
DOI 10.1007/s11005-011-0527-4
Lett Math Phys (2012) 100:161–170

On Integrability of the Kontsevich Non-Abelian
ODE System

THOMAS WOLF1 and OLGA EFIMOVSKAYA2

1Brock University, St. Catharines, Ontario, Canada. e-mail: twolf@brocku.ca
2Moscow State University, Moscow, Russia. e-mail: olga.efimovskaya@gmail.com

Received: 3 May 2011 / Revised: 1 August 2011 / Accepted: 3 August 2011
Published online: 30 August 2011 – © Springer 2011

Abstract. We consider systems of ODEs with the right-hand side being Laurent polynomi-
als in several non-commutative unknowns. In particular, these unknowns could be matrices
of arbitrary size. An important example of such a system was proposed by M. Kon-
tsevich (private communication). We prove the integrability of the Kontsevich system by
finding a Lax pair, corresponding first integrals and commuting flows. We also provide a
pre-Hamiltonian operator which maps gradients of integrals for the Kontsevich system to
symmetries.
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1. Introduction

In connection with the theory of non-commutative elliptic functions, Kontsevich
(private communication) considered the following discrete map

u →uvu−1, v →u−1 +v−1u−1, (1.1)

where u, v are non-commutative variables (in particular, n ×n-matrices of arbitrary
size). His numerical computer experiments have shown that this map could be inte-
grable (see [5]). In the abelian case the element

h =u +v +u−1 +v−1 +u−1v−1 (1.2)

is an integral for the mapping (1.1). The equation h = const defines a family
of elliptic curves. In the non-abelian case the element h is transformed as h →
uhu−1. It follows from this formula that trace(hk) is a first integral of (1.1) for any
natural k.

Kontsevich also observed that (1.1) is a discrete symmetry of the following non-
abelian ODE system:

ut =uv −uv−1 −v−1, vt =−vu +vu−1 +u−1 (1.3)

and conjectured that (1.3) is integrable itself.
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Our paper is devoted to the system (1.3). It belongs to the class of systems of
the form

ut = P1(u, v), vt = P2(u, v), (1.4)

where Pi are elements of the associative algebra M of all non-commutative poly-
nomials in u, v, u−1, v−1 with constant scalar coefficients. The elements of M are
called non-abelian Laurent polynomials.

In papers [1,2], integrable systems of type (1.4) with Pi being non-abelian poly-
nomials in u, v, were considered. The existence of an infinite series of infinitesimal
symmetries was taken as a criterion for integrability. A similar approach to inte-
grability of evolutionary polynomial non-abelian PDEs was developed in [4]. As
far as we know integrable systems with non-abelian Laurent right-hand sides were
not considered before.

In this paper, we find a Lax representation with a spectral parameter for sys-
tem (1.3). The corresponding Lax L-operator generates infinitely many integrals of
motion for (1.3). They are integrals for the discrete map (1.1) as well. We also find
a pre-Hamiltonian operator that maps gradients of first integrals to symmetries.
This proves that (1.3) is integrable in the sense of [2].

2. Symmetries and Integrals

Let us briefly recall the definitions from [2] generalized to the Laurent case.
Let x1, . . . , xN be non-commutative variables. We consider ODE systems of the

form

dxα

dt
= Fα(x1, . . . , xN , x−1

1 , . . . , x−1
N ), (2.5)

where Fα are Laurent polynomials. We denote by M the associative algebra of all
Laurent polynomials. Formulas (2.5) together with d(x−1

α )

dt =−x−1
α

dxα

dt x−1
α define the

corresponding derivation Dt on M.
An (infinitesimal) symmetry for (2.5) is a system

dxα

dτ
= Gα(x1, . . . , xN , x−1

1 , . . . , x−1
N ), Gα ∈M (2.6)

compatible with (2.5). Compatibility means that the derivations Dt and Dτ corre-
sponding to (2.5) and (2.6) commute.

The existence of an infinite series of symmetries is typical for integrable non-abe-
lian ODEs. The simplest non-trivial symmetry for (1.3) is given by

uτ =−uvu−uv2+uv+(vu)−1+v−2+u2v−1−uvu−1+uv−2+(vuv)−1+u(vuv)−1,

vτ = vuv+vu2−vu−(uv)−1−u−2−v2u−1+vuv−1−vu−2−(uvu)−1−v(uvu)−1.
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The following conjecture is concerned with the dimensions of vector spaces Sk

of all symmetries with right-hand sides being polynomials in u, v,u−1, v−1 of
degree ≤ k.

CONJECTURE.

dim S4n =2n2, dim S4n+1 =2n2+2n, dim S4n+2 =2n2 +2n +1, dim S4n+3 =2n2 +4n +1.

We have verified the conjecture for Sk, k =0, . . . ,16. Notice that (1.3) is invariant
with respect to involution

u →v, v →u (2.7)

and t →−t . All known symmetries are either involution invariant up to τ →−τ or
involution symmetric to another symmetry. In the remainder of the paper, we will
denote the involution F |v↔u of any Laurent polynomial F by F .

An element I of M is called a full integral for (2.5) if Dt (I )=0. In the matrix
case this means that every component of I is an integral of motion. For equation
(1.3) the element

I =uvu−1v−1 (2.8)

is a full integral. This element is an integral for the mapping (1.1) as well. We were
unsuccessful in finding more Laurent full integrals for (1.3) (other than polynomi-
als of I, I −1).

In the q-case, which is a specialization of our general non-abelian situation, an
additional full integral exists. Namely, consider the associative algebra Q generated
by u, v with the relation u v = q v u, where q is a fixed constant. In this case the
element

J =u +qv +qu−1 +v−1 +u−1v−1

is a full integral for (1.3). This integral is a q-deformation of the element (1.2).
Apart from (2.8), Equation (1.3) has so-called trace first integrals. If u and v

are matrices, these integrals are given by traces of some Laurent polynomials. For
instance, the traces of hk , where h is given by (1.2) and k ∈N, are such integrals.

For (2.5) with xα being non-commutative symbols we define the trace(a), a ∈M
as an equivalence class. Two elements a and b of M are called equivalent iff a can
be obtained from b by cyclic permutations of factors in its monomials. In other
words, the traces for elements of M are defined as the corresponding elements of
the quotient space M/K , where K is the vector space spanned by all commutators
in M. If a −b ∈ K , we write a ∼b.

An element ρ of M is called a trace integral of (2.5), if Dt (ρ)∼ 0. Trace inte-
grals ρ1 and ρ2 are called equivalent if ρ1 −ρ2 ∼ 0. By definition, the degree of a
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trace integral is the minimal degree of elements from the corresponding equivalent
class.

Low-degree trace integrals of (1.3) can be found straightforwardly. In particu-
lar, there are no integrals of degrees 1 and 3, h is the only integral of degree 2,
three linearly independent trace integrals of degree 4 are given by h2, I and I −1.
Detailed information of higher-degree integrals can be found in Section 4.

To generate infinite sequences of trace integrals for (1.3) the following procedure
can be applied.

Suppose two Laurent polynomials H, A ∈M satisfy

Dt (H)=[A, H ] (2.9)

where Dt is the derivation corresponding to (1.3). The involution (2.7) generates
the pair A, H that is also satisfying (2.9). It follows from (2.9) that H is a trace
integral for (1.3). Since Hk also satisfy (2.9) for any natural k the elements Hk are
trace integrals as well. In the matrix case this is equivalent to the fact that the
spectrum of H is preserved under the flow (1.3). Thus for any pair (Hi , Ai ) sat-
isfying (2.9) the elements

ρik = H k
i , and ρik = Hi

k
(2.10)

are trace integrals for any natural k.
It is easy to see that if H, A satisfy (2.9), then for any invertible element g ∈M

the conjugation

H → gHg−1, A → g Ag−1 + gt g
−1 (2.11)

leads to another pair satisfying (2.9). It is clear that conjugated pairs produce the
same trace integrals (2.10).

Apart from h given by (1.2) satisfying the relation (2.9) with A = −u−1 − v we
found several more low-degree pairs (Hi , Ai ) satisfying (2.9).

The corresponding elements Hi , i =1, . . . ,11 are given by Hi =h +ai , where

a1 = [u−1, vu] = v(S2 I −1 −1), a7 = SI +a2 +a4,

a2 = [v,u−1v−1] = u−1(I −1), a8 = SI +a2 +[v,u−1v2],
a3 = [v,uv−1] = u(S3 I −1 −1), a9 = SI +a4 +[u−1,u−1v−1u],
a4 = [u−1, v−1u] = v−1(SI −1), a10 = S2 I +[v−1,uv],
a5 = a1 +a4, a11 = I +[u, vu−1]
a6 = a2 +a3,

Here S stands for a cyclic shift of factors in a monomial, i.e. S(abc . . . z)=bc . . . za,

and I is given by (2.8). Sets of Hi , Hi that are conjugate to each other are
{h, H5, H6}, {H1, H3, H2, H4}, {H7}, {H8, H9, H10, H11} and the involuted versions
of these 4 groups. In addition to h, A three of the pairs Hi , Ai representing these
groups up to involution and conjugation are:
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H1 =u+u−1+v−1+u−1v−1 +u−1vu, A1 =u −v +v−1 +u−1v−1,

H7 =u +v +u−1v−1u +vu−1v−1 +u−1v−1 +vu−1v−1u, A7 =v−1 −v,

H11 =u +u−1 +v−1 +u−1v−1 +uvu−1 +uvu−1v−1, A11 =−u−1.

3. The Pre-Hamiltonian Operator

In the previous section, we found several infinite sequences of trace integrals for
(1.3). Here, we construct the sequences of corresponding symmetries via a so-called
pre-Hamiltonian operator. This operator is defined in terms of left and right mul-
tiplication operators.

For any Laurent polynomial a ∈M, we denote by La and Ra the operators of
left and right multiplications on M:

La(x)=ax, Ra(x)= xa.

It is clear that Lab = La Lb and Rab = Rb Ra . It follows from the associativity of the
algebra M that Ra Lb = Lb Ra .

The algebra of all left and right multiplication operators is generated by
Lxi , Lx−1

i
, Rxi , Rx−1

i
. We denote this associative algebra by O and call it the algebra

of local operators.
For any element a = a(x)∈M we define an 1 × N -matrix a∗ with entries being

elements of O by the following identity:

d
dε

a(x + εδx)|ε=0 =a∗(δx). (3.12)

For example, for h from (1.2) we have

h∗ = (1− Lu−1 Ru−1 − Lu−1 Ru−1 Rv−1, 1− Lv−1 Rv−1 − Lu−1 Lv−1 Rv−1).

It is easy to see that

Dt (a)=a∗(F), (3.13)

where Dt is the derivation associated with (2.5) and F= (F1, . . . , FN )T is the right-
hand side of (2.5).

For any vector a = (a1, . . . ,aN )T ,ai ∈M we define the Fréchet derivative opera-
tor a∗ as the N × N -matrix with rows (a1)∗, . . . , (aN)∗.

For any two vectors p= (p1, . . . , pN )T , q = (q1, . . . ,qN )T , pi ,qi ∈M we put

〈p,q〉= p1q1 +· · ·+ pN qN .

Let a(x)∈M. Then grad (a) is the vector uniquely defined by:

d
dε

a(x + εδx)|ε=0 ∼ 〈δx,grad (a(x))〉.
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We will denote by gradx1
(a), . . . ,gradxN

(a) the components of the vector grad (a).
It is easy to see that if a ∼ b, then grad (a)= grad (b). This means that grad (a) is
well-defined for trace integrals.

For example, for the function h given by (1.2) we have

grad h = (1−u−2 −u−1v−1u−1, 1−v−2 −v−1u−1v−1)T .

It follows from the definition of an infinitesimal symmetry (2.6) with symmetry
generator G = (G1, . . . , G N )T for a system (2.5) that Dt Dτ x = Dτ Dt x, i.e.

Dt G = Dτ F =F∗(G) (3.14)

[from (3.13)] is a linearized equation satisfied by G, where F∗ is the Fréchet deriv-
ative of the right-hand side of (2.5) (cf. [3]).

An N × N matrix P with entries from O is called a pre-Hamiltonian operator for
Equation (2.5) if

Dt (P)=F∗P +PF�∗. (3.15)

Here the adjoint operation � on MatN (O) is uniquely defined by the formula

〈p,Q(q)〉∼〈Q�(p),q〉, (3.16)

where Q∈MatN (O), pi ,qi ∈M.

Relation (3.15) can be rewritten in the form

(Dt −F∗)P =P (
Dt +F�∗

)
. (3.17)

It can be shown (cf. [3]) that for any trace integral a of (2.5) the vector b=grad(a)

satisfies the equation Dt (b)+F�∗(b)=0. Applying both sides of (3.17) to b, we get
that any pre-Hamiltonian operator maps gradients of integrals for (2.5) to symme-
tries.

PROPOSITION. The following operator (cf. [2])

P =
(

Ru Ru − Lu Lu Lu Lv + Lu Rv − Lv Ru + Ru Rv

Lu Rv − Lv Lu − Lv Ru − Rv Ru Lv Lv − Rv Rv

)
(3.18)

is a pre-Hamiltonian operator for Equation (1.3). The proof consists of the straight-
forward verification of relation (3.15) using

F∗ =
(

Rv − Rv−1 Lu + Lu Lv−1 Rv−1 + Lv−1 Rv−1

−Lv − Lv Lu−1 Ru−1 − Lu−1 Ru−1 −Ru + Ru−1

)
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F�∗ =
(

Lv − Lv−1 −Rv − Lu−1 Ru−1 Rv − Lu−1 Ru−1

Ru + Lv−1 Rv−1 Ru + Lv−1 Rv−1 −Lu + Lu−1

)

computed from (3.12), (3.16).
Applying operator (3.18) to grad h, we get (up to a factor of 2) the right-hand side

of system (1.3). In this sense h/2 plays the role of a Hamiltonian for (1.3). However,
the bracket

{a,b}=<grad a,Pgrad b >

defined on traces of Laurent polynomials does not satisfy the Jacobi identity for P
from (3.18) and a true Hamiltonian structure for (1.3) is yet unknown.

4. The Lax Pair

Consider

L=
(

v−1 +u λv +v−1u−1 +u−1 +1
v−1 + 1

λ
u v +v−1u−1 +u−1 + 1

λ

)
, A =

(
v−1 −v +u λv

v−1 u

)
, (4.19)

where λ is a (scalar) spectral parameter. Then the relation

Dt L=[A,L]
is equivalent to the Kontsevich system (1.3). Although the pairs Hi , Ai described
in Section 2 do also satisfy an equation similar to (2.9), they are not Lax pairs for
(1.3) since in this case (2.9) follows from (1.3) but not vice versa.

The Lax pair can be replaced by any equivalent one obtained through a conju-
gation (2.11), where g is an arbitrary invertible Laurent 2×2-matrix. Other equiv-
alence transformations are L → P1(L), A → A + P2(L), where Pi are polynomials
with constant λ-dependent coefficients, and arbitrary transformation λ→ f (λ).

As usual, the traces tr Lm = (Lm)11 + (Lm)22 generate trace integrals of motion.
In particular, tr L yields v−1 +u +v−1u−1 +u−1 +v, which is equivalent to h from
(1.2). In contrast to (2.9) each power of L gives us several trace integrals since
tr Lm is a polynomial in λ,λ−1 with all coefficients being trace integrals. We ver-
ified that all trace integrals of degree ≤12 for (1.3) are generated in such a way.

Table I shows all integrals of degree d generated from tr Lm, m ≤ 14 that are
not generated from tr Li , i < m. The following statements assume that all trace
integrals have been reduced modulo lower degree trace integrals.

Each integral is represented by a �, ◦ or • and is located in one diagonal of
Table I. Each diagonal starts in a table entry which shows a number k indicating
that the integral is I k . For the single � – diagonal is k =0. ◦ – diagonals have k <0
and start in row 3|k|, i.e. I k result from tr L3|k| and • – diagonals have k >0 and
start in row 4k, i.e. I k result from tr L4k .

The different powers of λ in tr Lm have the following first integrals as coeffi-
cients. � – integrals are the coefficients of λ0. ◦ – integrals of degree d resulting
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Table I. Number of new trace first integrals of degree d generated from tr Lm not generated
from tr Li , i <m

from Lm are the coefficients of λ(d−2m)/2. • – integrals of degree d resulting from
Lm are the coefficients of λ(2m−d)/4.

All � – integrals are invariant under involution (2.7). All other first integrals
come in pairs, one ◦ – and one • – integral, both are involution symmetric to each
other and therefore in the same column.

Applying the involution (2.7) to the Lax pair (4.19), we get a dual one:

L=
(

u−1 +v λu +u−1v−1 +v−1 +1
u−1 + 1

λ
v u +u−1v−1 +v−1 + 1

λ

)
, A =

(
u−1 −u +v λu

u−1 v

)
. (4.20)

We tried to find a 2 × 2 Laurent matrix P such that P L= const L P (under
change of λ) but we did not succeed and we doubt such a P exists. Therefore we
think that L and L are not related by standard algebraic symmetries. L,A and
L,A are different Lax pair representations but each one gives all trace first inte-
grals, only for different degrees. For example, see Table I, tr L3 generates I −1 as
first integral and tr L

3
generates I as first integral. L does also generate I as first

integral, but from tr L4 not from tr L3. And that is the case with each first inte-
gral. Using L instead of L does generate the same table only with ◦ and • – entries
interchanged. Replacing λ→ f (λ) in L (4.19) does not change the table.

Applying the pre-Hamiltonian operator (3.18) to � – integrals gives involution
invariant symmetries of the same degree. Applying (3.18) to an involution symmet-
ric pair of first integrals gives two symmetries that are one degree higher than the
first integral and that are also involution symmetric to each other.

Traces of Hk
j (2.10) have been verified to be linear combinations of integrals of

Table I. For example,
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• first integrals tr h2m+k,n =0,1, . . . , k =0,1 are of degree 2(2m +k) and require
only up to L2m+k to be derived,

• first integrals tr(h + a1)
2m+k,m = 0,1, . . . , k = 0,1 are also of degree 2(2m + k)

(although h +a1 is of degree 3) but require up to L4m+k to be derived,
• first integrals tr(h + a7)

m and tr(h + a11)
m,m = 0,1, . . . are of degree 4m and

require up to L3m to be derived.

All first integrals generated by the Lax pair operator L(=L|u↔v) are linear com-
binations of first integrals generated from L and vice versa.

If a given first integral F of degree 2(2m + k),m = 0,1, . . . , k = 0,1 is to be
expressed as a linear combination of first integrals computed from L and L then
it requires at least L2m+k or L

2m+k
and at most L3m+k and L

3m+k
. If F is to be

expressed as a linear combination of first integrals computed from L alone then it
requires at most L4m+k .

The table of first integrals with its straightforward extension appears to be com-
plete because all symmetries of degree up to 16 have been verified to be generated
from integrals of this table and the pre-Hamiltonian operator (3.18).

5. Summary

In this paper, we provide two Lax pair representations L,A in (4.19) and L,A
in (4.20) for the non-abelian Kontsevich ODE system (1.3). We also give a pre-
Hamiltonian operator P in (3.18) that converts gradients of first integrals into Lie
symmetries. By computing independently all symmetries with Laurent polynomial
generators up to degree 16 we show that both Lax pairs generate all trace first
integrals at least up to this degree. For any n we propose a conjecture on the
dimension of the vector space of symmetries of order ≤n.

Outstanding work contains an algebraic description of all A-operators for the
hierarchy and a recursion operator for the model.

Another open problem is to find a Laurent Lax pair for the original discrete
Kontsevich map. We have checked numerically for 2×2 and 3×3 matrices u, v that
the characteristic polynomial of L(λ) does not change under the discrete map (1.1).
In this case we can apply the discrete map in components, it is invertible. But this
is not the case on the level of Laurent polynomials since we cannot apply the map
to L given in (4.19). It is an outstanding problem to find a Laurent matrix P such
that the discrete map is applicable to L̃ = P L P−1.
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