
DOI 10.1007/s11005-012-0592-3
Lett Math Phys (2013) 103:207–231

Canonical Basis for Quantum osp(1|2)
SEAN CLARK and WEIQIANG WANG
Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA.
e-mail: sic5ag@virginia.edu; ww9c@virginia.edu

Received: 17 April 2012 / Revised: 20 September 2012 / Accepted: 11 October 2012
Published online: 29 October 2012 – © Springer Science+Business Media Dordrecht 2012

Abstract. We introduce a modified quantum enveloping algebra as well as a (modified) cov-
ering quantum algebra for the ortho-symplectic Lie superalgebra osp(1|2). Then we formu-
late and compute the corresponding canonical bases, and relate them to the counterpart
for sl(2). This provides a first example of canonical basis for quantum superalgebras.
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1. Introduction

The canonical basis of Lusztig [11] and Kashiwara [9] has served as an impor-
tant motivation of the categorification of quantum enveloping algebras. In a recent
paper [5] of David Hill and the second author, a class of (halves of) quantum
Kac-Moody superalgebras has been categorified, and in addition, it was suggested
for the first time to use a novel bar-involution to construct canonical basis of
quantum Kac-Moody superalgebras and their integrable modules. We refer the
reader to loc. cit. for extensive references in the fast-growing area of categorifica-
tion.

The aim of this paper is to formulate and compute the canonical bases for a
modified quantum enveloping superalgebra U̇ as well as for a (modified) cover-
ing quantum superalgebra U̇π associated to the ortho-symplectic Lie superalge-
bra osp(1|2). Since canonical basis has never been formulated before for quantum
superalgebras, we find it desirable to work out the formulas and constructions in
detail in this rank one setting. The new features and connections observed in this
paper will be instrumental in a forthcoming work [4] joint with David Hill on
canonical basis for general quantum Kac-Moody superalgebras.

The algebra U̇ is modified from a quantum enveloping superalgebra U for osp

(1|2) by adding idempotents, following [2,12]. Our (Hopf) superalgebra U is defined
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as a direct sum of Q(q)-superalgebras U0 and U1, where U0 and U1 differ some-
what from the quantum osp(1|2) used in the literature (cf. [1,3,7,8,13]). In contrast
to those variants, our algebras U0,U1 and U are well suited for introducing a bar-
involution and an integral form as needed in the construction of canonical basis,
and the modified algebra U̇ has an intrinsic description. The bar-involution on U
and U̇ used in this paper has the unusual feature that it sends a quantum param-
eter q to −q−1 (cf. [5]).

The complexified algebras CU0 for U0 and CU1 for U1 are shown to be isomor-
phic, and finite-dimensional simple modules of CU0 were classified in [13] in terms
of highest weights labeled by pairs (n,±) for n ∈ N. We show those even-weight
(i.e., odd-dimensional) simple CU0-modules arise from the simple U0-modules while
those odd-weight (i.e., even-dimensional) simple CU0-modules arise from the sim-
ple U1-modules.

Following [5], we introduce a covering quantum algebra Uπ for osp(1|2) with an
additional parameter π such that π2 =1. The covering algebra Uπ admits a mod-
ified version U̇π too. The structure constants when multiplying the canonical basis
elements in U̇π are positive integer Laurent polynomials in q and π . We expect
that the algebra U̇π and its canonical basis can be categorified in a generalized
framework of spin nilHecke algebras (à la Lauda [10] for U̇q(sl(2)), where π again
is categorified as a parity shift functor as in [5]. The algebras Uπ and U̇π special-
ize when π = 1 to Uq(sl(2)) and its modified version, and specialize when π =−1
to U̇ and U̇π . In particular, the canonical basis for U̇π are shown to specialize
when π=1 and π=−1 to the canonical basis for modified quantum sl(2) [12] and
for U̇ , respectively. In other words, our constructions and formulas can be regarded
as a π -enhanced version of their counterparts for quantum sl(2).

It is well known that Lie superalgebra osp(1|2) admits only odd-dimensional
simple modules. In contrast, the quantum osp(1|2) as defined in this paper has
richer representation theory, which are compatible with the categorification con-
struction and also with quantum sl(2). All these will afford a natural generaliza-
tion in the setting of quantum Kac-Moody superalgebras.

This paper is organized as follows. In Section 2, we define the algebras U0,U1

and study their basic structures including the integral forms and
(anti-)automorphisms. In Section 3, we classify the finite-dimensional simple weight
modules of U0 and U1. In Section 4, we show U = U0 ⊕ U1 has a natural Hopf
superalgebra structure. In Section 5, we find an explicit formula for the quasi-R-
matrix of U , which is then used in defining the bar-involution for a tensor product
of modules. The canonical basis on the tensor product of two finite-dimensional
U -modules is computed. In Section 6, we define the modified algebra U̇ , compute
its canonical basis, and formulate a bilinear form on U̇ . In Section 7, we formulate
in the framework of covering algebras variants of constructions and results in the
previous sections.
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2. Structures of Quantum osp(1|2)
2.1. ALGEBRA U0

Set

π =−1

throughout this paper except the final Section 7, and we will use the symbol π
for the super signs in superalgebras arising from exchanges of odd elements. This
allows us to state clean commutation formulas, and to recover many classical for-
mulas for quantum sl(2) by simply dropping π .

DEFINITION 2.1. The algebra U0 is the Q(q)-algebra generated by E, F, K , and
K −1, subject to the relations:

(1) K K −1 =1= K −1 K ;
(2) K E K −1 =q2 E , K F K −1 =q−2 F ;
(3) E F −πF E = K−K −1

πq−q−1 .

Remark 2.2. There has been definitions for quantum enveloping algebra of osp(1|2),
which differ from U0 by a different rescaling of the relation (3) above. A version
of Uq(osp(1|2)) appeared in [1,13], where (3) is replaced by

(3a) E F −πF E = K−K −1

q2−q−2 .

On the other hand, the definition used in [7] replaces (3) by

(3b) E F −πF E = K−K −1

q−q−1 .

These variants of Uq(osp(1|2)) are all isomorphic to U0 as Q(q)-algebras, with
isomorphisms given by fixing F and K , and then by rescaling E by suitable sca-
lars in Q(q). Our Definition 2.1 is most suitable for introducing an integral form

AU and a bar-involution ¯ :U →U below. As we shall see, (3b) is not bar-invari-
ant under the bar-involution (2.6), while (3a) is not well suited for constructing an
integral form.

2.2. ALGEBRA U1

We introduce a variant of quantum enveloping algebra for osp(1|2).

DEFINITION 2.3. The algebra U1 is the Q(q)-algebra generated by E, F, K , and
K −1, subject to the relations:

(1) K K −1 =1= K −1 K ;
(2) K E K −1 =q2 E , K F K −1 =q−2 F ;
(3) E F −πF E = πK−K −1

πq−q−1 .

Note the difference between definitions of U0 and U1 lies in the relation (3).
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Remark 2.4. As we need to mix the use of U0 and U1, we shall denote the gen-
erators for U0 (respectively, U1) by E0, F0, K0 (respectively, E1, F1, K1). Then the
defining relations of Uε(ε=0,1) can be succinctly rewritten as

(1) KεKε−1 =1= Kε−1 Kε ;
(2) KεEεKε−1 =q2 Eε , KεFεKε−1 =q−2 Fε ;
(3) EεFε −πFεEε = πεKε−Kε−1

πq−q−1 .

The algebra Uε is naturally a superalgebra by letting Eε, Fε be odd and K ±1
ε be

even.

2.3. COMPLEXIFICATION

Fix a square root
√
π ∈C. For ε=0,1, denote

CUε =C(q)⊗Q(q)Uε .

Though U0 and U1 are not isomorphic as Q(q)-algebras, we have the following.

LEMMA 2.5. There is an isomorphism of C(q)-algebras � :CU1 →CU0 such that

�(F1)= F0, �(E1)=
√
πE0, �(K1)=

√
π

−1
K0.

We may formally regard U0 and U1 as two different real forms for the same
C(q)-algebra. They share many of the same structural properties, and the proofs
of these properties are quite similar. The rationale of introducing U1 besides U0

comes from Sections 3 and 6.

2.4. PBW AND GRADINGS

Clearly the elements Fa
ε K b

ε Ec
ε with a, c ∈N and b ∈Z span Uε since any monomial

in Eε, Fε , and Kε can be expressed as a sum of such elements by using the defining
relations. Proving linear independence can be done as in [6, 1.5]. Hence we obtain
the following.

PROPOSITION 2.6. The algebra Uε , for ε=0,1, has the following (PBW) bases:
{

Fa
ε K b

ε Ec
ε |a, c ∈N,b ∈Z

}
,

{
Ea
ε K b

ε Fc
ε |a, c ∈N,b ∈Z

}
.

Let U+
ε be the subalgebra of Uε generated by Eε,U−

ε be the subalgebra gener-
ated by Fε , and U 0

ε be the subalgebra generated by Kε, K −1
ε .

The algebra Uε has two natural gradings on it: the Z-grading arising from
weight space decomposition of osp(1|2), and a parity Z2-grading arising from the
superalgebra structure of osp(1|2). The parity Z2-grading on the algebra Uε is
defined by
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p(Eε)= p(Fε)=1, p(Kε)= p(K −1
ε )=0.

The weight Z-grading on the algebra Uε (which is the same as a weight space
decomposition in our rank one setting) is defined by

|Eε |=2, |Fε |=−2, |Kε |= |K −1
ε |=0,

since the defining relations are clearly homogeneous with respect to this definition.
We have

Uε =
⊕
i∈2Z

Uε(i), Uε(i)=
{

u ∈Uε |KεuK −1
ε =qi u

}
.

2.5. THE A-SUBALGEBRA

Let

A=Z[q,q−1], N={0,1,2, . . .}.
For n ∈Z and a ∈N, we define the super quantum integer or (q, π)-integer

[n]= (πq)n −q−n

πq −q−1
, (2.1)

and then define the corresponding factorials and binomial coefficients

[a]! =
a∏

i=1

[i],
[

n
a

]
=

∏a
i=1[n + i −a]

[a]! . (2.2)

We adopt the convention that [0]! = 1. Note that
[

n
a

]
= [n]!

[a]![n−a]! , for n ≥a ≥0.

One checks that [n]∈A,
[

n
a

]
∈A. A straightforward computation gives us

[−n]=−πn[n],
[

n
a

]
= (−1)aπna+(a

2)
[

a −n −1
a

]
. (2.3)

We use these super quantum integers to define the divided powers:

E (a)ε = Ea
ε

[a]! , F (a)ε = Fa
ε

[a]! . (2.4)

It is understood that E (0)ε = F (0)ε =1. For n ∈Z,a ∈N, we also define the following
elements in Uε (compare [6]):

[Kε;n]= (πq)nπεKε −q−n K −1
ε

πq −q−1
,

[
Kε;n

a

]
=

∏a
j=1[Kε;n + j −a]

[a]! . (2.5)

We let AUε be the A-subalgebra of Uε generated by E (a)ε , F (a)ε , K ±1
ε ,

[
Kε;n

a

]
, for

n ∈Z,a ∈N.
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2.6. AUTOMORPHISMS

Following a key observation in [5], we define the Q-automorphism of Q(q), denoted
by ¯, such that

q̄ =πq−1. (2.6)

Note that the super quantum integers are bar-invariant. A map φ from a Q(q)-
algebra A to itself is called antilinear if φ(g(q)a)= g(q)φ(a), for g(q)∈ Q(q). We
also adopt the convention that an anti-homomorphism f on A is a Q(q)-linear map
satisfying f (xy)= f (y) f (x), for x, y ∈ A. Below we shall denote by D4 the dihedral
group of order 8.

PROPOSITION 2.7. Let ε ∈{0,1}.
(1) There is a Q(q)-antilinear involution ψε :Uε →Uε such that

ψε(Eε)= Eε, ψε(Fε)= Fε, ψε(Kε)=πεK −1
ε ;

(ψε is referred to as the bar involution and also denoted by ¯ :Uε →Uε).
(2) There is a Q(q)-linear automorphism ωε :Uε →Uε such that

ωε(Eε)= Fε, ωε(Fε)=π1−εEε, ωε(Kε)= K −1
ε ;

(3) There is a Q(q)-linear anti-involution τε :Uε →Uε such that

τε(Eε)=π1−εEε, τε(Fε)= Fε, τε(Kε)= K −1
ε ;

(4) There is a Q(q)-linear anti-involution ρε :Uε →Uε such that

ρε(Eε)=q KεFε, ρε(Fε)=q K −1
ε Eε, ρε(Kε)= Kε .

(5) The subgroup of (anti-)automorphisms on Uε generated by ωε, τε,ψε is isomor-
phic to D4 ×Z2 for ε=0 and to Z2 ×Z2 ×Z2 for ε=1. More precisely,

ω4
0 =1, ω2

1 =1, τ0ω0 =ω3
0τ0, τ1ω1 =ω1τ1,

τ 2
ε =ψ2

ε =1, ψετε = τεψε, ψεωε =ωεψε.

Proof. This is proved by a direct computation, and let us suppress the
subscript ε. To illustrate, let us verify that the (most involved) commutation rela-
tion (3) in Remark 2.4 between E and F is preserved under these maps. Since ψ
fixes E, F , and πεK − K −1, it preserves the relation between E and F , whence (1).

To verify for (2), we compute

ω(E F −πF E)=π1−εF E −πεE F =−πε(E F −πF E),

ω

(
πεK − K −1

πq −q−1

)
=−πε

(
πεK − K −1

πq −q−1

)
.
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For (4), we further compute

ρ(E F −πF E)=q2 K −1 E K F −πq2 K F K −1 E = E F −πF E,

ρ

(
πεK − K −1

πq −q−1

)
= πεK − K −1

πq −q−1
.

The calculation for τ in (3) is exactly the same as for ω. Finally (5) may be quickly
verified by checking on the generators.

Let ε ∈{0,1}. By Proposition 2.7, we have the following identities in Uε : for n ∈
Z,a ∈N,

ωε(E
(r)
ε )= F (r)ε , ωε(F

(r)
ε )=πr(1−ε)E (r)ε ,

ωε([Kε;n])=−πε+n[Kε;−n],
ωε

([
Kε;n

a

])
= (−1)aπεa+na−(a

2)
[

Kε;a −n −1
a

]
.

(2.7)

It is straightforward to check the following identities in AUε : for a,b, c, s ∈Z,

[b + c][Kε;a]= [b][Kε;a + c]+πb[c][Kε;a −b],
Eε[Kε; s]= [Kε; s −2]Eε, (2.8)

Fε[Kε; s]= [Kε; s +2]Fε .

2.7. COMMUTATION RELATIONS

LEMMA 2.8. Let ε ∈{0,1}. The following identities hold in AUε: for r, s�1,

(1) π s EεF (s)ε = F (s)ε Eε +πF (s−1)
ε [Kε;1− s];

(2) πrs E (r)ε F (s)ε =∑min(r,s)
i=0 π(

i+1
2 )F (s−i)

ε

[
Kε;2i − (r + s)

i

]
E (r−i)
ε ;

(3) π s FεE (s)ε = E (s)ε Fε −π1−s E (s−1)
ε [Kε; s −1];

(4) πrs F (s)ε E (r)ε =∑min(r,s)
i=0 (−1)iπ i(r+s)E (r−i)

ε

[
Kε; r + s − (i +1)

i

]
F (s−i)
ε .

Proof. The first two identities (1) and (2) can be proven using induction. Fix ε∈
{0,1}. Again, we suppress the subscripts throughout the proof.

(1). The base case s =1 is a defining relation for Uε . Now suppose that the iden-
tity (1) holds for some s. Then

π s+1 E F (s)F =πF (s)E F +π2 F (s−1)[K ;1− s]F

= F (s)F E +πF (s)[K ;0]+π2[s]F (s)[K ;−1− s]
= F (s)F E +πF (s)([K ;0]+π [s][K ;−1− s])
= F (s)F E +πF (s)[s +1][K ;−s]
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The last equality follows from (2.8) with a =−s,b =1, and c = s. Dividing both
sides by [s +1] finishes the induction step.

(2). We proceed by induction on r , with the case case for r = 1 being (1). Sup-
pose now that the identity (2) holds for some r . Then

πrs+s E E (r)F (s)=
min(r,s)∑

i=0

π(
i+1

2 )π s E F (s−i)
[

K ;2i − (r + s)
i

]
E (r−i)

=
min(r,s)∑

i=0

π(
i+1

2 )π i F (s−i)E

[
K ;2i − (r + s)

i

]
E (r−i)

+
min(r,s)∑

i=0

π(
i+1

2 )π i+1 F (s−i−1)[K ;1+ i − s]
[

K ;2i − (r + s)
i

]
E (r−i)

=
min(r,s)∑

i=0

π(
i+1

2 )π i F (s−i)
[

K ;2i − (r + s +2)
i

]
E E (r−i)

+
min(r,s)+1∑

i=1

π(
i
2)π i F (s−i)[K ; i − s]

[
K ;2i − (r + s +2)

i −1

]
E (r−i+1)

=
min(r+1,s)∑

i=0

π(
i+1

2 )F (s−i)Xi E (r+1−i). (2.9)

Here X0 =[r +1], Xr+1 =[r +1]
[

K ; r +1− s
r +1

]
if r < s, and for 1�i�min(r, s),

Xi = π i [r +1− i]
[

K ;2i − (r + s +2)
i

]
+[K ; i − s]

[
K ;2i − (r + s +2)

i −1

]

= [i]−1
[

K ;2i − (r + s +2)
i −1

] (
π i [r +1− i][K ; i − (r + s +1)]+ [i][K ; i − s])

(∗)= [i]−1
[

K ;2i − (r + s +2)
i −1

]
[r +1][K ;2i − (r + s +1)]

= [r +1]
[

K ;2i − (r + s +1)
i

]
.

The equality (∗) above follows from (2.8) with a = 2i − (r + s + 1),b = i , and c =
r +1− i . Dividing both sides of (2.9) by [r +1] we obtain (2).

The identities (3) and (4) follow by applying the automorphism ωε to (1) and
(2) and using (2.7).

3. Finite-Dimensional Representations

3.1. WEIGHT Uε -MODULES

Let us now turn to Uε-modules, for ε=1,2. We will call a Uε-module M a weight
module if the action of K on M is semisimple with finite-dimensional eigenspaces
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(i.e., weight spaces). The Verma module of Uε of highest weight λ∈Q(q) is defined
to be

Mλ
ε =Uε/(UεEε +Uε(Kε −λ)),

with an even highest weight vector denoted by ν. Then by Proposition 2.6 Mλ
ε has

a basis given by F (k)ε ν, for k ≥ 0. Denote by Lλε for now the unique irreducible
quotient module of Mλ

ε . We observe the following three statements are equivalent:
(i) The Uε-module Mλ

ε is reducible; (2) Mλ
ε admits a (singular) vector F (t)ν for

some t>0 annihilate by Eε ; (3) Lλε is finite dimensional. By Lemma 2.8, we have

EεF (t)ε ν=πF (t−1)
ε [Kε;1− t]ν.

A quick calculation using this equation to locate a possible singular vector in
Mλ
ε leads to the following.

PROPOSITION 3.1. Let ε ∈{0,1}.
(1) Mλ

ε is an irreducible Uε-module, unless λ=±qn for n ∈ ε+2N.
(2) For each n ∈ ε + 2N, there is a unique pair of (n + 1)-dimensional simple

Uε-modules L(n,±) := L±qn

ε of highest weight ±qn . Moreover, any finite-dimen-
sional simple weight Uε-module is isomorphic to one such module.

This result should be compared to the classification of finite-dimensional simple
modules for CU0 below.

PROPOSITION 3.2. [13] For each n ∈ N, there are two non-isomorphic (n + 1)-
dimensional CU0-modules over C(q) of highest weight πn2/2qn . Moreover, any finite-
dimensional CU0-module is completely reducible.

Remark 3.3. Note that the weights of the simple CU0-modules for n odd in
Proposition 3.2 involve complex number

√
π , and so they cannot be realized as

U0-modules over Q(q). This partially motivated our introduction of U1.

Remark 3.4. Proposition 3.2 remains to be valid if we classify finite-dimensional
modules of Q[√π ](q)⊗Q(q)U0 over the field Q[√π](q) instead of C(q).

Note that the “weight” Uε-module condition in Proposition 3.1 is necessary over
Q(q). Indeed, if we view the Q[√π ](q)-vector space underlying a two-dimensional
module of Q[√π ](q)⊗Q(q) U0 as a Q(q)-vector space, we obtain a four-dimen-
sional U0-module which is not a weight module.

3.2. COMPLETE REDUCIBILITY

It has been known that there is a Casimir element for (a version of) the algebra
U0 (see e.g. [1]). Let ε ∈{0,1}. We adapt this construction to the algebras Uε . We
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will proceed as in [6, Sections 2.7–2.9]. Set

Cε =πFεEε + π1−εKεq + K −1
ε q−1

(πq −q−1)2
. (3.1)

One rewrites using defining relations of Uε that

Cε = EεFε + πεKεq−1 +πK −1
ε q

(πq −q−1)2
.

We note that ωε(Cε)= τε(Cε)=πεCε . Also, we have that

CεEε =πEεCε, CεFε =πFεCε, CεKε = KεCε . (3.2)

Indeed, clearly we have CεKε = KεCε . We compute

CεEε = EεFεEε + πεKεq−1 +πK −1
ε q

(πq −q−1)2
Eε

=π
(
πEεFεEε + Eε

ππεKεq + K −1
ε q−1

(πq −q−1)2

)
=πEεCε .

The remaining identity in (3.2) can be checked similarly. It follows by (3.2) that C2
ε

is in the center of Uε .

PROPOSITION 3.5. Let ε ∈{0,1} and n ∈Z. Then,

(1) C2
ε acts on the Verma module M±qn

ε as scalar multiplication by [n+1]2

(πq−q−1)2
.

(2) C2
ε acts on M±qn

ε and M±qm

ε by the same scalar if and only if n = m or n =
−m −2∈Z; in particular, C2

ε acts as a different scalar on different pairs L(n,±),
for n ∈ ε+2Z+.

(3) Any finite-dimensional weight Uε-module is completely reducible.

Proof. Let ν be the highest weight vector of �n . Using (3.1), we see that C2
ε ν=

[n+1]2

(πq−q−1)2
ν. Since any m ∈ M±qn

ε can be represented as m = uν for u ∈ Uε,C2
εm =

C2
ε uν=uC2

ε ν= (πq −q−1)−2[n +1]2m, whence (1).
Now [n + 1]2 = [m + 1]2 if and only if (πq)n+1 − q−n−1 = ±((πq)m+1 − q−m−1),

whence (2). For a given n ∈ Z+, by weight considerations there is no nontrivial
extension between L(n,+) and L(n,−). We can prove (3) as is done in [6, Section
2.9]; that is, pick a composition series for M and use a weight dimension argument
to show that composition factors are direct summands.

4. The Hopf superalgebra U

4.1. ALGEBRA U

By the similarities of Uε and Uq(sl(2)), we hope to make sense that the tensor
product of two odd-weight modules should decompose as a sum of even-weight
modules. It is therefore convenient to combine U0 and U1 into a single algebra.
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DEFINITION 4.1. The algebra U is defined to be the direct sum of algebras U =
U0 ⊕ U1, whose multiplication is denoted by m. Let e0 = (1,0) and e1 = (0,1) be
the central idempotents of U with U0 = e0U,U1 = e1U and e0e1 = 0; hence U is a
unital algebra with 1= e0 + e1.

Another possible way is to define a smaller single algebra so that both U0 and
U1 become the quotient algebras, but we will not follow that route in this paper.

It is immediate that the direct sums (over ε= 0,1) of the (anti-)automorphisms
ψε,ωε, τε , and ρε define (anti-)automorphisms ψ,ω, τ , and ρ on U , respectively.
We also have the A-subalgebra AU =AU0 ⊕AU1 and a Z-grading U =⊕i∈2ZU (i),
where U (i) = U0(i) + U1(i). Since U is a direct sum of unital algebras, each
U -module M decomposes as M = M0 ⊕ M1 where Mε = eεM is a Uε-module (ε=
0,1), and U1 M0 =U0 M1 =0. We shall call a U -module M = M0 ⊕ M1 a weight mod-
ule if M0 and M1 are weight modules. We may restate Proposition 3.1 and Prop-
osition 3.5(3) in a form more commensurate with Proposition 3.2 and also with
representation theory of Uq(sl(2)) ([6]).

PROPOSITION 4.2. For each n ∈ N, there is a pair of non-isomorphic (n + 1)-
dimensional simple U -modules denoted by L(n,±) of highest weight ±qn . Any finite
dimensional simple weight U -module is isomorphic to one such module. Moreover,
any finite-dimensional weight U -module is completely reducible.

We will from now on concentrate only on L(n) := L(n,+), since the cases of
L(n,−) is completely parallel.

4.2. ALGEBRA f

Following Lusztig [12], there is a free Q(q)-algebra f = Q(q)[θ ], where θ has Z-
grading 2 and parity p(θ)= 1. We have natural Q(q)-algebra isomorphisms (·)±ε :
f →U±

ε given by θ 	→θ+
ε = Eε and θ 	→θ−

ε = Fε . We define the maps (·)± : f →U by
u± =u±

0 ⊕u±
1 ; that is, it is the diagonal embedding θ+ = E0 + E1 and θ− = F0 + F1.

We can define a bilinear form on f such that

(θ, θ)= (1−πq−2)−1, (4.1)

(θ(a), θ (b))= δa,b

a∏
s=1

π s−1

1− (πq−2)s
= δa,bπ

aq(
a+1

2 )(πq −q−1)−a([a]!)−1. (4.2)

A version of this bilinear form was first introduced in [5] for quantum Kac-
Moody superalgebras including osp(1|2), with a switch of q with q−1 in (4.1).
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4.3. THE COPRODUCT

We endow the tensor product of superalgebras with the twisted multiplication

(a ⊗b)∗ (c ⊗d)=π p(b)p(c)ac ⊗bd.

It is known that U0 is a Hopf superalgebra (cf. [13]). The following lemma can
be regarded as an extension of the coproduct on U0 (compare [12, 3.1.3]).

LEMMA 4.3. For fixed ε, κ ∈{0,1}, there is a unique (super)algebra homomorphism
�ε,κ :Uε+κ →Uε⊗Uκ satisfying

�ε,κ(Eε+κ)= Eε ⊗ eκ +πεKε ⊗ Eκ ,

�ε,κ(Fε+κ)= Fε ⊗ K −1
κ + eε ⊗ Fκ ,

�ε,κ (Kε+κ)= Kε ⊗ Kκ .

Proof. In the following, we shall suppress the subscripts on elements of Uε+κ
since they are clear from context. We need to prove that the defining relations of
Uε+κ are preserved by �ε,κ . We will only check the most involved case as follows:

�ε,κ(E)�ε,κ(F)−π�ε,κ(F)�ε,κ(E)
=[Eε, Fε]⊗ K −1

κ +πεKε ⊗[Eκ , Fκ ]
= (πεKε − K −1

ε )⊗ K −1
κ +πεKε ⊗ (πκKκ − K −1

κ )

πq −q−1

= πε+κKε ⊗ Kκ − K −1
ε ⊗ K −1

κ

πq −q−1
=�ε,κ

(
πε+κK − K −1

πq −q−1

)
.

The lemma is proved.

LEMMA 4.4. The maps �ε,κ are coassociative, that is, for ε, κ, ι∈{0,1}, the follow-
ing diagram is commutative:

Proof. We shall suppress subscripts on elements in Uε+κ+ι. It suffices to check
the commutativity on the generators; it is trivially true on K . We compute
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(id ⊗�κ,ι)◦�ε,κ+ι(F)= Fε ⊗ K −1
κ ⊗ K −1

ι + eε ⊗ Fκ ⊗ K −1
ι + eε ⊗ eκ ⊗ Fι,

(�ε,κ ⊗ id)◦�ε+κ,ι(F)= Fε ⊗ K −1
κ ⊗ K −1

ι + eε ⊗ Fκ ⊗ K −1
ι + eε ⊗ eκ ⊗ Fι,

(id ⊗�κ,ι)◦�ε,κ+ι(E)= Eε ⊗ eκ ⊗ eι+πεKε ⊗ Eκ ⊗ eι+πε+κKε ⊗ Kκ ⊗ Eι,

(�ε,κ ⊗ id)◦�ε+κ,ι(E)= Eε ⊗ eκ ⊗ eι+πεKε ⊗ Eκ ⊗ eι+πε+κKε ⊗ Kκ ⊗ Eι.

The lemma is proved.

PROPOSITION 4.5. The superalgebra U endowed with the additional structures
below is a Hopf superalgebra:

(1) a coproduct � :U →U ⊗U defined by �= (�0,0 +�1,1)⊕ (�0,1 +�1,0);
(2) a counit ε :U →Q(q) defined by ε(e1)= ε(E0)= ε(F0)=0 and ε(K0)=1;
(3) an antipode S : U → U defined by S(Kε)= K −1

ε , S(Fε)= −FεKε and S(Eε)=
−πεK −1

ε Eε , for ε=0,1.

Proof. The statements on properties of � are simply a reformulation of Lem-
mas 4.3 and 4.4. It is trivial to verify that the counit is indeed an algebra homo-
morphism and satisfies the defining commutative diagram for a counit; for example,
to check that (ε⊗1)◦�(E1)=1⊗ E1, we compute

(ε⊗1)◦�(E1)= ε(E0)⊗ e1 + ε(E1)⊗ e0 + ε(K0)⊗ E1 +πε(K1)⊗ e0 =1⊗ E1.

To show that the antipode is an anti-automorphism, it is trivial to check all
except for the commutator relation between Eε and Fε , which we compute directly:

S(EεFε −πFεEε)=π S(Fε)S(Eε)−π2S(Eε)S(Fε)

=ππεFεEε −πεKεEεFεK −1
ε =−πε(EεFε −πFεEε)

= πεK −1 − K

πq −q−1
= S

(
πεKε − K −1

ε

πq −q−1

)
.

Then we need to check that m ◦ (S ⊗1)◦�=m ◦ (1⊗ S)◦�= ι◦ε on the genera-
tors, where ι :Q(q)→U is the Q(q)-linear embedding sending 1 	→1. This is trivial
to check on E1, F1 and K1 since U0 ⊗U1 ⊕U1 ⊗U0 is in the kernel of m. Checking
this equality on E0, F0, and K0 is essentially the same as the Uq(sl(2))-argument;
for example,

m ◦ (S ⊗1)◦�(K0)= S(K0)K0 + S(K1)K1 = e0 + e1 =1= ε(K0).

The proposition is proved.

The following is a super analogue of [12, 3.1.5].
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LEMMA 4.6. The following formulas hold for � :U →U ⊗U and ε=0,1:

�(E (p)
0 )=

∑
a+b=p

qab E (a)0 K b
0 ⊗ E (b)0 +

∑
a+b=p

πbqab E (a)1 K b
1 ⊗ E (b)1 ,

�(E (p)
1 )=

∑
a+b=p

qab E (a)0 K b
0 ⊗ E (b)1 +

∑
a+b=p

πbqab E (a)1 K b
1 ⊗ E (b)0 ,

�(F (p)
0 )=

∑
a+b=p

(πq)−ab F (a)0 ⊗ K −a
0 F (b)0 +

∑
a+b=p

(πq)−ab F (a)1 ⊗ K −a
1 F (b)1 ,

�(F (p)
1 )=

∑
a+b=p

(πq)−ab F (a)0 ⊗ K −a
1 F (b)1 +

∑
a+b=p

(πq)−ab F (a)1 ⊗ K −a
0 F (b)0 .

Proof. The proof of all the four identities are similar, and we will only give the
details on the first one. To prove the first identity, it is equivalent to prove that

�0,0(E
(p)
0 )=

∑
a+b=p

qab E (a)0 K b
0 ⊗ E (b)0 ,

�1,1(E
(p)
0 )=

∑
a+b=p

πbqab E (a)1 K b
1 ⊗ E (b)1 .

Let us verify only the formula for �1,1(E
(p)
0 ) by induction on p, as the other

formula can be similarly verified. The case for p = 1 follows directly from
Lemma 4.3. Assume now the formula for �1,1(E

(p)
0 ) is valid for some p. Then,

�1,1(E
(p)
0 E0)

=
⎛
⎝ ∑

a+b=p

πbqab E (a)1 K b
1 ⊗ E (b)1

⎞
⎠ · (E1 ⊗ e1 +πK1 ⊗ E1)

=
∑

a+b=p

q(a+2)b[a +1]E (a+1)
1 K b

1 ⊗ E (b)1 +
∑

a+b=p

πb+1qab[b +1]E (a)1 K b+1
1 ⊗ E (b+1)

1

(�)= [p +1]E (p+1)
1 ⊗ e1 +π p+1[p +1]K p+1

1 ⊗ E (p+1)
1

+
∑

a+b=p,a≥1,b≥1

(
q(a+1)(b+1)[a]+πb+1qab[b +1]

)
E (a)1 K b+1

1 ⊗ E (b+1)
1

=[p +1]
∑

a+b=p+1

πbqab E (a)1 K b
1 ⊗ E (b)1 .

The identity (�) above is obtained by shifting a to a − 1 and b to b + 1 in the
first

∑
on the left-hand side. This completes the proof.

4.4. TENSOR OF MODULES

Let M and N be U -modules. Then M ⊗ N is a U ⊗U -module via the action

(u ⊗v)(m ⊗n)=π p(v)p(m)(um)⊗ (vn)
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for Z2-homogeneous v∈U and m ∈ M . Composition with the coproduct � defines
a U -module structure on M ⊗ N .

EXAMPLE 4.7. Consider the tensor module M = L(1,+)⊗ L(2,+), for which we
need only consider the action of U1 under the coproduct �1,0. Let w be a highest
weight vector of L(1,+) and v be a highest weight vector of L(2,+). Then M ∼=
L(3,+)⊕ L(1,+). Indeed, the vector

F1v⊗w−πq−1[2]−1v⊗ F0w

is a singular vector generating a copy of L(1,+) since

�1,0(E1)(F1v⊗w)= E1 F1v⊗w+π p(E1)p(F1v)(πK1)F1v⊗ E1w=v⊗w,
�1,0(E1)(v⊗ F0w)= E1v⊗w+π p(E1)p(v)(πK1)v⊗ E0 F0w=πq[2]v⊗w.

5. Quasi-R-Matrix of U

5.1. QUASI-R MATRIX

We can define the quasi-R-matrix � in our setting (cf. [12, Chapter 4] or
[6, Chapter 7] for Uq(sl(2))). Set

an = (−1)n[n]!(πq)−(
n
2)(πq −q−1)n ∈A, for n ≥0. (5.1)

(Compare the definition of an with (4.2).) Let ε1, ε2 ∈{0,1}. We formally set

�ε1,ε2 =
∑
n≥0

�n
ε1,ε2

, with �n
ε1,ε2

=an F (n)ε1
⊗ E (n)ε2

,

where E (0)ε = F (0)ε = eε , the idempotent corresponding to Uε . Then �ε1,ε2 lies in
some completion of Uε1 ⊗ Uε2 , and it can be regarded as a well-defined linear
operator on the tensor product of finite-dimensional weight U -modules. Below we
denote u1 ⊗u2 =u1 ⊗u2 for u1,u2 ∈U and set �= ¯ ◦�◦ ¯.

PROPOSITION 5.1. Let ε1, ε2 ∈{0,1}, and let u ∈Uε1+ε2 . Then

(1) �ε1,ε2(u)�ε1,ε2 =�ε1,ε2�̄ε1,ε2(u);
(2) �ε1,ε2�̄ε1,ε2 = eε1 ⊗ eε2 .

Proof. To avoid cumbersome notation, we will drop the subscripts on E, F, K ;
the hidden subscripts can be recovered from the positions in the tensors.

(1) If �ε1,ε2(u1)�ε1,ε2 =�ε1,ε2�̄ε1,ε2(u1) and �ε1,ε2(u2)�ε1,ε2 =�ε1,ε2�̄ε1,ε2(u2),
then clearly �ε1,ε2(u1u2)�ε1,ε2 =�ε1,ε2�̄ε1,ε2(u1u2). Hence it suffices to check (1)
on the generators E, F, K , which is equivalent to proving the following identities:

(i) (E ⊗ e)�n
ε1,ε2

+ (πε1 K ⊗ E)�n−1
ε1,ε2

=�n
ε1,ε2

(E ⊗ e)+�n−1
ε1,ε2

(K −1 ⊗ E);
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(ii) (e ⊗ F)�n
ε1,ε2

+ (F ⊗ K −1)�n−1
ε1,ε2

=�n
ε1,ε2

(e ⊗ F)+�n−1
ε1,ε2

(F ⊗πε2 K );
(iii) (K ⊗ K )�n

ε1,ε2
=�n

ε1,ε2
(K ⊗ K ).

For (i), we have

(E ⊗ e)�n
ε1,ε2

−�n
ε1,ε2

(E ⊗ e)

=an(E F (n)−πn F (n)E)⊗ E (n)

=π1−n F (n−1)an

(
(πq)1−nπε1 K −qn−1 K −1

πq −q−1

)
⊗ E (n)

= π1−nan

an−1[n]�
n−1
ε1,ε2

(
(πq)1−nπε1 K −qn−1 K −1

πq −q−1

)
⊗ E,

and

(πεK ⊗ E)�n−1
ε1,ε2

−�n−1
ε1,ε2

(K −1 ⊗ E)

=q1−n(πq −q−1)�n−1
ε1,ε2

(
(πq)1−nπεK −qn−1 K −1

πq −q−1

)
⊗ E .

Hence (i) follows by applying (5.1).
For (ii), we have

(e ⊗ F)�n
ε1,ε2

−�n
ε1,ε2

(e ⊗ F)=an F (n)⊗ (πn FE (n)− E (n)F)

=an F (n)⊗
(
π1−n E (n−1) q1−n K −1 − (πq)n−1πε2 K

πq −q−1

)

= an

an−1[n]�
n−1
ε1,ε2

F⊗
(

q1−n K −1 − (πq)n−1πε2 K

πq −q−1

)
,

and

(F⊗ K −1)�n−1
ε1,ε2

−�n−1
ε1,ε2

(F⊗πε2 K)

=π1−nq1−n(πq −q−1)�n−1
ε1,ε2

F⊗
(

q1−n K −1 − (πq)n−1πε2 K

πq −q−1

)
.

Hence (ii) follows. The identity (iii) is clear.
(2) Write the formal product

�ε1,ε2�̄ε1,ε2 =
∑
n�0

bn F (n)⊗ E (n).

Comparing coefficients, we compute that b0 =1, and for n ≥1,

bn =[n]!(πq −q−1)n
n∑

t=0

(−1)tπn(n−t)(q−1)−(
t
2)(πq)−(

n−t
2 )

[
n
t

]
=0,
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where the last equality follows from a version of q-binomial identity for super
binomial coefficients. Hence �ε1,ε2�̄ε1,ε2 = eε1 ⊗ eε2 .

Set �=�0,0 +�0,1 +�1,0 +�1,1.

COROLLARY 5.2. We have �(u)�=��̄(u), for u ∈U , and ��̄=1⊗1.

Define an antilinear operator

�=�◦ (¯ × ¯)

on M1 ⊗ M2 as in [12, 24.3.2], where M1 and M2 are finite-dimensional weight U -
modules. The following can be proved as in loc. cit..

PROPOSITION 5.3. The operator � acts as an antilinear involution on the Q(q)-
vector space M1 ⊗ M2, where M1 and M2 are finite-dimensional U -modules.

5.2. CANONICAL BASIS FOR ωL(s)⊗ L(t)

Suppose M is a U -module. We define ωM to be the same vector space as M but
with the U -module action given by u · m =ω(u)m. In particular, a highest weight
module becomes a lowest weight module under this transformation. Given n ∈ Z,
we define

p(n)∈{0,1} such that p(n)≡n (mod 2).

Consider the U -module

L(s, t)=ωL(s)⊗ L(t), for s, t ∈N.

This module has a basis

E (a)p(s)η⊗ F (b)p(t)ν, 0≤a ≤ s, 0≤b ≤ t,

where η, ν are the lowest weight and highest weight vectors, respectively. This basis
also generates a A-submodule AL(s, t) which is also an AU -module. Note that �
and � are well defined on L(s, t) and AL(s, t).

Now we have �(E (a)p(s)η⊗ F (b)p(t)ν)= E (a)p(s)η⊗ F (b)p(t)ν+ (∗), where (∗) is an A-linear

combination of E (i)p(s)η⊗ F ( j)
p(t)ν, with (i, j)≺ (a,b). Here the partial order � on N2

is defined by declaring that (i, j)� (m,n) if and only if m − n = i − j and m ≤ i
(hence also n ≤ j). Then by a variant of [12, Lemma 24.2.1] adapted to our bar
map (2.6), we have the following.
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PROPOSITION 5.4. Retain the notations above. There exists a unique �-invariant
element (E (a)♦F (b))s,t ∈AL(s, t), for 0≤a ≤ s, 0≤b ≤ t, such that

(E (a)♦F (b))s,t =
∑
m,n

cs,t
a,b;m,n E (m)p(s)η⊗ F (n)p(t)ν,

where cs,t
a,b;a,b =1, cs,t

a,b;m,n ∈q−1Z[q−1], for all (m,n)≺ (a,b).

This is an analogue of [12, Theorem 24.3.3]. The elements (E (a)♦F (b))s,t , for 0≤
a ≤ s, 0≤b ≤ t, will be called the canonical basis of L(s, t). The coefficients cs,t

a,b;m,n
will be determined precisely in Corollary 6.3.

6. Modified Superalgebra and Canonical Basis

6.1. ALGEBRA U̇

Let a,b ∈Z, and consider the subspace of U :

a Jb = (K p(a)−qa1)Up(a)+Up(a)(K p(b)−qb1).

Then a Jb is a subspace of Up(a), and a Jb =Up(a) if p(a) �= p(b). We set

aU b =Up(a)/a Jb.

Note that aU b ={0} if p(a) �= p(b).
We define

U̇ =
⊕

m,n∈Z

mUn .

This is called the modified (also called idempotented) quantum enveloping algebra
of osp(1|2) (cf. [2,12]). Let pm,n :U → mUn be the canonical projection. We endow
U̇ with the structure of an associative algebra under the multiplication

pk,�(x)pm,n(y)= δ�,m pk,n(xy), for x, y ∈U ; k, �,m,n ∈Z. (6.1)

The algebra U̇ inherits a Z-grading from U :

U̇ =
⊕
k∈2Z

U̇ (k),

where

U̇ (k)=
∑

m,n∈Z

pm,n(U (k)).

Note that if x ∈ U (2i), then pm,n(x)= 0 if 2i �= m − n, since the identity q2i x =
K x K −1 in U descends to q2i pm,n(x)=qm−n pm,n(x). The new feature in this alge-
bra is the addition of idempotents 1n = pn,n(1), which satisfy

1m1n = δm,n1n .
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We have

mUn =1mU̇1n .

Also, we have that U̇ = U̇0 ⊕ U̇1, where

U̇ε =
∑

a,b∈Z

12a+εU̇12b+ε .

Moreover, U̇0 and U̇1 are subalgebras of U̇ such that U̇0U̇1 = U̇1U̇0 =0.

6.2. U̇ AS A U -BIMODULE

The algebra U̇ has a natural U -bimodule structure: if x ∈U (k), y ∈ U̇ and z ∈U (n)
then we set

xp�,m(y)z = pk+�,m−n(xyz). (6.2)

With this action, we have the following identities in U̇ , for n ∈Z,a ∈N, ε=0,1:

E (a)ε 1n =δε,p(n)1n+2a E (a)ε , F (a)ε 1n = δε,p(n)1n−2a F (a)ε ,

(EεFε −πFεEε)1n = δε,p(n)[n]1n,
(6.3)

[Kε;m]1n = δε,p(n)[n +m]1n,

[
Kε;m

a

]
1n = δε,p(n)

[
m +n

a

]
1n . (6.4)

The following is a super analogue of [12, 23.1.3].

PROPOSITION 6.1. The following identities hold in U̇ : for n ∈Z, r, s ≥0,

πrs E (r)ε 1n F (s)ε = δε,p(n)
min(r,s)∑

i=0

π(
i+1

2 )
[

n + (r + s)
i

]
F (s−i)
ε 1n+2s+2r−2i E (r−i)

ε , (6.5)

πrs F (s)ε 1n E (r)ε = δε,p(n)
min(r,s)∑

i=0

π(
i
2)+εi

[
(r + s)−n

i

]
E (r−i)
ε 1n−2s−2r+2i F (s−i)

ε . (6.6)

Proof. First, it is clear by definition that the expressions are zero unless the par-
ities match, so we may assume that ε= p(n). Using (6.3), (6.4) and Lemma 2.8, we
compute that
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πrs E (r)ε 1n F (s)ε =
⎛
⎝

min(r,s)∑
i=0

π(
i+1

2 )F (s−i)
ε

[
Kε;2i − (r + s)

i

]
E (r−i)
ε

⎞
⎠1n+2s

=
min(r,s)∑

i=0

π(
i+1

2 )F (s−i)
ε

[
Kε;2i − (r + s)

i

]
1n+2s+2r−2i E (r−i)

ε

=
min(r,s)∑

i=0

π(
i+1

2 )
[

n + (r + s)
i

]
F (s−i)
ε 1n+2s+2r−2i E (r−i)

ε .

This proves (6.5). The identity (6.6) can be proved similarly, using in addition
the identities (2.3).

6.3. ADDITIONAL STRUCTURES OF U̇

We also note that U̇ has a triangular decomposition as in Lustzig [12, 23.2].
Recall the algebra f from Section 4.2. The U -bimodule structure induces a (f, fop)-
bimodule structure on U̇ via

x ⊗ y ·u = x−uy+, for x, y ∈ f,u ∈ U̇ .

Recall that F (a)ε 1n E (b)ε = 0 = E (b)ε 1n F (a)ε if and only if ε �= p(n). Hence we adopt
the following convention by dropping the subscript ε without ambiguity:

F (a)1n E (b) := F (a)p(n)1n E (b)p(n), E (a)1n F (b) := E (a)p(n)1n F (b)p(n). (6.7)

In this way, we could also drop all subscripts ε as well as δε,p(n) in (6.3)–(6.6).
It follows by the triangular decomposition of U that the elements F (a)1n E (b), for

n ∈Z,a,b ∈N, form a basis for U̇ . Similarly, E (b)1n F (a), for n ∈Z,a,b ∈N form a
basis for U̇ . In addition, it is clear from (6.5) and (6.6) that these two bases span
the same A-submodule of U̇ , denoted by AU̇ . This A-submodule AU̇ is in fact an
A-subalgebra generated by the elements E (a)1n and F (a)1n , for n ∈Z,a ∈N.

We say a U̇ -module is unital if for every v∈ M,1nv=0 for all but finitely many
n ∈ Z and v = ∑

n∈Z
1nv. Each unital module is a weight U -module under the

action u ·v=∑
n∈Z

(u1n)v, where u1n is viewed as an element of U̇ . Likewise, each
weight U -module with weights in qZ is naturally a unital U̇ -module: given a weight
decomposition v=∑

n∈Z
vn such that Kvn =qnvn , we set 1nv=vn .

We define �a,b,c,d : a+bUc+d → aUc ⊗ bUd by (cf. [12, 23.1.5])

�a,b,c,d(pa+b,c+d(x))= (pa,c ⊗ pb,d)◦�(x).
The direct product of these maps for various a,b, c,d defines a coproduct on U̇
which restricts to A-linear homomorphism on AU̇ .

The antilinear bar-involution ¯ : U → U induces an antilinear bar-involution
¯ : U̇ → U̇ , which fixes each idempotent 1n for n ∈ Z, and satisfies xhy = x̄ h̄ ȳ for
x, y ∈ U and h ∈ U̇ . Similarly, the (anti-)automorphisms ω, τ and ρ on U induce
(anti-) automorphisms on U̇ (denoted by the same letters), which respect the U -
bimodule structure, and ρ(1n)=1n,ω(1n)=1−n, τ (1n)=1−n , for n ∈Z.
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6.4. CANONICAL BASIS FOR U̇

Following Lusztig [12], a canonical basis for U̇ should be a bar-invariant Q(q)-
basis for U̇ and an A-basis for AU̇ which consist of elements of the form

u = E (a)♦k F (b)∈AU̇1k, for a,b ∈N, k ∈Z,

such that u(η⊗ ν)= (E (a)♦F (b))s,t where η is the lowest weight vector for ωL(s)
and ν is the highest weight vector for L(t), with t − s =k. We take this as the def-
inition of a canonical basis for U̇ .

Keeping in mind the convention (6.7), we consider the elements

E (a)1−n F (b), πab F (b)1n E (a), for a,b ∈N,n ∈Z,n ≥a +b. (6.8)

By (6.5), we have the following overlapping elements in (6.8):

E (a)1−n F (b)=πab F (b)1n E (a), for n =a +b. (6.9)

The following is a super analogue of [12, Proposition 25.3.2].

THEOREM 6.2. The elements in (6.8) subject to the identification (6.9) form a
canonical basis for U̇ . Moreover, if n ≥a +b, we have

E (a)1−n F (b)= E (a)♦2b−n F (b),

πab F (b)1n E (a)= E (a)♦n−2a F (b).

Proof. First, recall that all elements of the form E (a)1n F (b) form a basis for the
A-algebra AU̇ and Q(q)-algebra U̇ . If a + b> n, E (a)1−n F (b) can be expressed as
a A-linear combination of the elements in (6.8) by using (6.5) as follows:

πab E (a)1−n F (b)=
min(a,b)∑

i=0

π(
i+1

2 )
[

a +b −n
i

]
F (b−i)12a+2b−n−2i E (a−i),

where 0≤a − i +b− i<(a +b−n)+a +b−2i =2a +2b−n −2i. Hence we conclude
that the set (6.8) forms a spanning set of U̇ . On the other hand, the set (6.8) nat-
urally splits into two halves, each of which is already linearly independent. Except
for the case a +b=n with identification (6.9), the halves live in different subspaces

aUb and hence are necessarily linearly independent. This shows the linear indepen-
dence of the set (6.8) subject to the identification (6.9).

Let ηs and νt be the lowest and highest weight vectors of ωL(s) and L(t). We
have E (a)1−n F (b)(ηs ⊗ νt )=0 unless −n +2b = t − s, in which case we compute by
Lemma 4.6 that
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E (a)1−n F (b)(ηs ⊗νt )

=�(E (a))�(F (b))(ηs ⊗νt )=�(E (a))(ηs ⊗ F (b)νt )

=
∑

a=c+d

π sdqcd E (c)K dηs ⊗ E (d)F (b)νt

=
∑

a=c+d

π sdqdc−ds E (c)ηs ⊗ E (d)F (b)νt

=
∑

a=c+d

min(b,d)∑
i=0

π sdqdc−ds E (c)ηs ⊗π−bdπ(
i+1

2 )F (b−i)
[

K ;2i − (b +d)
i

]
E (d−i)νt

=
∑

a=c+d

π sdqdc−ds E (c)ηs ⊗π−bdπ(
d+1

2 )
[

d −b + t
d

]
F (b−d)νt

=
∑

0≤ j≤min(a,b)

π s j+( j+1
2 )−bj q j (a− j−s)

[
j −b + t

j

]
E (a− j)ηs ⊗ F (b− j)νt .

Let us denote by X the right-hand side of the last equation. Then X is bar-
invariant since the left-hand side is; it is also therefore �-invariant since �(ηs ⊗
νt )=ηs ⊗νt , so X is �-invariant. The leading term (i.e., the term with j =0) of X

is E (a)ηs ⊗ F (b)νt . If j >0, a degree argument shows that q j (a− j−s)
[

j −b + t
j

]
lies

in q−1Z[q−1]. Hence X satisfies the defining properties of the element (E (a)♦F (b))s,t
(see Proposition 5.4), and then must be equal. A similar argument applies to
F (b)1n E (a).

It is clear from the triangular decomposition and the definition of ¯ that the
other properties of a canonical basis are satisfied, completing the proof.

From the proof above, we have the following formula for the coefficients cs,t
a,b;m,n

in the expansion of (E (a)♦F (b))s,t as defined in Proposition 5.4.

COROLLARY 6.3. Let 0≤a ≤ s, 0≤b ≤ t . For 0≤ j ≤min(a,b), we have

cs,t
a,b;a− j,b− j =π s j+( j+1

2 )−bj q j (a− j−s)
[

j −b + t
j

]
.

6.5. A BILINEAR FORM ON U̇

Recall the definition of ρ from Proposition 2.7. Since we have defined a suitable
bilinear form (·, ·) on f (see (4.1) and (4.2)) and constructed the canonical basis
on U̇ , the same proof in [12, 26.1.2] leads to the following.

PROPOSITION 6.4. There exists a unique bilinear form (·, ·) : U̇ × U̇ → Q(q) such
that

(1) (1a x1b,1c y1d)=0 whenever a �= c or b �=d,a,b, c,d ∈Z;
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(2) (ux, y)= (x, ρ(u)y) for u ∈U and x, y ∈ U̇ ;
(3) (x−1a, y−1a)= (x, y) for all x, y ∈ f and a ∈Z.

Moreover, the bilinear form (·, ·) is symmetric.

7. The Covering Algebras

Essentially all the constructions and results in the previous sections make sense in
the framework of covering algebras introduced below by treating π as a formal
parameter satisfying π2 = 1. The idea of (half) covering algebras first appeared in
[5]. Given a ring A with unit, we define a new ring Aπ = A[π ]/(π2 − 1). We shall
mainly need Aπ and Q(q)π below. Note that Aπ ⊂ Q(q)π . The quantum integers

and quantum binomials [n],
[

n
i

]
in (2.1) and (2.2) make sense as elements in Aπ

and also in Q(q)π .

7.1. COVERING ALGEBRA Uπ

We define the covering algebra Uπ for osp(1|2) to be the Q(q)π -(super)algebra gen-
erated by elements Eε, Fε, Kε and K −1

ε for ε∈{0,1}, subject to the relations (1)–(3)
in Remark 2.4. Then all the definitions and calculations earlier on can be trans-
lated to the covering algebra. Indeed, all computations only involve quotients of
elements of the form (πq)n − q−n and we never used 1 + π = 0 to reduce any
expression. Therefore we have the following.

(1) Uπ is a free Q(q)π -module with basis F (a)ε K b
ε E (c)ε for a, c ∈N,b ∈Z, ε ∈{0,1}.

(2) Uπ has algebra (anti-)automorphisms as described in Proposition 2.7 which
fix π .

(3) The elements E (r), F (s) satisfy the commutation relations in Lemma 2.8.
(4) Uπ has a Hopf superalgebra structure.
(5) Uπ admits a quasi-R matrix � and the map � as operators on tensor prod-

ucts of modules.
(6) Proposition 5.4 remains valid, with cs,t

a,b;m,n ∈q−1N[q−1, π ].

7.2. COVERING ALGEBRA U̇π

Similarly, we can modify the definition of U̇ in Section 6.1 as follows. Let a,b ∈Z

and set

aUπ
b =Uπ/

(
(K p(a)−qa)Uπ +Uπ (K p(b)−qb)

)
,

and define

U̇π =
⊕

a,b∈Z

aUπ
b .
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This is called the modified (also called idempotented) covering quantum (super)
algebra of Uπ . Imitating the A-subalgebra AU̇ , we can define the Aπ -subalgebra

AU̇π . We can now reinterpret earlier results on U̇ in the setting of covering alge-
bra as follows:

(1) The identities (6.3), (6.4), (6.5), and (6.6) are valid in AU̇π .
(2) Theorem 6.2 on canonical basis is valid for AU̇π .

7.3. SPECIALIZATIONS

The specialization by setting π to be ±1 in the constructions and statements
for the covering algebras recovers corresponding results for quantum sl(2) and
osp(1|2) simultaneously as follows.

(1) Specializing π =−1, we obtain that Uπ/〈π +1〉∼=U and U̇π/〈π +1〉∼= U̇ .
(2) The canonical basis for U̇π specializes at π =−1 to that for U̇ .
(3) Specializing π = 1, we obtain that Uπ/〈π − 1〉 is isomorphic to a direct sum

of two copies of the quantum group Uq(sl(2)), and U̇π/〈π−1〉 is isomorphic
to the modified algebra U̇q(sl(2)) in [2,12].

(4) The canonical basis for U̇π specializes at π=1 to that for the modified quan-
tum sl(2) given in [12, Proposition 25.3.2].

Remark 7.1. The super sign, being inherent in the structure of superalgebras, rules
out the hope of positivity of the structure constants for canonical basis of the
quantum superalgebra U̇ in the usual sense. Using (6.3), (6.5) and (6.6), we can
show that the structure coefficients from multiplying canonical basis elements in
U̇π lie in N[q,q−1, π ]. So passing to covering algebras restores the positivity.

A categorification of U̇π and its canonical basis, à la Lauda [10] for modi-
fied quantum sl(2), is expected in a generalized framework of spin nilHecke alge-
bras, with π categorified as a parity shift functor as in [5]. Such a categorification
would be relevant to odd Khovanov homology and knot invariants (also compare
[3]). Forgetting the Z2-grading and the parity shift functor would lead to a (sec-
ond) categorification of modified quantum sl(2) and its canonical basis; see (4)
above.
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