p! Hα1...αN n...n︸︷︷︸
p

t̂α1 . . . t̂αN ε p+k, (22)

where H with subscripts stands for the value of the respective multiple partial
derivative of H taken at (0, . . . ,0,1). In terms of correlators this means that

〈
τ̂0(α1) . . . τ̂0(αN )

(
τ̂0(n)

)q 〉I
H =

∑
p+k=q

q!
p!

(
N + k + p −3

k

)
Hα1...αN n...n︸︷︷︸

p

(23)

for 2 ≤ α1, . . . , αN ≤ n − 1.
For the second-to-last term we have

1

8t̂ n

(
t̂2 t̂ n−1 +· · ·+ t̂ n−1 t̂2

)2

=−
∑

2≤α≤β≤n+1−β≤n+1−α≤n−1
k

1
|Aut2(α,β)|ε

k t̂α t̂ n+1−α t̂β t̂ n+1−β, (24)
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where |Aut2(α,β)| is defined in the following way. Define ᾱ=n +1−α for any 2≤
α≤n −1. Then |Aut2(α,β)|=1 if all four numbers α,β, ᾱ and β̄ are pairwise dif-
ferent, |Aut2(α,β)| = 2 if two of them are equal, but not equal to the other two,
and |Aut2(α,β)|=8 if all of them coincide. In terms of correlators, this means that
for 2≤α,β, ᾱ, β̄≤n −1

〈
τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
) (
τ̂0 (n)

)k
〉I

Q
=−k! |Aut((α,β, ᾱ, β̄))|

|Aut2(α,β)| , (25)

while Q-correlators of any other form vanish.
Since the Givental transformation acts trivially on cubic terms, the part contain-

ing t̂1 obviously coincides with what is coming from the Givental transformation.
Let us describe the situation on the Givental side. The main point we are going

to use is the very simple form of the matrices rl , where the only non-zero entry
of r1 is (r1)

1
n = 1, and rl is identically zero for all other l. Furthermore, we are

interested only in decorated graphs where td,μ with d>0 do not enter the decora-
tions, since we aim at recovering the Frobenius potential, which is the genus zero
part without descendants. Thus we will write tμ := t0,μ to simplify expressions.

Taking all this into account, by Equation (4) we have L = ze1tn + ∑n
μ=1 eμtμ

for the decoration of ordinary leaves, and no dilaton leaves since the expression
(5) vanishes entirely in our case. Furthermore, for the internal edges we have E =
−e1 ⊗ e1 by Equation (6).

Let us find which decorated graphs will give a nonzero contribution. We see that
z always comes coupled to e1, which allows us to use the dilaton equation (9) to
express all graphs with z entering their decorations in terms of graphs without z
entering their decorations.

Since the contraction with the tensor associated with a vertex is a linear opera-
tion, we can represent a given graph as a sum of 2k graphs, where k is the number
of the leaves, such that instead of the sum ze1tn +∑n

μ=1 eμtμ on each leaf we will
have either just ze1tn or just

∑n
μ=1 eμtμ. Then the dilaton equation implies that

the contribution of each of these 2k graphs is a multiple of the contribution of a
graph resulting from removal of all ze1tn leaves from the given graph. All these
resulting graphs then obviously do not have any z entering into their decorations.

Let us then find which graphs with no z in the decorations after using the dil-
aton equation can give a non-zero contribution. The claim is that they are either
single-vertex ones with any number of leaves, or trivalent ones with no more than
two internal edges going out of each vertex. Recall that the tensors V[n] appear-
ing on n-valent vertices are built from the coefficients of the nth homogeneous part
of the original potential. Then the claim follows from the form of the decorations
we have on the internal edges, namely −e1 ⊗e1, and the fact that t1 enters the the
original potential only in cubic terms. More precisely, if a vertex has an internal
edge going from it, then, since the corresponding tensor V[n] gets contracted with
−e1 ⊗e1, n should be equal to 3 because only V[3] has non-zero components with
one of the indices equal to 1.
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Furthermore, if there is only one internal edge going from a given vertex, then
there are two leaves attached to this vertex decorated by

∑n
μ=1 eμtμ. Taking the

linearity into account, we can represent the given decorated graph as a sum of
n2 graphs for which these two leaves are decorated by eμtμ and eν tν for μ,ν ∈
{1, . . . ,n} respectively. From the form of the original potential (20) it follows that
out of these graphs only the ones with 2≤μ≤n −1 and ν=n +1−μ give a non-
zero contribution.

By similar considerations a vertex with more than two internal edges attached to
it will contribute zero, and on a vertex with precisely two internal edges attached
to it only entn survives as the decoration of the single leaf attached to it.

With help of the linearity property we now totally expand all the decorated
graphs we have after applying the Givental transformation. By the consideration
above, we are left with the following sum, where each graph is of course multiplied
by the inverse order of its automorphism group. First, there are all possible graphs
with one vertex and any number of leaves decorated by eμtμ for any μ and any
number of leaves decorated by ze1tn . Second, there are all possible trivalent graphs
with at least one internal edge in total and no more than two internal edges going
from each vertex, with −e1 ⊗ e1 decorating internal edges, entn decorating the sin-
gle leaf attached to a vertex with two internal edges, and eμtμ and en−μ+1tn−μ+1

for 2≤μ≤n −1 decorating two leaves attached to a vertex with only one internal
edge going from it. Furthermore, all graphs obtained from the above trivalent ones
by adding any number of leaves decorated by ze1tn to any number of vertices are
also included in the sum. One can find the graphical representation of all of these
graphs below.

Thus we have described all relevant graphs giving the Givental-transformed poten-
tial. Now let us show that the Frobenius potential recovered from them precisely
coincides with the inversion-transformed potential.

The contribution coming from the one-vertex graphs turns out to coincide with
the last term of (21). More precisely, if we denote the contribution of these one-
vertex graphs to the coefficient of t̂α1 . . . t̂αN εq in the Givental-transformed poten-
tial by

1
|Aut((α))|q!

〈
τ̂0(α1) . . . τ̂0(αN )

(
τ̂0(n)

)q 〉G
H

we have

1
|Aut((α))|q!

〈
τ̂0(α1) · · · τ̂0(αN )

(
τ̂0(n)

)q 〉G
H

= 1
|Aut((α))|

∑
p+k=q

1
k! p!

〈
τ0(α1) · · · τ0(αN ) (τ0(n))

p (τ1(1))k
〉

(26)

(here on the right hand side the correlator corresponds to original, non-trans-
formed potential). Using the dilaton equation (9) we get
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〈
τ̂0(α1) · · · τ̂0(αN )

(
τ̂0(n)

)q 〉G
H

=q!
∑

p+k=q

(N + k + p −3) · · · (N + p −2)
p! k! · 〈τ0(α1) · · · τ0(αN ) (τ0(n))

p〉

=
∑

p+k=q

q!
p!

(
N + k + p −3

k

) 〈
τ0(α1) . . . τ0(αN ) (τ0(n))

p〉

=
∑

p+k=q

q!
p!

(
N + k + p −3

k

)
Hα1...αN n...n︸︷︷︸

p

, (27)

which exactly coincides with
〈
τ̂0(α1) . . . τ̂0(αN )

(
τ̂0(n)

)q 〉I
H on the inversion-trans-

formed side (23).
In terms of graphs, Equations (26) and (27) can be expressed in the following

way:

(28)

Now we look at the graphs with a non-zero number of internal edges, which
turn out to correspond precisely to the second-to-last term of (21). By the
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discussion above about graphs, they contribute only to correlators of the form

〈
τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
) (
τ̂0 (n)

)k
〉G

Q

(where the index G attached to correlator means that it corresponds to the Giv-
ental-transformed potential, and the index Q means that we take just the part
coming from graphs with at least one internal edge), and this contribution is the
following (for 2≤α,β, ᾱ, β̄≤n −1):

〈
τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
) (
τ̂0 (n)

)k
〉G

Q

k! |Aut((α,β, ᾱ, β̄))|

= 1
|Aut2(α,β)|

⎛
⎝ ∑

m1+m2=k

1
m1!m2!

〈
τ0 (α) τ0 (ᾱ) (τ1 (1))m1 τ0 (μ)

〉

(r1)
μν

〈
τ0 (ν) τ0 (β) τ

(
β̄
)
(τ1 (1))m2

〉

+
∑

m1+m2+m3

=k−1

1
m1!m2!m3!

〈
τ0 (α) τ (ᾱ) (τ1 (1))m1 τ0 (μ1)

〉
(r1)

μ1ν1

〈
τ0 (ν1) τ0 (n) (τ1 (1))m2 τ0 (μ2)

〉
(r1)

μ2ν2
〈
τ0 (ν2) τ0 (β) τ

(
β̄
)
(τ1 (1))m2

〉

+· · ·
+ 〈τ0 (α) τ0 (ᾱ) τ0 (μ1)〉 (r1)

μ1ν1 〈τ0 (ν1) τ0 (n) τ0 (μ2)〉 (r1)
μ2ν2 · · ·

· · · 〈τ0 (νk) τ0 (n) τ0
(
μk+1

)〉
(r1)

μk+1νk+1
〈
τ0

(
νk+1

)
τ0 (β) τ

(
β̄
)〉

⎞
⎠ . (29)

The contribution of each product of correlators on the right hand side is given
by (−1)p m1! · · · · ·m p+1!, where p +1 is the number of correlators in the product.
Thus, the result is equal to

〈
τ̂0 (α) τ̂0 (ᾱ) τ̂0 (β) τ̂0

(
β̄
) (
τ̂0 (n)

)k
〉G

Q

= k! |Aut((α,β, ᾱ, β̄))|
|Aut2(α,β)|

k+1∑
p=1

(−1)p
(

k +1
p

)

=−k! |Aut((α,β, ᾱ, β̄))|
|Aut2(α,β)| , (30)

which coincides with what we have on the inversion-transformed side (25). This
concludes the proof. In terms of graphs formula (29) takes the following form:
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(31)

Remark 3.2. Note that in this Section we used neither semi-simplicity of the Frobe-
nius structure nor the Euler vector field. The Givental group element that we
obtained acts perfectly without any extra assumptions, except for the analytic-
ity of F(t) at point (0, . . . ,0,1). Even this last assumption is not necessary due
to the following reasons. Since inversion transformation is singular at the origin,
in Dubrovin’s original formulation analyticity at some point other than the ori-
gin is implicitly assumed. This domain of analyticity can very well not include
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(0, . . . ,0,1). However, one can deal with this in Givental approach by considering
not only the action of R̂-operator, but also the action of �̂-operator [11], which
has a simple form. This will make formulas a bit less nice, so for this reason we
consider here only the case when F(t) is analytical at (0, . . . ,0,1). Going to the
more general case with the help of �̂-operator is rather straightforward.

4. Relation to Schlesinger Transformations

In the semi-simple case, the inversion transformation of Frobenius structures orig-
inates from a Schlesinger transformation of a special differential operator [6]:

�=∂z −U − 1
z
[	(u),U ], (32)

where U is the diagonal matrix of canonical coordinates

U =
⎛
⎜⎝

u1

. . .

un

⎞
⎟⎠ (33)

and 	 is the Darboux–Egoroff matrix.
With the help of the results of [1] and our known form of R̂-matrix we are now

able to reproduce the formula for the Schlesinger transformation for the rotation
coefficients γi j from [6]:

γ̂i j =γi j − Ai j ,

Ai j =
√

∂i t1∂ j t1
t1

(34)

in Givental approach. We prove the following

PROPOSITION 4.1. R̂-transformation of rotation coefficients gives

γ̂i j =γi j −
√

∂i t1∂ j t1
1+ t1

. (35)

Proof of Proposition 4.1. Following [1], for the infinitesimal deformation of γ we
have (we write all of the indices explicitly to get all of the instances of the metric
correctly):

(r1z)ˆ γ i j=− (�0)
i
α (r1)

α
β η

βγ (�0)
j
γ , (36)

(r1z)ˆ (�0)
i
α= (�1)

i
β (r1)

β
α − (�0)

i
β (r1)

β
γ η

γ δ (�0)
j
δ δ jk (�1)

k
α ,

(r1z)ˆ (�1)
i
α= (�2)

i
β (r1)

β
α − (�0)

i
β (r1)

β
γ η

γ δ (�0)
j
δ δ jk (�2)

k
α ,

...



554 PETR DUNIN-BARKOWSKI ET AL.

Here by �i , i =0,1,2, . . ., we denote the twisted wave functions of the multi-KP
hierarchy as in [1].

Taking into account that r1 has only one nonzero element, we see that this chain
actually terminates in the sense that �2 never enters the expression for the total
deformation of γ , and also taking into account that [6,19]

n∑
k=1

(�0)
k
1 (�1)

k
1 = t1, (37)

we arrive at the following formula for transformed rotation coefficients:

γ̂ i j =γ i j − (�0)
i
1 (�0)

j
1

(
1− t1 + (t1)2 − (t1)3 +· · ·

)

=γ i j −
√

∂i t1∂ j t1
1+ t1

. (38)

Here we should recall that to get our R̂-matrix, we made a shift to the point
(0, . . . ,0,1). Due to flat metric being anti-diagonal with unit components, we also
have t1 = tn . This means that the right hand side of (38) actually coincides with
that of (34), which proves the claim.

5. Implications for Integrable Hierarchies

The result of Section 3 allows us to explicitly obtain inversion-transformed Ham-
iltonians of the principal hierarchy. We prove the following

PROPOSITION 5.1. Linear span of R̂-transformed Hamiltonians of the principal
hierarchy coincides with the linear span of inversion-transformed Hamiltonians obtained
in [20].

Proof of Proposition 5.1. In order to prove this proposition, we use the results
of [2] for the deformation of �α,p;β,q under Givental transformation, where

�α,p;β,q = ∂2 F0

∂tα,p∂tβ,q
, (39)

where F0 is the total genus zero potential with descendants.
In the case of genus zero and for our R̂-operator, for the infinitesimal deforma-

tion of Hamiltonians

θα,p =�α,p;1,0, (40)

we have (following [2]):

(r1z)ˆ θα,p =U θα,p + δn
αθ1,p+1, (41)
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where operator U is given by

U =−vn − 1
2

n∑
γ=1

vγ vn+1−γ ∂

∂v1
+vn

n∑
γ=1

vγ
∂

∂vγ
. (42)

This infinitesimal deformation can be exponentiated to give the inversion-trans-
formed Hamiltonians:

θ̂α,p
(
v̂
)= (

exp (U (v)) θα,p (v)+ δn
α exp (U (v)) θ1,p+1 (v)

) ∣∣∣∣
v=v̂

. (43)

Now we are able to compare our results with the ones of [20], where the inver-
sion-transformed Hamiltonians are given in a bit less explicit form:

θ̂ L X Z
1,0 (v̂)=− 1

vn
, θ̂ L X Z

1,p (v̂)=−θn,p−1(v)

vn
, p ≥1,

θ̂ L X Z
α,p (v̂)= θα,p(v)

vn
, 2≤α≤n −1, p ≥0, (44)

θ̂ L X Z
n,p (v̂)= θ1,p+1(v)

vn
, p ≥0,

Applying the inverse inversion transformation, we get (for 2≤α≤n −1)

θ̂ L X Z
α,p (v̂)=−v̂nθα,p

(∑n
i=1 v̂

i v̂n+1−i

2v̂n
,− v̂

2

v̂n
, . . . ,− v̂

n−1

v̂n
,− 1
v̂n

)

= (1− ε)θα,p
(
v̂1 − 1

2

∑n−1
i=2 v̂

i v̂n+1−i

1− ε ,
v̂2

1− ε , . . . ,
v̂n−1

1− ε ,
1

1− ε

)
(45)

Now it’s easy to see that the operator from (43) makes exactly this change of vari-
ables in the function θα,p, which proves the coincidence of Hamiltonians θα,p for
2≤α≤n −1. In an analogous way, for α=1 and α=n we see that our Hamiltoni-
ans do not coincide with the ones of [20] but are instead certain linear combina-
tions of them, which is perfectly valid due to the fact that only the linear span of
the collection of Hamiltonians is unambiguously defined.

Remark 5.2. In principle, the result of [2] gives also a deformation formula for
the Hamiltonians of the full Dubrovin-Zhang hierarchy that is reduced to Equa-
tion (41) in genus 0. An advantage of Equation (41) is that it is an ODE whose
right hand side is linear in Hamiltonians, and therefore we can immediately write a
nice closed formula for its solution. In the general case the right hand side appears
to be quadratic. This still allows to integrate the corresponding ODE formally, but
the resulting formulas don’t say much about the inverse-transformed Hamiltonians.
The same is true for the tau-functions.
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