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Abstract. We review the spectral curve for the classical string in Ad S5 × S5. Classical inte-
grability of the Ad S5 × S5 string implies the existence of a flat connection, whose monodr-
omies generate an infinite set of conserved charges. The spectral curve is constructed out of
the quasi-momenta, which are eigenvalues of the monodromy matrix, and each finite-gap
classical solution can be characterized in terms of such a curve. This provides a concise
and powerful description of the classical solution space. In addition, semi-classical quanti-
zation of the string can be performed in terms of the quasi-momenta. We review the gen-
eral frame-work of the semi-classical quantization in this context and exemplify it with the
circular string solution which is supported on R× S3 ⊂ Ad S5 × S5.
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2.1 LAX CONNECTION AND MONODROMY MATRIX FOR Ad S5 × S5 . 172
2.2 SPECTRAL CURVES: GENERALITIES . . . . . . . . . . . . . . . . . . . . 173
2.3 ALGEBRAIC CURVE FOR Ad S5 × S5 . . . . . . . . . . . . . . . . . . . . . 173
2.4 CHARACTERIZATION OF SOLUTIONS BY QUASI-MOMENTA . . . . 174
2.5 EXAMPLE: CIRCULAR STRING . . . . . . . . . . . . . . . . . . . . . . . 177

3 The Algebraic Curve of N =4 SYM . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.1 BETHE ANSATZ EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.2 THERMODYNAMIC LIMIT AND ALGEBRAIC CURVE . . . . . . . . . 178

4 Semi-Classical Quantization of the Spectral Curve . . . . . . . . . . . . . . . . . . 180
4.1 PERTURBING THE SPECTRAL CURVE . . . . . . . . . . . . . . . . . . 180
4.2 GENERAL EXPRESSION OF ONE-LOOP ENERGY SHIFT . . . . . . . 182

4.2.1 Off-Shell Fluctuation Frequencies . . . . . . . . . . . . . . . . . . . . 182
4.2.2 Frequencies from Inversion Symmetry . . . . . . . . . . . . . . . . . . 183
4.2.3 Basis of Fluctuation Energies . . . . . . . . . . . . . . . . . . . . . . 184
4.2.4 Final Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.2.5 Example: Circular String . . . . . . . . . . . . . . . . . . . . . . . . . 185

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

1. Introduction and Outlook

The integrability of the classical superstring in Ad S5 × S5 follows from the exis-
tence of an infinite set of conserved charges [1]. In principle this allows for a
complete classical solution of the theory, albeit in practice finding explicit classi-
cal solutions may be limited to simple field configurations. However, in the con-
text of the spectral AdS/CFT correspondence, where the main objective is to map
the spectrum of string energies in Ad S5 × S5 to the spectrum of anomalous dimen-
sions of four-dimensional N = 4 Super-Yang Mills (SYM), finding explicit solu-
tions is not of primary interest. Indeed, it is much more important to find a way
to directly characterize the spectrum. On the SYM theory side, this was achieved
by noting that certain Bethe ansätze compute the spectrum of the dilatation oper-
ator. For the dual classical and semi-classical string theory in Ad S5 × S5 this role
is played by the spectral curve.

More specifically, using the classical Lax connection [1] and the monodromy
matrix obtained by parallel transporting the connection around the worldsheet, it
is possible to setup an elegant framework, which allows to characterize all finite
gap solutions in terms of complex algebraic curves. In this geometric description,
finite-gap translates into finite genus of the curve. The conserved charges, such as
the energy, can in this way be computed without having to solve the equations of
motion. Furthermore, semi-classical quantization can be described in this frame-
work, and allows for a concise description of the one-loop energy shifts presented
in the part of the review [2].

The seminal paper [3] was the first to point out the importance of the spec-
tral curves for the integrable systems that arise in the AdS/CFT correspondence.
The algebraic curves for the classical string in the R × S3 subspace and the cor-
responding subsector of one-loop planar N = 4 SYM were shown to agree by
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some simple identifications. On the gauge theory side, the spectral curve emerges
in the thermodynamic limit of the ferromagnetic Heisenberg-spin chain, that diag-
onalizes the one-loop dilatation operator in the su(2) subsector. Subsequently, this
analysis was generalized to the sl(2) subsector or Ad S3 × S1 string solutions [4],
the su(4) subsector [5] and finally to the complete psu(2,2|4) symmetric one-loop
Heisenberg spin-chain [6,7] and the Ad S5 × S5 superstring [8].

Apart from providing a nice geometric description of classical solutions to the
superstring, or in the dual theory, Bethe root configurations in the thermodynamic
limit, the spectral curve is a very powerful tool to compute quantum corrections
to classical string solutions. This was first advocated in the papers [9–11] and then
applied to the classical string spectral curve in [12–19], in particular allowing a test
of the asymptotics Bethe ansatz [20,21] and an explicit formula for the one-loop
energy shift for a large class of solutions.

There are various interesting questions where spectral curves should either be
useful or give a more elegant description, in the context of the AdS/CFT corre-
spondence. Albeit, applications to higher order α′ corrections seem to be difficult
to describe. Both conceptually and computationally, it would be very important to
find a suitable all-loop quantization of the algebraic curve. To an extent, the Bethe
ansatz, and more recently the characterization of the complete finite-size spectrum
in terms of a Y-system (see the chapter [22] of this review) serve that purpose.
However, a direct derivation of the Y-system from a quantum monodromy matrix
is still unknown.

A brief comment on other formulations of the superstring in Ad S5 × S5 is in
place. In the pure spinor string, it is possible to find a flat connection that con-
firms the classical integrability and an associated algebraic curve [23,24]. It has
been argued based on BRST-cohomology that the charges generated from the
monodromy matrix of this flat connection exists to all orders in the α′ expansion
[25], which has been confirmed to subleading order in [26].

The outline of this part of the review is as follows: we begin in Section 2 by
reviewing the Lax connection and monodromy matrix of the Ad S5 × S5 string. We
then define the algebraic curve in terms of the quasi-momenta (which are essen-
tially the eigenvalues of the monodromy matrix). In Section 2.4 we give a char-
acterization of the quasi-momenta in terms of their asymptotics, poles structure
etc. The example of the circular string in S3 is rephrased in terms of the alge-
braic curve in Section 2.5. In Section 3 we briefly discuss the algebraic curve of
the dual N = 4 SYM theory at one-loop. In Section 4 the general procedure for
the semi-classical quantization is presented, and a general expression for the one-
loop energy shift is derived from the algebraic curve. We furthermore show, that
from this general analysis it is straightforward to compute the energy shift for the
circular string of Section 2.5.

Relation to other parts of the review:
The relevant superstring action for the Ad S5 × S5 string was described in [27]. The
Lax connection and monodromy matrix were already introduced in [28]. Classical
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finite-gap solutions and their semi-classical quantization from the sigma-model
point of view was discussed in [2]. The present part of the review gives an alterna-
tive point of view on the material in [2], which manifestly relies on the integrable
structure of the theory.

2. Classical Integrability and Spectral Curve

2.1. LAX CONNECTION AND MONODROMY MATRIX FOR Ad S5 × S5

Recall that a classical sigma-model is integrable if its equation of motion can be
put into zero-curvature form, with a Lax connection Lα(σ , τ, z) depending on the
spectral parameter z, where α =σ, τ denotes the world-sheet coordinates:

∂α Lβ −∂β Lα −[Lα, Lβ ]=0. (2.1)

From the Lax connection we can form the monodromy matrix, by parallel trans-
port along the σ direction of the world-sheet, along some path γ

�(z)=P exp

⎛
⎝

2π∫

0

Lσ (σ, τ, z)

⎞
⎠ . (2.2)

The classical superstring on Ad S5 × S5 is described in terms of the Green–
Schwarz action by Metsaev and Tseytlin (see also [27]) as a sigma-model into the
supercoset space

P SU (2,2|4)

SO(4,1)× SO(5)
⊃ Ad S5 × S5. (2.3)

A useful description of the superstring action is in terms of the supercurrents for
the map from the world-sheet into the supergroup g : 	 → P SU (2,2|4) which is
gauged by the left-action

g → gH, H ∈ SO(4,1)× SO(5). (2.4)

Define the currents as

J =−g−1dg ∈psu(2,2|4), (2.5)

which is flat d J − J ∧ J =0 and transforms as J → H−1 J H .
The superalgebra psu(2,2|4) has a Z4 grading

psu(2,2|4)=g(0) ⊕g(1) ⊕g(2) ⊕g(3), (2.6)

and we shall decompose the currents accordingly as

J = J (0) + J (1) + J (2) + J (3). (2.7)
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The action for the superstring in Ad S5 × S5 then takes the form

S =
√

λ

4π

∫
STr

(
J (2) ∧∗J (2) − J (1) ∧ J (3) +�∧ J (2)

)
, (2.8)

where the Lagrange multiplier � in the last term ensures the super-tracelessness of
J (2), as is required for P SU (2,2|4).

2.2. SPECTRAL CURVES: GENERALITIES

Before discussing the curve for Ad S5 × S5 we should first elaborate on spectral
curves for classical integrable systems more generally, and point out important
aspects. Consider a classical integrable system, described by a Lax connection L(x)

and monodromy matrix �(x). The spectral curve is a complex curve defined by
the eigenvalue equation for �(x)

SDet(yId−�(x))=0. (2.9)

It is generically not an algebraic curve and may have essential singularities and
infinite genus. A useful subclass of configurations, the so-called “finite gap” solu-
tions, are such that the spectral curve is of finite genus, in this instance referred
to then as “algebraic curve”. These curves may still have singular points, which
however can be desingularized by standard algebraic geometric methods, e.g. by
small resolutions, and we shall now distinguish these two birationally equivalent
curves in the following. Naturally, the curve defined by (2.9) can be written in
terms of the eigenvalues λi (x) of �(x). However, these will exhibit essential singu-
larities in the spectral parameter, and it is more convenient to study the so-called
quasi-momenta, pi , where λi (x)=eipi (x). In what follows, we shall specify the curve
entirely in terms of the properties of the quasi-momenta. For more details on e.g.
the maps between the various descriptions, see [29,30].

2.3. ALGEBRAIC CURVE FOR Ad S5 × S5

In [1] it was demonstrated that the classical equations of motion for this action are
equivalent to the flatness of a one-parameter family of connections (Lax connec-
tion), thus establishing the classical integrability of the theory. The Lax connection
depends on the spectral parameter, which will be denoted by x ∈C and is given as

L(x)= J (0) + x2 +1
x2 −1

J (2) − 2x

x2 −1
(∗J (2) −�)+

√
x +1
x −1

J (1) +
√

x −1
x +1

J (3). (2.10)

For all x this is a flat connection d L(x)− L(x)∧ L(x)=0. As in (2.2) we can define
the corresponding monodromy matrix by parallel transport along a closed path γ ,
encircling the compact world-sheet direction
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�(x)=P exp

⎛
⎝

∫

γ

L(x)

⎞
⎠ . (2.11)

Super-tracelessness of L(x) implies unimodularity SDet�(x)=1. We can diagonal-
ize �(x) and denote the eigenvalues by eip(x), where p(x) are the quasi-momenta.
More specifically, we obtain

�(x)∼Diag
(

ei p̂1(x), ei p̂2(x), ei p̂3(x), ei p̂4(x)|ei p̃1(x), ei p̃2(x), ei p̃3(x), ei p̃4(x)
)

, (2.12)

where p̂ denotes the eigenvalues corresponding to Ad S5 and p̃ to S5. From uni-
modularity of �(x) it follows that.1

4∑
i=1

p̂i (x)− p̃i (x)=2πk, k ∈Z. (2.13)

By definition, the eigenvalues ei p(x) are the zeroes of the characteristic polyno-
mial of �(x), and as we shall define in the next section, the quasi-momenta p(x)

define the spectral curve. More precisely, the Equation (2.13) entails that p is a
multivalued function of x , or alternatively, it is a single-valued function of a cover
of the complex x-plane, which defines the spectral curve. In the next section we
will give a characterization of the quasi-momenta and of the resulting curve. The
degree of the characteristic polynomial specifies the number of sheets of the cover,
which in the case of the Ad S5 × S5 string is eight.

The key insight of [3] was that classical solutions can be equivalently character-
ized in terms of this algebraic curve, or alternatively, the quasi-momenta.

2.4. CHARACTERIZATION OF SOLUTIONS BY QUASI-MOMENTA

In this section we will give a hands-on description of how classical solutions are
encoded in terms of the quasi-momenta. This will be exemplified in the next sub-
section.

Classical solutions with global conserved charges (S1, S2, J1, J2, J3) and energy
E will be encoded in terms of quasi-momenta. Here (E, S1, S2) labels weights of
the SO(4,2) and (J1, J2, J3) of the SO(6) isometry groups of Ad S5 × S5. Rather
than solving an equivalent of the classical equations of motion, we lay out con-
straints, that will fully characterize the quasi-momenta in terms of asymptotics
(which will be fixed by the global charges), behaviour at poles (which arise due to
the pole in the Lax connection), symmetries (from the automorphism of the Lie-
superalgebra psu(2,2|4)), and finally the so-called filling fractions. We will now dis-
cuss all these points in detail:

1The Lagrange multiplier �, cf. (2.8), would correspond to an unphysical, overall shift, and will
be ignored from now on [8].
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Figure 1. The spectral curve for classical superstrings on Ad S5 × S5. The sheets are connected
by cuts (green), which characterize classical solutions. The left most cut alone, e.g. corre-
sponds to a one-cut solution in the S3 ×R subspace, whereas the second cut is supported in
Ad S3 × S1. The remaining part of the graph depicts all polarization of physical fluctuations.
From left to right, four bosonic fluctuations in the S5, four bosonic fluctuations in Ad S5, and
eight fermionic fluctuations.

• The eight sheets are connected by cuts. Each of these connects two sheets, e.g.
i and j , and will be denoted by C i j . The quasi-momenta will have discontinu-
ities along these branch-cuts

pi (x + iε)− p j (x − iε)=2πni j , x ∈C
i j
n (2.14)

for the combination of sheets

i ∈{1̃, 2̃, 2̂, 2̂}, j ∈{3̃, 4̃, 3̂, 4̂}. (2.15)

Note that these cuts arise from the diagonalization of �, and are thus intrin-
sic to the spectral data. The classical curve only depends on the branch-points,
however, in the quantum theory, the cuts become meaningful. This will become
clear, in the section on spin-chain spectral curves, where the cuts are shown to
be condensates of Bethe roots.
More specifically, we can associate with cuts stretching between sheets of var-
ious types a “polarization”. These correspond precisely to the sixteen physical
polarization of the superstring in Ad S5 × S5 and are identified in the algebraic
curve in terms of cuts connecting the following pairs of sheets:

S5 : (1̃, 3̃), (1̃, 4̃), (2̃, 3̃), (2̃, 4̃)

Ad S5 : (1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂)

Fermions : (1̃, 3̂), (1̃, 4̂), (2̃, 3̂), (2̃, 4̂)

(1̂, 3̃), (1̂, 4̃), (2̂, 3̃), (2̂, 4̃). (2.16)

The situation is depicted in Figure 1, where both macroscopic cuts, that corre-
spond to a classical solution are shown, as well as all the physical excitations
from (2.16).

• The quasi-momenta have poles in the x-plane at x =±1 – which can be readily
seen from the Lax connection, which has poles at x =±1 – with residues that
are correlated due to the Virasoro constraint
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{ p̂1, p̂2, p̂3, p̂4| p̃1, p̃2, p̃3, p̃4}= {α±, α±, β±, β±|α±, α±, β±, β±}
x ±1

+ O(1). (2.17)

• Global charges of the classical solution determine the asymptotics of the quasi-
momenta for x → ∞. This follows simply from the fact that in this limit, the
Lax connection L(x) reduces to the Noether current. It is useful to rescale the
global psu(2,2|4) charges by 1/

√
λ and define Q = Q/

√
λ. Then the asymptot-

ics of the quasi-momenta are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2π

x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+E −S1 +S2

+E +S1 −S2

−E −S1 −S2

−E +S1 +S2

+J1 +J2 −J3

+J1 −J2 +J3

−J1 +J2 +J3

−J1 −J2 −J3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
x2

)
. (2.18)

For the spectral problem it is in particular of interest to note that the energy
E = E/

√
λ can be extracted from these asymptotics

E =
√

λ

4π
lim

x→∞ x( p̂1(x)+ p̂2(x)). (2.19)

We will see later, how this is done in practice.
• The quasi-momenta are furthermore restricted by an automorphism of the alge-

bra psu(2,2|4), which imposes the following relations for the quasi-momenta

p̃1,2(x)=− p̃2,1(1/x)−2πm

p̃3,4(x)=− p̃4,3(1/x)+2πm (2.20)

p̂1,2,3,4(x)=− p̂2,1,4,3(1/x).

This inversion symmetry allows us to determine the quasi-momenta inside the
region |x |<1.

• Finally, for each cut, we define the filling fraction

Si j =±
√

λ

8π2i

∮

Ci j

(
1− 1

x2

)
pi (x)dx . (2.21)

These are the action angle variables for the theory [31]. These curve data spec-
ify precisely a macroscopic excitations of the string with Si j quanta of mode
number n.
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2.5. EXAMPLE: CIRCULAR STRING

To illustrate the spectral curve method, we now describe the circular string solu-
tion with support in S3 × R [12,32]. We restrict to the case, when all su(4) spins
Ji are equal, and parametrize the solution by one spin J =√

λJ . We furthermore
restrict to the case of a single cut. Since this solution has trivial support in the
Ad S5 direction, the corresponding quasi-momenta are determined simply in terms
of trivial asymptotics at infinity and the correct pole structure at ±1. The poles
are correlated as required by (2.17) and determine the quasi-momenta as

p̂1 = p̂2 =− p̂3 =− p̂4 = 2πκx

x2 −1
. (2.22)

The quasi-momenta associated to the S5 directions will have cuts, and have to be
consistent with the inversion symmetry. In [12] these were determined as

⎛
⎜⎜⎝

p̃1

p̃2

p̃3

p̃4

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎝

x
x2−1

K (1/x)
x

x2−1
K (x)−m

x
1−x2 K (x)+m

x
1−x2 K (1/x)

⎞
⎟⎟⎟⎠ (2.23)

where K (x)=
√

m2x2 +J . The cut extends along the imaginary axis and from the
various constraints

E =κ =
√

J 2 +m2. (2.24)

It is in general not so easy to reverse-engineer the solution from the quasi-momenta.
However, for many aspects, in particular computing the spectrum, it is a particu-
larly powerful way to describe solutions.

3. The Algebraic Curve of N =4 SYM

So far our discussion of the spectral curve was focused on the classical Ad S5 × S5

string. However, there is a spectral curve also for the dual N =4 SYM theory. At
one-loop it was shown that the eigenvalues of the dilatation operator can be equiv-
alently computed from a ferro-magnetic Heisenberg spin chain with psu(2,2|4)

symmetry, which can be diagonalized using a Bethe ansatz [33–37]. In the ther-
modynamic limit Bethe roots condense and form cuts. The resulting structure is
precisely an algebraic curve, which intriguingly resembles the curve for the super-
string [4–8]. We will now briefly summarize the construction of the SYM curve.
For details of the Bethe ansatz see the other contributions [38,39].

3.1. BETHE ANSATZ EQUATIONS

The one-loop dilatation operator can be diagonalized by a Bethe ansatz for a
super-spin chain with symmetry psu(2,2|4) and 4|4 representation at each
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spin-chain site [36]. The Bethe roots are u(k)
i , k = 1, . . . , r = 7 and i = 1, . . . , Jk ,

where Jk denotes the excitation number for the kth root. Further, define J =∑
Jk

as the total excitation number, L be the length of the spin chain, and denote the
Cartan matrix2 of psu(2,2|4) by M and the weight of the representation by V .
Then the Bethe Ansatz equations for the nearest neighbour spin-chain are

(
u(k)

i − i
2 Vk

u(k)
i + i

2 Vk

)L

=
r∏

l=1

Jl∏
j=1

u(k)
i −u(l)

j − i
2 Mkl

u(k)
i −u(l)

j + i
2 Mkl

. (3.1)

Translational invariance along the spin chain implies further that

1=
r∏

k=1

Jk∏
i=1

u(k)
i + i

2 Vk

u(k)
i − i

2 Vk

= ei P , (3.2)

where P is the total momentum. Solving these algebraic equations for the Bethe
roots determines the values of the conserved charges, in particular the energy of
the spin-chain Hamiltonian, and thus the Dilatation operator at one-loop

Qn = i

n −1

n∑
l=1

Jn∑
j=1

(
1

(u(l)
j + i

2 Vl)n−1
− 1

(u(l)
j − i

2 Vl)n−1

)
. (3.3)

In particular, the energy E of the state is read off from Q2 as

E = cg2 Q2, (3.4)

for some constant c.

3.2. THERMODYNAMIC LIMIT AND ALGEBRAIC CURVE

As in the case of the superstring, the main interest is in determining the values of
Qr , and not in solving an auxiliary set of equations – the classical equations of
motion in the case of the superstring, or the Bethe ansatz equations in the SYM
theory. There is an analog of the spectral curve in the SYM that arises in the limit
of large number of Bethe roots. More precisely, the algebraic curve of the above
system arises in the thermodynamic limit L → ∞. Taking the logarithm of (3.1)
yields

L log

(
u(k)

i − i
2 Vk

u(k)
i + i

2 Vk

)
=

r∑
l=1

Jl∑
j=1, j 
=i

log

(
u(k)

i −u(l)
j − i

2 Mkl

u(k)
i −u(l)

j + i
2 Mkl

)
−2π in(k)

i , (3.5)

where n(k)
i ∈Z are the mode numbers, arising due to taking the logarithm. We now

rescale the Bethe roots by 1/L to x (k)
i =u(k)

i /L and take L , J →∞, while keeping

2This is modulo signs that are discussed in [39].
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n(k)
i fixed

− Vk

x (k)
i

=
r∑

l=1

1
Jl

Jl∑
j=1, j 
=i

Mkl

x (k)
i − x (l)

j

−2πn(k)
i . (3.6)

It is useful to introduce a density of Bethe roots and a resolvent for their distri-
bution

ρk(x)=
Jk∑

j=1

δ
(

x − x (k)
j

)

Gk(x)= 1
Jk

Jk∑
j=1

1

x − x (k)
j

.

(3.7)

In the limit, the Bethe roots condense into cuts Ck , and the Bethe equations take
the continuum form

--
∫

C
dv

ρk(v)Mk f (v)

v −u
=− Vk

u
+2πn(k)

i , u ∈C (k)
i , (3.8)

where C = ∪kCk and each of the curves Ck associated to simple roots is on the
other hand Ck =∪ jC

(k)
j . This can equivalently be written in terms of the resolvent

Gk(u) in the continuum limit

Mkk /Gk(u)+
∑
l 
=k

Mkl Gl(u)=− Vk

u
+2πn(k)

i , u ∈C (k)
i . (3.9)

Slashes denote principal values. This equation can be put into a more familiar
form by writing them in terms of the singular resolvents G̃, where the poles in
1/u have been absorbed into the definition of the resolvent, and furthermore tak-
ing linear combinations (the quasi-momenta) pi ∼±(G̃i−1 − G̃i ) (for details see [6])
so that we arrive at

Mkk /̃Gk +
∑
j 
=k

Mkj G̃ j (u)= /pk(u)− /pk+1(u)=2πn(k)
j , u ∈C (k)

j . (3.10)

This is precisely the type of equation that characterizes the spectral curve in the
superstring case. Again, the asymptotics of the resolvent/quasi-momenta encode
the relation to the global charges

Gk(u)=− 1
u

∫

Ck

dvρk(v)+ O

(
1
u2

)
=− Jk

u
+ O

(
1
u2

)
. (3.11)

A precise comparison of the SYM curve [6,7] and string curve [8] can be found
in [7]. The main features are, that the asymptotics and constraints on the quasi-
momenta agree up to a redefinition of the spectral parameter and modulo pole
structure, and thus, also the algebraic curves are in agreement.
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4. Semi-Classical Quantization of the Spectral Curve

Apart from giving a general, concise description of classical solutions, the spec-
tral curve is a powerful means to compute quantum fluctuations. In part [2] of
the review, the quantization around classical solutions with large spins, was already
described from the point of view of the sigma-model: a classical field configura-
tion is perturbed and the fluctuations quadratically quantized. The sum of the fluc-
tuation frequencies make up the energy shift at one-loop (in α′, or equivalently
1/

√
λ). We will not give an alternative approach, based on the algebraic curve, and

present a general expression for the one-loop shift for general solutions.

4.1. PERTURBING THE SPECTRAL CURVE

A classical configuration can be viewed as a continuous collection of poles which
have condensed into the cuts C i j . This intuition is particularly transparent in
the comparison with the algebraic curve of the Yang-Mill theory, as discussed in
Section 3, where indeed, the cuts arose from condensation of Bethe roots. From
this point of view, semi-classical quantization naturally corresponds to adding small
fluctuations, or poles, to the classical configuration. Naturally, these fluctuations
will have polarizations, labeled by (i j), and amount to shifting the quasi-momenta

pi (x)→ pi (x)+ δi j pi (x). (4.1)

The energy shift is then obtained as the sum over all fluctuation frequencies. The
shifts in the quasi-momenta δi j pi (x) are constrained by the asymptotics etc of the
quasi-momenta, outlined in Section 2.4:

• The perturbed quasi-momenta will have to continue to satisfy the relation (2.14).
First we need to determine the position of the new pole xi j

n

pi (xi j
n )− p j (xi j

n )=2πni j . (4.2)

The physical poles correspond to solutions of this equation with |xi j
n |>1.3 The

fluctuation δ
i j
n pi will have to add a pole at xi j

n with residue, α(xi j
n ), such that

it changes the filling fraction Si j (2.21) by one, i.e.

δ
i j
n pi =± α(xi j

n )

x − xi j
n

, (4.3)

with

α(x)= 4π√
λ

x2

x2 −1
. (4.4)

3The inversion symmetry maps the region |x | > 1 maps to |x | < 1, so that considering one of
these regions (the physical region) is sufficient to describe the curve. Without loss of generality the
region |x |>1 is chosen to be the physical region.
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The total shifted quasi-momentum is obtained by summing over all fluctuations
with all relevant polarizations in (2.16)

δpi ∼
∑
(i j)

δ(i j) pi (x)=
∑
(i j)

εi N i j
n

α(xi j
n )

x − xi j
n

, (4.5)

where N i j
n label the excitations with mode number n and polarization (i j), and

the signs are

1= ε1̂ = ε2̂ =−ε3̂ =−ε4̂ =−ε1̃ =−ε2̃ = ε3̃ = ε4̃. (4.6)

From (2.14) it furthermore follows that

δpi (x + iε)− δp j (x − iε)=0, x ∈C
i j
n . (4.7)

• As in the classical case, the poles at x = ±1 have to be correlated due to the
Virasoro constraint

{δ p̂1, δ p̂2, δ p̂3, δ p̂4|δ p̃1, δ p̃2, δ p̃3, δ p̃4}
= {δα±, δα±, δβ±, δβ±|δα±, δα±, δβ±, δβ±}

x ±1
+ O(1). (4.8)

• The asymptotics at infinity (2.18) of the δi j pi can be easily read off

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ p̂1

δ p̂2

δ p̂3

δ p̂4

δ p̃1

δ p̃2

δ p̃3

δ p̃4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4π

x
√

λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+δ�/2 +N1̂4̂ + N1̂3̂ +N1̂3̃ + N1̂4̃+δ�/2 +N2̂3̂ + N2̂4̂ +N2̂4̃ + N2̂3̃−δ�/2 −N2̂3̂ − N1̂3̂ −N1̃3̂ − N2̃3̂−δ�/2 −N1̂4̂ − N2̂4̂ −N2̃4̂ − N1̃4̂

−N1̃4̃ − N1̃3̃ −N1̃3̂ − N1̃4̂−N2̃3̃ − N2̃4̃ −N2̃4̂ − N2̃3̂+N2̃3̃ + N1̃3̃ +N1̂3̃ + N2̂3̃+N1̃4̃ + N2̃4̃ +N2̂4̃ + N1̂4̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
x2

)
, (4.9)

where δ� parametrizes the shift in the energy E . From these asymptotics we
can also determine the fluctuation frequencies �

i j
n that are familiar from the

direct semi-classical quantization by

�
i j
n =−2δi,1̂ +

√
λ

2π
lim

x→∞ xδ
i j
n p1̂(x). (4.10)

The energy shift then takes the usual form, as sum over fluctuation frequencies

δ�=
∑
i j,n

N n
i j�

i j
n . (4.11)
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• Finally, the inversion symmetries extend trivially to the shifted quasi-momenta.
These rather inconspicuous transformations, however, turn out to be rather
powerful in determining the energy shifts. We shall see in section 4.2 how one
can derive a closed expression for the one-loop energy shift, by invoking the
asymptotics, pole structure, and inversion symmetry.

So far we covered all the constraints that follow from the asymptotics of the
classical quasi-momenta. In addition, the fluctuations will backreact upon the clas-
sical cuts and close to the branch-points (or cut-endpoints) we impose for
pi ∼√

(x −a) close to the branch-point x =a

δpi ∼ d
dx

pi . (4.12)

Solving these constraints in particular fixes δE , which is the desired one-loop
energy shift.

4.2. GENERAL EXPRESSION OF ONE-LOOP ENERGY SHIFT

Rather than presenting examples of computations of energy shifts using the alge-
braic curve, which can e.g. be found for a plentitude of solutions (BMN, spin-
ning string solutions, giant magnon) in the literature listed in the introduction, it
is perhaps more interesting to point out that using general properties of the quasi-
momenta constrain the energy shift such that closed expressions can be obtained
for fairly general solutions (for any number of cuts) [15]. We then apply it to the
circular string solution of Section 2.5. This will be essentially a trivial step, once
the general energy shift has been derived, and hopefully exemplifies that the alge-
braic curve approach is indeed very powerful for computing these effects.

4.2.1. Off-Shell Fluctuation Frequencies

The key idea is to introduce the concept of an off-shell fluctuation (also sometimes
referred to as quasi-energies), which means, defining the fluctuation as a function
of the spectral parameter x and a variable y, such that the following holds

δ
i j
n pk(x)= δi j pk(x; y)

∣∣∣
y=xi j

n
. (4.13)

This off-shell fluctuation δi j pk(x; y) is fixed by the same asymptotics as the on-
shell shift of quasimomenta δ

i j
n pk(x) except that the position of the pole is left

unfixed. In the same way, we can then define off-shell fluctuation energies, by
applying the same reasoning to (4.10)

�
i j
n = �i j (y)

∣∣∣
y=xi j

n
. (4.14)

The off-shell frequency is related for the particular case of the SU (2) principal
chiral model to the quasi-energy introduced in [18].
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It is simple to reconstruct the off-shell frequency from a given on-shell one �
i j
n .

We know that the mode number n is determined precisely by the requirement
pi (xi j

n ) − p j (xi j
n ) = 2πn, so that reverting this relation, treating n now as a func-

tion of pl(y) we obtain

�i j (y)= �
i j
n

∣∣∣
n→ pi (y)−p j (y)

2π

. (4.15)

We will now explain how, using the inversion symmetry (2.20), we can relate
many off-shell fluctuation energies. In this way we will find a powerful reduction
algorithm for the computation of the fluctuation energies and thus the one loop
energy shift

δ�1−loop = 1
2

∑
i j,n

(−1)Fi j �
i j
n , (4.16)

around a generic classical solution.

4.2.2. Frequencies from Inversion Symmetry

An important property of the quasi-momenta, which follows from the Z4-grad-
ing of the psu(2,2|4) superalgebra, is the inversion symmetry (2.20) under x →
1/x , which exchanges the quasi-momenta p1̃,4̃ ↔ p2̃,3̃ and likewise for the Ad S

hatted quasi-momenta. Thereby, a pole connecting the sheets (2̃, 3̃) at position y,
always comes with an image pole at position 1/y connecting the sheets (1̃, 4̃). We
can obtain a physical frequency �1̃4̃(y), by analytically continuing the off-shell fre-
quency �2̃3̃(y), inside the unit circle. This is because when we cross the unit-circle,
the physical pole for (2̃3̃) becomes unphysical, thereby rendering its image, which
lies now outside the unit-circle, a physical pole for (1̃4̃). More precisely, it was
shown in [15], that with this kind of reasoning we can compute the (1̂4̂) fluctu-
ation in terms of the (2̂3̂) one. For the Ad S fluctuations, indeed, the relation is

�1̂4̂(y)=−�2̂3̂(1/y)−2. (4.17)

This follows by invoking the general pole/asymptotics of the quasi-momenta and
in the inversion symmetry.

Similarly we can proceed for the S5 frequencies and relate �2̃3̃(y) with �1̃4̃(y). It
is clear that �1̃4̃(y)=−�2̃3̃(1/y) +constant, which can be fixed from �1̃4̃(∞)= 0.
Thus, the relation is similar to (4.17), except that the constant term differs:

�1̃4̃(y)=−�2̃3̃(1/y)+�2̃3̃(0). (4.18)

For the purpose of computing the one-loop shift these constants are irrelevant and
can be shown to cancel in the sum over frequencies.4

4Note, that in the case of Ad S4 ×CP
3 these constants play an important role.
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So far we have obtained the frequencies (14) from (23). In the next subsection
we will show how to derive all remaining frequencies. For a very large class of
classical solutions we will be able to extract all fluctuation energies, including the
fermionic ones, from the knowledge of a single S3 and a single Ad S3 fluctuation
energy.

4.2.3. Basis of Fluctuation Energies

For simplicity we consider only symmetric classical configurations that have pair-
wise symmetric quasi-momenta

p1̂,2̂,1̃,2̃ =−p4̂,3̂,4̃,3̃, (4.19)

This is in particular the case for all rank one solutions, i.e. su(2) and sl(2), how-
ever, a generalization to other cases should not be difficult.

Consider e.g. the fermionic frequency �2̂3̃(y). This energy can be thought of as
a linear combination of the physical fluctuation �2̃3̃(y) and an unphysical fluctua-
tion �2̂2̃(y) (it is unphysical, as it is not one of the fluctuations in (2.16)) momen-
tum-carrying polarisations

�2̂3̃(y)=�2̃3̃(y)+�2̂2̃(y). (4.20)

Since we are considering symmetric configurations, this unphysical fluctuation
energy is identical to �3̃3̂(y), i.e.

�2̂2̃(y)=�3̃3̂(y). (4.21)

As in (4.20), these unphysical fluctuations can be linearly combined in terms of
physical fluctuations

�2̂3̂(y)=�2̂2̃(y)+�2̃3̃(y)+�3̃3̂(y). (4.22)

Combining all these relations we obtain

�2̂3̃(y)= 1
2

(
�2̃3̃(y)+�2̂3̂(y)

)
. (4.23)

Proceeding in a similar fashion all frequencies can be obtained as linear combina-
tions of �2̃3̃(y) and �2̂3̂(y).

4.2.4. Final Result

The physical frequencies are labeled by the eight bosonic and eight fermionic
polarizations (2.16), so we can label them by

�i j , where i = (1̂, 2̂, 1̃, 2̃) j = (3̂, 4̂, 3̃, 4̃). (4.24)
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To construct the complete set of off-shell frequencies for a symmetric solution
(4.19) in terms of the two fundamental S3 and Ad S3 ones �2̃3̃(y) and �2̂3̂(y) and
their images under y →1/y, we first construct by inversion

�1̃4̃(y)=−�2̃3̃(1/y)+�2̃3̃(0)

�1̂4̂(y)=−�2̂3̂(1/y)−2.
(4.25)

The remaining frequencies are then obtained by linear combination of these four
fluctuation frequencies. In this way we obtain the following concise form for all
off-shell frequencies

�i j (y)= 1
2

(
�i i ′(y)+� j ′ j (y)

)
, (4.26)

where

(1̂, 2̂, 1̃, 2̃, 3̂, 4̂, 3̃, 4̃)′ = (4̂, 3̂, 4̃, 3̃, 2̂, 1̂, 2̃, 1̃). (4.27)

To finally, make the point, that these are indeed written in terms of the basis
frequencies �2̃3̃(y) and �2̂3̂(y), we present the complete set of frequencies

�1̃4̃(y)=−�2̃3̃(1/y)+�2̃3̃(0)

�2̃4̃(y)=�1̃3̃(y)= 1
2

(
�2̃3̃(y)+�1̃4̃(y)

)
= 1

2

(
�2̃3̃(y)−�2̃3̃(1/y)+�2̃3̃(0)

)

�1̂4̂(y)=−�2̂3̂(1/y)−2

�2̂4̂(y)=�1̂3̂(y)= 1
2

(
�2̂3̂(y)+�1̂4̂(y)

)
= 1

2

(
�2̂3̂(y)−�2̂3̂(1/y)

)
−1

�2̂4̃(y)=�1̃3̂(y)= 1
2

(
�2̂3̂(y)+�1̃4̃(y)

)
= 1

2

(
�2̂3̂(y)−�2̃3̃(1/y)+�2̃3̃(0)

)

�2̃4̂(y)=�1̂3̃(y)= 1
2

(
�2̃3̃(y)+�1̂4̂(y)

)
= 1

2

(
�2̃3̃(y)−�2̂3̂(1/y)

)
−1

�1̃4̂(y)=�1̂4̃(y)= 1
2

(
�1̃4̃(y)+�1̂4̂(y)

)
= 1

2

(
−�2̃3̃(1/y)−�2̂3̂(1/y)+�2̃3̃(0)

)
−1

�2̂3̂(y)=�2̃3̂(y)= 1
2

(
�2̃3̃(y)+�2̂3̂(y)

)
. (4.28)

In the complete one-loop energy shift (4.16) the constant terms in (4.28) will
drop out and thus do not need to be computed. This is in particular clear, when
performing the graded sum over �i j (xi j

n ) with the explicit frequencies in (4.28).
For the general case of not symmetric solutions, we can repeat the above analy-

sis, however the minimal set of required off-shell fluctuation frequencies will gener-
ically be larger than two.

4.2.5. Example: Circular String

We shall now specialize to the case of su(2) solutions, and then apply these results
to the circular string discussed in Section 2.5. For su(2) solutions, only p̃2 (and p̃3)
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will be connected by square root cuts (outside the unit circle) and

p̃2 =− p̃3, p̃1 =− p̃4 and p̂1 = p̂2 =− p̂3 =− p̂4, (4.29)

so that we will generically have 6 different frequencies, namely:

1. One internal fluctuation corresponding to a pole shared by p̃2 and p̃3 which
we denote by

�S(y)=�2̃3̃(y) (4.30)

2. Another S3 fluctuation connecting p̃1 and p̃4

�S̄(y)=�1̃4̃(y) (4.31)

3. Two fluctuations which live in S5 but are orthogonal to the ones in S3,

�S⊥(y)=�1̃3̃(y)=�1̃4̃(y) (4.32)

4. Four Ad S5 fluctuations

�A(y)=�1̂3̂(y)=�1̂4̂(y)=�2̂3̂(y)=�2̂4̂(y) (4.33)

5. Four fermionic excitations which end on either p2̃ or p3̃ (which are the sheets
where there are cuts outside the unit circle)

�F (y)=�1̂3̃(y)=�2̂3̃(y)=�2̃3̂(y)=�2̃4̂(y) (4.34)

6. Four fermionic poles which end on either p1̃ or p4̃ (which are the sheets where
there are cuts inside the unit circle)

�F̄ (y)=�1̂4̃(y)=�2̂4̃(y)=�1̃3̂(y)=�1̃4̂(y). (4.35)

These expressions apply to any su(2) solution, where the cuts are symmetrically
arranged (as commented earlier, the more general case follows trivially but may
require more “basis fluctuations”). They also apply to higher cut solutions, as
exemplified in [15].

We now apply these expressions to the circular string of Section 2.5. Recall, the
quasi-momenta for the circular string in S3 × R depend on the following param-
eters of the solution, which are the spin J and winding m repackaged as J =
J/

√
λ, κ =

√
J 2 +m2. The classical energy is

E = E√
λ

=
√

J 2 +m2. (4.36)

The classical solution is determined by the quasi-momenta 2.23. The fluctuations
were first determined from the sigma-model point of view in [40,41], the exact
expansion in terms of 1/J as provided in [42] and a derivation of the fluctuation
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frequencies using the algebraic curve was done in [12]. Here we will argue that we
only need two frequencies, namely the so-called “internal fluctuations” within the
S3 and one Ad S-fluctuation (which is trivial to obtain).

The off-shell frequencies in the (2̃, 3̃) and (2̂, 3̂) directions are

�2̃3̃(y)= 2m +n2̃3̃

κy
= 2m + p2̃−p3̃

2π

κy
=

2
√

m2 y2 +J 2

(
y2 −1

)√
m2 +J 2

�2̂3̂(y)= 2
y2 −1

.

(4.37)

This will be our only input. We will now demonstrate that the remaining su(2) fre-
quencies can be obtained with the methods outlined in the last section.

The AdS-frequencies are all given by generalizations of (4.17)

�1̂4̂(y)=−�2̂3̂(1/y)−2= 2
y2 −1

�2̂4̂(y)= 1
2

(
�2̂3̂ +�1̂4̂

)
= 2

y2 −1
(4.38)

�1̂3̂(y)=−�2̂4̂(1/y)−2= 2
y2 −1

.

Thus showing the expected agreement of all AdS fluctuation energies.
Let us move to the less trivial S5 fluctuations. From (4.28) we know

�1̃4̃(y)=−�2̃3̃(1/y)+�2̃3̃(0). (4.39)

Applied to (4.37) we get

�1̃4̃(y)=
2
(

−J y2 + y
√

m2 + y2J 2 +J

)

(
y2 −1

)√
m2 +J 2

= n1̃4̃ y −2J

κ
, (4.40)

by recalling that n1̃4̃ = p1̃(y)−p4̃
2π

. The remaining frequencies are obtained by linear
combination and inversion

�1̃3̃(y)= 1
2

(
�1̃4̃ +�2̃3̃

)
=

y(m +n1̃3̃)−J −
√

m2 y2 +J 2

κ

�2̃4̃(y)=−�1̃3̃(1/y)−2
∂E

∂J
=

y(m +n2̃4̃)−J −
√

m2 y2 +J 2

κ
.

(4.41)

Finally we compute the fermion frequencies, which are simply linear combinations

�1̂4̃(y)=�1̃4̃(y)+�1̂1̃(y)= n1̂4̃ y −J −κ

κ

�1̃3̂(y)=�1̃4̃(y)+�4̃3̂(y)= n1̂4̃ y −J −κ

κ
. (4.42)
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Similarly one can check the other fermionic frequencies

�1̂3̃(y)= 1
2

(
�2̃3̃(y)+�1̂4̂(y)

)= m +n1̂3̃

yκ
. (4.43)

The complete 1-loop energy shift is obtained by

δE = 1
2

∑
n∈Z

∑
(i j)

(−1)Fi j �i j (xi j
n ), (4.44)

where �i j (xi j
n ) are of course now the on-shell frequencies, obtained by evaluating

the off-shell frequencies at the position of the poles xi j
n . Note that the sum can be

converted into a contour integral in the n-plane (see e.g. [12,42]), which simplifies
the evaluation of the energy shift. This is in complete agreement with [12,40,41].
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