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Abstract. We review the duality and integrability of N =6 superconformal Chern–Simons
theory in three dimensions and IIA superstring theory on the background AdS4 ×CP3. We
introduce both of these models and describe how their degrees of freedom are mapped to
excitations of a long-range integrable spin-chain. Finally, we discuss the properties of the
Bethe equations, the S-matrix and the algebraic curve that are special to this correspon-
dence and differ from the case of N =4 SYM theory and strings on AdS5 × S5.
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1. Introduction

Almost all statements that have been made in the other chapters of this review
[1] about the duality and integrability of string theory on AdS5×S5 and N =4
Yang–Mills theory in four dimensions, also hold in an appropriately adopted form
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for a second example of the AdS/CFT correspondence. This example has been
known since June 2008 [2], and it is as concrete as the “old” one. Because the
involved space–times are of one less dimension, this correspondence is often
referred to as Ads4/CFT3 to distinguish it from the more established Ads5/CFT4.1

In the Ads5/CFT4 case, we had IIB superstring theory on AdS5 × S5 with self-
dual RR five-form flux F (5)∼ N through AdS5 and S5. This is now replaced by

IIA superstring theory on AdS4 ×CP3

with RR four-form flux F (4)∼ N through AdS4

and RR two-form flux F (2)∼ k through a CP1 ⊂CP3.
(1.1)

On the gauge theory side, we had N =4 superconformal Yang–Mills theory with
coupling gYM and gauge group U(N ) on R1,3. Now this is replaced by ABJM
theory:

N = 6 superconformal Chern–Simons-matter theory
with gauge group U(N )×U(N ) on R1,2

and Chern–Simons levels k and −k.
(1.2)

Both theories are controlled by two and only two parameters, k and N , which
take integer values. These parameters determine all other quantities like coupling
constants and the effective string tension. In ABJM theory, the Chern–Simons
level k acts like a coupling constant. The fields can be rescaled in such a way that
all interactions are suppressed by powers of 1

k , i.e. large k is the weak coupling
regime. One can take a planar, or ’t Hooft, limit which is given by

k, N →∞, λ≡ N

k
= fixed. (1.3)

It is in this limit where integrability shows up and which is therefore the focus of
this review. On the gravity side, the string coupling constant and effective tension
are given by2

gs ∼
(

N

k5

)1/4

= λ5/4

N
,

R2

α′ = 4π
√

2λ, (1.4)

where R is the radius of CP3 and twice the radius of AdS4. These relations are
qualitatively the same as in the Ads5/CFT4 context. In the planar limit gs goes to
zero and thus the strings do not split or join. At small ’t Hooft coupling, the back-
ground is highly curved and the string is subject to large quantum fluctuations. At
large ’t Hooft coupling, the background is weakly curved which renders the sigma-
model weakly coupled and the string behaves classically.

The first equation in (1.4) contains a hint that the duality is about more than
the relationship between (1.1) and (1.2). If we are not in the ’t Hooft limit but if

1Since December 2009, also an Ads3/CFT2 correspondence has been discussed in the context
of integrability [3].

2There are corrections to the second relation at two loops in the sigma model [4].
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Table I. Comparison of symmetries

Ads5/CFT4 Ads4/CFT3

Global symmetry PSU(2,2|4) OSp(6|4)

Dynkin diagram

Residual symmetry SU(2|2)L ×SU(2|2)R SU(2|2)
Representations (2|2)L ⊗ (2|2)R =16 d.o.f (2|2)A ⊕ (2|2)B =8 d.o.f

The Dynkin diagram of PSU(2,2|4) contains two SU(2|2) branches which represent the
residual symmetries and exactly one momentum carrying root which we marked by shad-
ing it gray. This indicates that all 16 elementary excitations transform in a single irreduc-
ible representation with one fundamental index in each SU(2|2). The Dynkin diagram of
OSp(6|4) contains only one SU(2|2) branch, but two momentum carrying roots. Corre-
spondingly, the eight elementary excitations transform in two copies of the fundamental
representation of SU(2|2)

we let N � k5, then the string coupling gs becomes large. However, strongly cou-
pled IIA string theory is M-theory. Indeed, ABJM theory (1.2) at arbitrary value
of k and N is dual to [2]

M-theory on AdS4 × S7/Zk

with four-form flux F (4)∼ N through AdS4.
(1.5)

In other words, ABJM theory is the world-volume theory of a stack of N M2
branes moving on C4/Zk [2]. The duality of (1.1) and (1.2) is really only a cor-
ollary of this more general M/ABJM duality in the limit where k5 � N and where
therefore M-theory is well approximated by weakly coupled IIA string theory on a
AdS4 ×CP3 background3. The lecture notes [5] discuss the general M/ABJM cor-
respondence. However, in the planar limit (1.3), where k and N grow large with
equal powers, we are always in the IIA regime. Thus, by concentrating on the
question of integrability we are only concerned with IIA/ABJM. An extended and
largely self-contained review of the Ads4/CFT3 correspondence is forthcoming [6].

Overview. In a nutshell, the differences between Ads5/CFT4 and Ads4/CFT3, see
Table I, are as follows: the first duality involves theories that are invariant under
the supergroup PSU(2,2|4) and therefore are maximally supersymmetric (32 super-
charges), while the theories in the second duality are OSp(6|4)-symmetric, a group
which contains “only” 24 supercharges. After gauge fixing, the symmetry groups
reduce to two and one copy of SU(2|2), respectively. The 16 elementary excitations
in the 5/4d case transform in the representation (2|2)L ⊗ (2|2)R of the residual

3CP3 arises from writing S7 as S1 fibered over CP3 and by identifying the circle as the
M-theory direction which shrinks to zero size by the orbifold action of Zk in the large k limit.
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symmetry group, while there are only eight elementary excitations in the 4/3d case
which transform in the representation

(2|2)A−particles ⊕ (2|2)B−particles. (1.6)

In Sections 3 and 5 we will show how these two types of particles arise from the
gauge and string theory degrees of freedom, respectively.

Another difference between the two dualities is that the interpolation between
weak and strong coupling in Ads4/CFT3 is much more intricate. Take, e.g. the
magnon dispersion relation, which due to the underlying SU(2|2) symmetry is
fixed in either duality to be of the form [7] (see also [8])

E(p)=
√

Q2 +4h2(λ) sin2 p

2
, (1.7)

where Q is the magnon R-charge and where the function h(λ) is not fixed by
symmetry. The fundamental magnon in Ads5/CFT4 has charge Q = 1, while in
Ads4/CFT3 it has Q = 1

2 . In the Ads5/CFT4 case the function h(λ) turned out to
be simply

√
λ/4π , which can be argued to arise from S-duality [9]. In the pres-

ent case there is no such argument and indeed the function h happens to be quite
non-trivial. The weak and strong coupling asymptotics are given by

h(λ)=
⎧⎨
⎩
λ

[
1+ c1λ

2 + c2λ
4 +· · · ] for λ�1,√

λ
2 +a1 + a2√

λ
+· · · for λ�1,

(1.8)

where the leading terms were deduced in [10,11] and [11,12], respectively. In fact,
the λ-dependence of many other quantities like the S-matrix, the Bethe ansatz, the
Zhukowsky map, the universal scaling function, etc., are also related between the
Ads5/CFT4 and the Ads4/CFT3 correspondence by appropriately replacing λ by
h(λ). Despite this fact, the subleading terms seem to be scheme dependent. For
example, a worldsheet computation yields a non-zero a1 [13] while the algebraic
curve computation produces a1 =0 [14] which is also what is used in the Bethe an-
satz proposal [15]. In order to unambiguously compare different approaches, one
should therefore express all results in terms of a physical reference observable, and
neither in terms of λ nor h(λ).

2. N =6 Chern–Simons Matter Theory

Field content. ABJM theory is a three-dimensional superconformal Chern–Simons
theory with product gauge group U(N )× Û(N ) at levels ±k and specific matter
content. The quiver diagram visualizing the fields of the theory and their gauge
representations is drawn in Figure 1. The entire field content is given by two gauge
fields Aμ and Âμ, four complex scalar fields Y A, and four Weyl-spinors ψA. The
matter fields are N × N matrices transforming in the bi-fundamental representation
of the gauge group.
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Figure 1. Quiver diagram of ABJM theory. The arrows indicate the representations of the
fields under the gauge groups. The arrows are drawn from a fundamental to an anti-
fundamental representation.

Table II. Representations of ABJM fields

U(N ) Û(N ) SU(4)R SU(2)r U(1)� U(1)b

Aμ N2 1 1 3 1 0
Âμ 1 N2 1 3 1 0
Y A N N̄ 4 1 1

2 1
ψA N N̄ 4̄ 2 1 1

Global symmetries. The global symmetry group of ABJM theory, for Chern–
Simons level4 k > 2, is given by the orthosymplectic supergroup OSp(6|4) [2,16]
and the “baryonic” U(1)b [2]. The bosonic components of OSp(6|4) are the
R-symmetry group SO(6)R ∼=SU(4)R and the 3d conformal group Sp(4)∼=SO(2,3).
The conformal group contains the spacetime rotations SO(3)r ∼=SU(2)r and dilata-
tions SO(2)�∼=U(1)�. The fermionic part of OSp(6|4) generates the N =6 super-
symmetry transformations. The baryonic charge U(1)b is +1 for bi-fundamental
fields, −1 for anti-bi-fundamental fields, and 0 for adjoint fields. The representa-
tions in which the fields transform under these symmetries are listed in Table II.
For more details about the OSp(6|4) group theory in this context see [17]. Finally,
the model also possesses a discrete, parity-like symmetry. This might be surprising
since the Chern–Simons action is not invariant but changes sign under a canonical
parity transformation. The trick to make the model parity invariant is to accom-
pany the “naive” parity transformation by the exchange of the two gauge group
factors. The total transformation is a symmetry because the Chern–Simons terms
for the two gauge group factors have opposite signs.

Action. The ABJM action was first spelled out in all detail in [18] in N =2 super-
space and in component form. An N =3 [19], an N =1 [20], and an N =6 [21]
superspace version is also known. The component action using the conventions of
[18] reads

4We are ignoring the symmetry enhancement to OSp(8|4) at k = 1 and k = 2, because for the
purpose of discussing integrability we have to work in the ’t Hooft limit where k is large.
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S = k

4π

∫
d3x

[
εμνλ tr

(
Aμ∂ν Aλ+ 2i

3
AμAν Aλ− Âμ∂ν Âλ− 2i

3
Âμ Âν Âλ

)

− tr(DμY )† DμY − i trψ† /Dψ− Vferm − Vbos

]
, (2.1)

where the sextic bosonic and quartic mixed potentials are

V bos=− 1
12

tr
[
Y AY †

AY BY †
BY C Y †

C +Y †
AY AY †

BY BY †
C Y C

+4Y AY †
BY C Y †

AY BY †
C −6Y AY †

BY BY †
AY C Y †

C

]
. (2.2)

V ferm= i

2
tr

[
Y †

AY Aψ†BψB −Y AY †
AψBψ

†B +2Y AY †
BψAψ

†B −2Y †
AY Bψ†AψB

−εABC DY †
AψBY †

CψD + εABC DY Aψ†BY Cψ†D
]
. (2.3)

The covariant derivative acts on bi-fundamental fields as

DμY =∂μY + i AμY − iY Âμ, (2.4)

while on anti-bi-fundamental fields it acts with Aμ and Âμ interchanged. Accord-
ing to the M-theory interpretation, this theory describes the low-energy limit of
N M2 branes probing a C4/Zk singularity. The three-dimensional spacetime of
ABJM theory is the world-volume of those M2 branes. For conventions and fur-
ther details we refer to [18].

Perturbation theory and ’t Hooft limit. Note that the Chern–Simons level occurs
in (2.1) as an overall factor of the entire action. Alternatively, one can rescale the
fields in such a way that all quadratic terms come without any factors of k and
interactions of order n come with 1

kn/2−1 . Either way, this shows that g2
CS ≡ 1

k acts
like a coupling constant of ABJM theory, quite similar to g2

YM in N = 4 SYM,
though of course k has to be an integer to preserve non-abelian gauge symmetry.
As announced in the introduction, the theory can be restricted to the planar sector
by taking the ’t Hooft limit (1.3) which introduces the effective coupling

λ≡ g2
CS N = N

k
. (2.5)

In this limit the theory becomes integrable [10] (see also [11,22]) in the same sense
as we are used to in planar N =4 SYM theory and as we will discuss below.

Gauge group. The model can be generalized to have gauge group U(M)k ×U(N )−k

[23]. This generalization goes by the name ABJ theory. The M-theory interpre-
tation is given by min(M, N ) M2 branes allowed to move freely on C4/Zk and
|M − N | fractional M2 branes stuck to the singularity. The gauge theory action is
formally the same as in (2.1), except that the matter fields are now given by rect-
angular matrices. Thus two ’t Hooft couplings can be defined by

λ= M

k
, λ̂= N

k
, (2.6)
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and it becomes possible to take different planar limits depending on the ratio of λ
and λ̂. On the other hand, the generalized parity invariance of the ABJM theory is
explicitly broken, because now the two gauge group factors cannot be exchanged
anymore.

Deformation. It is possible to introduce independent Chern–Simons levels k and k̂
for the two gauge groups U(N ) and Û(N ) that do not sum to zero. This general-
ized theory possesses less supersymmetry and less global symmetry. It is proposed
to be dual to a type IIA background with the Romans mass F0 = k + k̂ turned on
[24]. This modification, however, seems to break integrability [25].

3. From ABJM Theory to the Integrable Model

Spin-chain picture. The integrability of the planar ABJM theory is best described
in terms of an integrable OSp(6|4) spin-chain which represents single-trace opera-
tors [10]. A qualitative difference between the case at hand and the case of N =4
SYM is that the ABJM spin-chain is an “alternating spin-chain.” Because the
matter fields are in bi-fundamental representations of the product gauge group
U(N )× Û(N ), gauge invariant operators need to be built from products of fields
that transform alternatingly in the representations (N, N̄) and (N̄,N), e.g.

tr(Y 1Y †
4 Y 1Y †

4 · · · ). (3.1)

Thus, the spin-chain has even length and the fields on the odd sites are distinct
from the ones on the even sites. On the odd sites, we can have any of the 4B +
8F fields Y A,ψAα, and on the even sites, we can have any of the 4B + 8F fields
Y †

A,ψ
†A
α . We can also act with an arbitrary number of derivatives Dμ= Dαβ onto

the fields, but derivatives do not introduce extra sites. Also field strength insertions
do not count as extra sites as they can be written as anti-symmetrized derivatives.

Spin-chain excitations. In the spin-chain description, the ABJM fields are distin-
guished according to whether they represent the vacuum (or “down spin”), or ele-
mentary or multiple excitations. A convenient and common choice for the vacuum
spin-chain is the BPS operator (3.1), i.e. Y 1 is the vacuum on the odd sites, and
Y †

4 is the vacuum on the even sites.
Selecting a vacuum breaks the OSp(6|4) symmetry group of ABJM theory down

to SU(2|2)×U(1)extra which becomes the symmetry group of the spin-chain model
[10,11]. The bosonic components of this SU(2|2) are SU(2)G × SU(2)r × U(1)E ,
where SU(2)G is the unbroken part of SU(4)R,SU(2)r ∼= SO(1,2)r is the Lorentz
group, and U(1)E is the spin-chain energy E =�− J which itself is a combination
of the conformal dimension � and a broken SU(4)R generator J . The charges of
the fields under these groups are listed and explained in Table III.

By construction, the ground state spin-chain (3.1) has energy E =�− J =0. This
spin-chain can be excited by replacing one of the vacuum fields by a different field



408 THOMAS KLOSE

Table III. Charges of fields

SU(4)R SU(2)G ′ SU(2)G U(1)extra U(1)� SU(2)r U(1)E
[p1,q, p2] J � s E =�− J

Y 1 [1,0,0] +1/2 0 +1 1/2 0 0
Y 2 [−1,1,0] 0 +1/2 −1 1/2 0 1/2
Y 3 [0,−1,1] 0 −1/2 −1 1/2 0 1/2
Y 4 [0,0,−1] −1/2 0 +1 1/2 0 1
ψ1± [−1,0,0] −1/2 0 −1 1 ±1/2 3/2
ψ2± [1,−1,0] 0 −1/2 +1 1 ±1/2 1
ψ3± [0,1,−1] 0 +1/2 +1 1 ±1/2 1
ψ4± [0,0,1] +1/2 0 −1 1 ±1/2 1/2
D0 [0,0,0] 0 0 0 1 0 1
D± [0,0,0] 0 0 0 1 ±1 1
Y †

1 [−1,0,0] −1/2 0 −1 1/2 0 1

Y †
2 [1,−1,0] 0 −1/2 +1 1/2 0 1/2

Y †
3 [0,1,−1] 0 +1/2 +1 1/2 0 1/2

Y †
4 [0,0,1] +1/2 0 −1 1/2 0 0
ψ†1± [1,0,0] +1/2 0 +1 1 ±1/2 1/2
ψ†2± [−1,1,0] 0 +1/2 −1 1 ±1/2 1
ψ†3± [0,−1,1] 0 −1/2 −1 1 ±1/2 1
ψ†4± [0,0,−1] −1/2 0 +1 1 ±1/2 3/2

The R-symmetry group SO(6)R ∼= SU(4)R splits up into SU(2)G ′ × SU(2)G × U(1)extra,
and the conformal group Sp(2,2)∼= SO(2,3) splits up into U(1)�× SU(2)r . The symme-
try group of the spin-chain is SU(2|2)× U(1)extra ⊃ SU(2)G × SU(2)r × U(1)E × U(1)extra.
The U(1)J generator J = p1+q+p2

2 is the Cartan generator of SU(2)G ′ , and the U(1)E
generator E is given by the difference �− J

or by acting with a covariant derivative. This procedure increases the energy in
quanta of δE = 1/2 by a total amount that can be read off from the last column
in Table III. If the energy increases by 1/2, then the excitation is an elementary
one. We find that the elementary excitations on the odd and even sites are given
by

“A”-particles: (Y 2,Y 3|ψ4+,ψ4−), (3.2a)

“B”-particles: (Y †
3 ,Y

†
2 |ψ†1

+ ,ψ
†1
− ), (3.2b)

respectively [11]. These are the two multiplets anticipated in (1.6). All other fields
correspond to composite excitations and are listed in Table IV.

Subsectors. A subsector is a set of fields which is closed under the action of the
spin-chain Hamiltonian, i.e. there is no overlap between spin-chains from within
a subsector with spin-chains from outside. The subsectors of ABJM theory above
the vacuum (3.1) are listed in Table V. To prove that these sectors are closed
to all orders in perturbation theory, one defines a positive semi-definite charge
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Table IV. Multi-excitations

Multi-excitation Made of

Double excitations Y †
1 Y 1,Y 4Y †

4 Y 2Y †
2 ±Y 3Y †

3

ψ2Y †
4 ,ψ

†3Y 1 ψ4Y †
2 ±Y 3ψ†1

ψ3Y †
4 ,ψ

†2Y 1 ψ4Y †
3 ±Y 2ψ†1

Triple excitations ψ1Y †
4 Y 1 Y 2ψ†1Y 3

ψ†4Y 1Y †
4 Y †

2ψ4Y †
3

DμY 1Y †
4 ψ4γμψ

†1

In order to determine which elementary excitations a composite is made out of, one needs
to compare their SU(2|2)×U(1)extra charges. For example, for the triple excitation ψ1 one
can check that the charges of ψ1 together with the two background fields Y 1Y †

4 coincide

with the charges of the three elementary excitations Y 2ψ†1Y 3

Table V. Subsectors

Subsector Vacuum Single Double

Vacuum Y 1Y †
4

SU(2)×SU(2) Y 1Y †
4 Y 2Y †

3

OSp(2|2) Y 1Y †
4 ψ4+ψ†1

+ D+
OSp(4|2) Y 1Y †

4 Y 2ψ4+Y †
3ψ

†1
+ D+ψ3+ψ†2

+
SU(2) Y 1Y †

4 Y 2

SU(1|1) Y 1Y †
4 ψ4+

SU(2|1) Y 1Y †
4 Y 2ψ4+

SU(3|2) Y 1Y †
4 Y 2Y 3ψ4+ψ4−

This list of closed subsectors above the vacuum tr(Y 1Y †
4 Y 1Y †

4 · · · ) is complete, although a
specific subsector can be realized also by other fields. That would correspond to a different
embedding of the sector into the full theory. Note that there is no closed SL(2) sector that
is made only out of derivatives as we had in N =4 SYM. This is because derivatives are
double excitations of fermions with the above choice of vacuum. However, it is also pos-
sible to consider closed subsectors based on a different vacuum. There is, for instance, an
SL(2) sector built from derivatives onto the vacuum tr(Y 1ψ†1)L [26], which was studied,
e.g. in [27,28]

P = n1 p1 + n2q + n3 p2 + n4�+ n5s + n6b ≥ 0 from the eigenvalues of all opera-
tors that commute with the spin-chain Hamiltonian E =�− J . These are the five
Cartan generators of OSp(6|4) and the baryonic charge U (1)b. The set of fields
with P =0 constitute a closed subsector. Different subsectors are obtained by dif-
ferent choices for the numbers ni .
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Spin-chain Hamiltonian. Various works have computed the spin-chain Hamiltonian
for different subsectors to different loop orders with different methods in different
approximations. The first results were obtained in the SU(4) sector5 at two6 loops
[10,22] where the spin-chain Hamiltonian reads

H = λ2

2

2L∑
l=1

(
2−2Pl,l+2 + Pl,l+2 Kl,l+1 + Kl,l+1 Pl,l+2

)
. (3.3)

with Pl,m and Kl,m being the permutation and the trace operator, respectively,
and 2L being the length of the spin-chain. This Hamiltonian has been proven
to be integrable by means of an algebraic Bethe ansatz [10,22]. In the SU(2)×
SU(2) sector, independently studied in [11], the trace operators annihilate the states
and the Hamiltonian reduces to the sum of two decoupled Heisenberg XXX1/2

Hamiltonians, one acting onto the even sites and one acting onto the odd sites.
The only coupling between these two sublattices comes from the cyclicity condi-
tion which says that the total momentum of all excitations has to be zero (mod
2π ), not individually for the even and odd sites. Nevertheless, the Hamiltonians
will continue to be decoupled up to six loop order [15].

The extension of the two-loop Hamiltonian to the full theory was derived in
[26,29]. The integrability in the OSp(4|2) sector was proved by means of a Yangian
construction [26]. The generalization to ABJ theory at two loops was studied in
the scalar sector [30] and the full theory [29], which at this perturbative order
amounts to replacing λ2 in the ABJM result by λλ̂, cf. (2.6). That means that the
absence of parity in ABJ theory is not visible at two-loop order.

Beyond two loops only the dispersion relation, i.e. the eigenvalue of the
Hamiltonian on spin-chains with a single excitation, is known to date. It is of
the general form (1.7). The expansion of the interpolating function h to four-loop
order was computed for the ABJM and the ABJ theory in [31–33] with the result

h2(λ, λ̂)=λλ̂− (λλ̂)2
⎡
⎣2π2

3
+ π2

6

(
λ− λ̂√
λλ̂

)2
⎤
⎦ , (3.4)

where the ABJM expression is obtained from this by setting the two ’t Hooft
couplings equal to each other. We see that h(λ, λ) is for the form (1.8) with
c1 = −π2/3. Note that (3.4) is invariant under the exchange of λ and λ̂, even
though ABJ theory lacks manifest parity invariance. The fact that parity is not
broken in the spin-chain picture is not a consequence of integrability, because
as shown in [30] there are integrable but parity breaking spin-chain Hamiltoni-
ans already at two loops. Alternative explanations for the non-visibility of parity
breaking were proposed [30]. In ABJ theory one can also study the limit λ� λ̂ [31].

5This sector is closed at two-loop order but not beyond.
6There is no contribution to the Hamiltonian at an odd number of loops as in three dimensions

no such Feynman diagram is logarithmically divergent.
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In this limit, the Hamiltonian of the SU(2)× SU(2) sector is, at any loop order,
proportional to two decoupled Heisenberg spin-chain Hamiltonians [31]. An exact
expression for the λ-dependent prefactor, which gives a prediction for the function
h(λ, λ̂) in the limit λ̂�λ, has been conjectured in [34]. Very recently, even for the
case when λ= λ̂ an all-order guess for h2(λ) was made [33], that is in line with the
weak and strong coupling data.

At six loops only a subset of Feynman diagrams have been evaluated, namely
those which move the impurities along the spin-chain by the maximal amount that
is possible at this loop order [35]. The contributions from this subset to the dilata-
tion operator are consistent with the corresponding spin-chain being integrable [35].

Also non-planar contributions to the two-loop dilatation operator have been
computed in the SU(2)× SU(2) sector [36]. The degeneracy of the dimensions of
parity pairs at the planar level, which is a signature of integrability, is lifted by
the non-planar contributions [36]. At the non-planar level, one can also observe
the breaking of parity in the ABJ theory already at two loops [37].

4. Superstrings on AdS4 ×CP3

String background. AdS4 × CP3 with two- and four-form fluxes turned on is a
solution to IIA supergravity that preserves 24 out of 32 supersymmetries [38],
i.e. unlike AdS5 × S5 it is not maximally supersymmetric. The AdS4 × CP3 super-
space geometry has been constructed in [39]. The fermionic coordinates �1..32 =(
ϑ1..24, υ1..8

)
split into 24 coordinates ϑ , which correspond to the unbroken super-

symmetries of the background, and eight coordinates υ corresponding to the bro-
ken supersymmetries.

Green–Schwarz action. Although formal expressions for the Green–Schwarz super-
string action exist for any type II supergravity background [40], in practice it is
generically hopeless to find exact expressions for the supervielbeins. Nevertheless,
utilizing the connection to M-theory on AdS4 × S7, all functions that are required
to write down the Nambu–Goto form of the action, in particular the supervielbe-
ins and the NS–NS two-form superfield, were explicitly spelled out in [39], and the
simpler κ-gauge-fixed version was given in [41]. However, it is probably fair to say
that working with this action is still quite cumbersome as the explicit expressions
are rather involved.

Coset action. A more pragmatic approach to strings on AdS4 × CP3 has been
taken in [42,43]. The observation is that AdS4 is the coset SO(2,3)/SO(1,3) and
CP3 is the coset SO(6)/U(3), and that SO(2,3)× SO(6) is the bosonic subgroup
of OSp(6|4). Thus, the idea is to write the superstrings action as a sigma-model
on the supercoset

OSp(6|4)
SO(1,3)×U(3)

, (4.1)
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analogously to the PSU(2,2|4)/SO(1,4)× SO(5) coset model for superstrings on
AdS5 × S5 [44], which itself was inspired by the WZW-type action for strings in
flat space [45]. Again it is possible to define a Z4 grading [46] of the (complex-
ified) algebra [42,43], and when this grading is used to split up the current one-
form A=−g−1dg = A(0)+ A(1)+ A(2)+ A(3), constructed from a parametrization of
the coset representatives g, then the coset action is given by

S =− R2

4πα′

∫
dσ dτ str

[√−h hαβ A(2)α A(2)β +κεαβ A(1)α A(3)β

]
. (4.2)

The explicit form of this sigma-model action can look quite differently depending
on the choice of coset representative and the choice of gauge [42,43,47,48].

Fermions, κ-symmetry and singular configurations. There is a subtle problem with
the coset action (4.2). The supercoset (4.1) has only 24 fermionic directions, which
is the number of supersymmetries preserved by the background. However, indepen-
dent of how many supersymmetries are preserved, the Green–Schwarz superstring
always requires two Majorana–Weyl fermions with a total number of 32 degrees
for freedom. Thus, the coset model misses eight fermions and can therefore not
be equivalent to the GS string! This problem did not exist in the case of AdS5 ×
S5 because that background is maximally supersymmetric and the corresponding
supercoset has 32 fermionic directions.

It has been argued that the eight missing fermions υ are part of the 16 fer-
mionic degrees of freedom that due to κ-gauge symmetry are unphysical anyway,
i.e. to think of the coset action on (4.1) as an action with κ-symmetry partially
gauge-fixed. Of the remaining 24 fermions ϑ , further 8 should then be unphysical.
For this interpretation to be correct, the rank of κ-symmetry of the coset action
must be 8. This is in fact true for generic bosonic configurations [42,43]: unfor-
tunately, however, not for strings that move only in the AdS part of the back-
ground, in which case the rank of κ-symmetry is 12 [42]. This means that on
such a “singular configuration” the coset model is a truncation of the GS string
where instead of removing eight unphysical fermions (from 32 to 24), four phys-
ical fermions have been put to zero, while four unphysical fermions have been
retained.

The upshot is that the coset model is generically equivalent to the GS string, but
not on singular backgrounds. The consequence is that these singular backgrounds
cannot be quantized semi-classically within the coset description.

Near plane-wave expansion. One method for dealing with a curved RR-background
at the quantum level is to take a Penrose limit of the geometry which leads to
a solvable plane-wave background and then to include curvature corrections
perturbatively. Penrose limits of the AdS4 × CP3 background were studied in
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[11,12,49–51]. The near plane-wave Hamiltonian was derived in a truncation7 to
the bosonic sector in [52,53], for a sector including fermions in [54], and for the
full theory in [50].

Alternative approaches. The pure spinor formulation of the superstring on AdS4 ×
CP3 was developed in [55–57]. This approach is suitable for the covariant quanti-
zation of the string. Another possibility to obtain an action for the AdS4 × CP3

string is to start from the supermembrane on AdS4 × S7 and perform a double
dimensional reduction [58].

5. From AdS4 × CP3 to the Integrable Model

Evidence for integrability. The purely bosonic sigma-model on AdS4 ×CP3 is inte-
grable at the classical level, though quantum corrections spoil the integrability
[59,60]. For the super-coset model, classical integrability is also proven [42,43]. The
Lax connection found in [61] for the AdS5 × S5 case as a means of writing the
equations of motion in a manifestly integrable form is directly applicable here.
Moreover, the absence of particle production in the coset sigma-model has been
shown explicitly for bosonic amplitudes at tree-level [62]. However, we know that
the full GS string is more than the coset model. Therefore, although there are
generic arguments in favor of the integrability of the whole theory, the direct proof
of the integrability of the complete AdS4 × CP3 superstring still remains an open
problem [41]. Different integrable reductions of the sigma model have also been
studied [63–65].

Matching AdS4 ×CP3 to ABJM theory. The metric on AdS4 × CP3 has the two
factors:

ds2 = R2
[

1
4

ds2
AdS4

+ds2
CP3

]
, (5.1)

where R is the radius of CP3 which is twice the radius of AdS4. This relative size
is demanded by supersymmetry and comes out automatically when one starts from
the coset action (4.2). The radius R is related to the ’t Hooft coupling λ of ABJM
theory by (1.4). In global coordinates the metric for AdS4 reads

ds2
AdS4

= − cosh2 ρ dt2 +dρ2 + sinh2 ρ
(

dθ2 + sin2 θ dϕ2
)

(5.2)

with coordinate ranges ρ= 0 . . .∞, t = −∞ . . .∞, θ = 0 . . . π , and ϕ= 0 . . .2π . The
metric on CP3 is the standard Fubini-Study metric and can be written as

7This truncation is not consistent and the absence of the fermions yields divergences, which
were regularized using ζ -function regularization. Up to so-called “non-analytic” terms, the result is
correct.
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ds2
CP3 =dξ2 + cos2 ξ sin2 ξ

[
dψ+ 1

2
cos θ1 dϕ1 − 1

2
cos θ2 dϕ2

]2

+ 1
4

cos2 ξ
[
dθ2

1 + sin2 θ1 dϕ2
1

]
+ 1

4
sin2 ξ

[
dθ2

2 + sin2 θ2 dϕ2
2

]
. (5.3)

The coordinates (θ1, ϕ1) and (θ2, ϕ2) parameterize two two-spheres, the angle ξ =
0 . . . π2 determines their radii, and the angle ψ=0 . . .2π corresponds to the U(1)R

isometry.
The background admits five Killing vectors:

E =−i∂t , S =−i∂ϕ, Jϕ1 =−i∂ϕ1 , Jϕ2 =−i∂ϕ2 , Jψ =−i∂ψ (5.4)

leading to the five conserved charges: the worldsheet energy E , the AdS-spin S
and the CP3 momenta Jϕ1 , Jϕ2 , and Jψ . Note that this is one conserved charge
less than in the AdS5 × S5 case where there are two AdS-spins. This shows that
AdS4 × CP3 is less symmetric. The charges (5.4) are one choice of Cartan gener-
ators of SO(3,2)× SU(4). The angular momenta Jϕ1 and Jϕ2 correspond to the
Cartan generators of two SU(2) subgroups that on the gauge theory side trans-
form (Y 1,Y 2) and (Y 3,Y 4), respectively. The angular momentum Jψ is the U(1)R

generator. Thus, the angular momenta are related to the charges in Table III
according to

Jϕ1 = 1
2

p1, Jϕ2 = 1
2

p2, Jψ =q + 1
2
(p1 + p2). (5.5)

These relations are important for identifying classical strings with gauge theory
operators. It also suggests a parametrization of CP3 inside C4 in terms of the
embedding coordinates

y1 = cos ξ cos
θ1

2
e i(+ϕ1+ψ)/2 y3 = sin ξ cos

θ2

2
e i(+ϕ2−ψ)/2 (5.6)

y2 = cos ξ sin
θ1

2
e i(−ϕ1+ψ)/2 y4 = sin ξ sin

θ2

2
e i(−ϕ2−ψ)/2

which can be identified one-to-one with the scalar fields Y A of ABJM theory.

Worldsheet spectrum. In order to relate the string description to the spin-chain
picture, we need to quantize the worldsheet theory. It is only known how to do
this by semiclassical means, i.e. by expanding the string about a classical solu-
tion and quantizing the fluctuations. As can be seen from the charges, the clas-
sical string solution that corresponds to the vacuum spin-chain, or in other words
to the gauge theory operator tr(Y 1Y †

4 )
L (with L large so that the string becomes

classical), is a point-like string that moves along the geodesic parametrized by t =
κτ,ψ=κτ , located at the center of AdS4 (ρ=0) and the equator of CP3 (ξ=π/4),
and furthermore sitting at the north pole of the first sphere (θ1 = 0) and at the
south pole of the other sphere (θ2 = π ). Expanding the fields in fluctuations of
order λ−1/4 yields the mass spectrum given in Table VI.
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Table VI. Spectrum of fluctuations about the point-like string

Field Mass Dispersion relation

t,ψ 0 ωn =n

x1,2,3, ξ κ ωn =
√
κ2 +n2

θ1,2, ϕ1,2 κ/2 ωn =
√
(κ/2)2 +n2 ±κ/2

Two linear combinations of θ1,2 and ϕ1,2 possess the dispersion relation with +κ/2, and
two other linear combinations the one with −κ/2

The massless fluctuations t̃ and ψ̃ can be gauged away, i.e. set to zero. This is
the usual light-cone gauge, t +ψ ∼ τ , with one light-cone direction in AdS4 and
one in CP3. We are left with four light excitations (θ1,2, ϕ1,2) from CP3 and four
heavy excitations of which one (ξ ) comes from CP3 and the other three (x1,2,3)
from AdS4. For the eight physical fermions the same pattern is found: four light
excitations of mass κ/2 and four heavy excitations of mass κ.

These worldsheet modes transform in definite representations of the residual
symmetry group SU(2|2)× U(1)extra that is left after fixing the light-cone gauge
[66]. The light fields form two (2|2)-dimensional supermultiplets [48]:

“A”-particles: (Xa,ψα), (5.7a)

“B”-particles: (X†
a,ψ

†α), (5.7b)

where a = 1,2 and α= 1,2 are SU(2)G × SU(2)r indices. The doublet of complex
scalars Xa is a combination of θ1,2 and ϕ1,2, and the fermions are written in terms
of a complex spinor ψα. These two supermultiplets correspond precisely to the
A- and B-particles (3.2) in the spin-chain picture, respectively!

The heavy fields form one (1|4|3)-dimensional supermultiplet (ξ, χa
α , x1,2,3) [48].

The bosonic components are literally the coordinates used above, and the fermi-
onic component is a doublet of Majorana spinors. These heavy fields, however, do
not count as independent excitations in the spin-chain description; they are rather
an artifact of the above analysis which is done at infinite coupling λ. When going
to finite coupling they “dissolve” into two light particles [48]. At the technical level
this is seen by looking at which particle poles appear in Green’s functions at not
strictly infinite coupling [48,54]. The first observation is that in the free theory the
pole for the heavy particles with mass κ coincides with the branch point of the
branch cut that accounts for the pair production of two light modes with mass κ

2
each. When interactions are turned on, i.e. when 1/

√
λ corrections are considered,

the pole moves into the branch cut, and the statement is that the exact propagator
has a branch cut only.

Giant magnons. As we have just seen, the worldsheet fluctuations match the spin-
chain excitations, but only as far as their charges are concerned. The dispersion
relation of the worldsheet excitations is relativistic rather than periodic as in (1.7).
In order to see the periodic dispersion relation also on the string theory side,
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macroscopically many quanta must be excited. The results are classical string solu-
tions known as giant magnons [67], or dyonic giant magnons [68,69] if they have
at least two non-zero angular momenta. The dispersion relation of all dyonic giant
magnons are of the form (1.7) for appropriate values for Q.

The variety of giant magnons in CP3 is somewhat larger than in S5. The sim-
plest types are obtained by embedding the HM giant magnon [67] into subspaces
of CP3 [11] (see also [70]). There are two essentially different choices: one may
either pick a proper two-sphere inside CP3 or a two-sphere with antipodes iden-
tified. According to these subspaces the former choice leads to what is called the
CP1 (∼= S2) giant magnon [11] and the latter choice to the so-called RP2 (∼= S2/Z2)
giant magnon [11,12].

The RP2 giant magnon is in fact a threshold bound state of two HM giant
magnons, one inside each of the S2s parametrized by (θ1, ϕ1) and (θ2, ϕ2) in (5.3)
[12]. Therefore, this kind of giant magnon is sometimes referred to as the S2 × S2

magnon or as the SU(2)×SU(2) magnon. This is, however, somewhat misleading
as the two constituent magnons do not move independently.

The dyonic generalization of the CP1 giant magnon moves in a CP2 subspace
of CP3 and was found for momentum p =π in [71] and for general momenta in
[72]. This giant magnon does not have an analog in AdS5 × S5. The CP2 dyonic
giant magnons are in one-to-one correspondence with the elementary spin chain
excitations (3.2): the polarizations of the giant magnons match the flavors of the
excitations [73]. In [73] it has also been shown that the classical phase shifts in the
scattering of these dyonic giant magnons are consistent with the S-matrix proposed
by Ahn and Nepomechie [74]. The general scattering solutions of N giant magnons
have also been known since very recently [75], in fact for the much wider context
of giant magnons on CPn,SU(n) and Sn [76].

The dyonic generalization of the RP2 giant magnon moves in a RP3 subspace
of CP3 and was found in [63]. This giant magnon is the CDO dyonic giant ma-
gnon on S3 [69] embedded into RP3. It can be regarded as a composite of two
CP2 dyonic magnons with equal momenta [73]. Finally, by the dressing method
one can also find a two-parameter one-charge solution [72,77,78].

6. Solving Ads4/CFT3 Using Integrability

In this section, we will briefly discuss those aspects of the methods employed to
solve the Ads4/CFT3 model that differ from the ones in the Ads5/CFT4 case. For
an introduction to these tools, we refer to the other chapters of this review. For the
Bethe ansatz see [79], for the S-matrix see [80], for the algebraic curve see [81], and
for the thermodynamic Bethe ansatz and the Y -system see [82,83].

Asymptotic Bethe equations. The Bethe equations for the two-loop SU(4) sector
were derived within the algebraic Bethe ansatz scheme in [10], where also the
extension of the Bethe equations to the full theory, though still at one loop, were
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conjectured. The form of these equations is quite canonical and the couplings
between the Bethe roots is encoded in the Dynkin diagram of OSp(6|4), see
Table I. The all-loop extension of the Bethe equations was conjectured in [15].

The fact that we now have two types of momentum carrying roots—call them u
and v—means that the conserved charges are given by sums over all roots of both
of these kinds

Qn =
Ku∑
j=1

qn(u j )+
Kv∑
j=1

qn(v j ), (6.1)

where qn is the charge carried by a single root. The spin-chain energy, or anoma-
lous dimension, or string light-cone energy, is the second charge E = h(λ)Q2. The
other Bethe roots—call them r, s, and w—are auxiliary roots and influence the
spectrum only indirectly through their presence in the Bethe equations.

The SU(2) × SU(2) sector is given by only exciting the momentum carrying
roots. The SU(4) sector uses the roots u, v, r , though this sector is only closed at
two loops. The four components of an A-particle, cf. (3.2) and (5.7), correspond
to the states with one u root and excitation numbers {Kr , Ks, Kw} = {0,0,0}, or
{1,0,0}, or {1,1,0}, or {1,1,1} for the auxiliary roots. The same holds for the
B-particle if the u-root is replaced by one of type v. This accounts for all light
excitations. The heavy excitations are given by a stack of one of each kind of the
momentum carrying roots. This is the Bethe ansatz way of seeing that the heavy
excitations are compounds.

This Bethe ansatz has been put to a systematic test by comparing the predicted
eigenvalues with the direct diagonalization of the spin-chain Hamiltonian for var-
ious length-4 and length-6 states at two loops [84].

S-Matrix. It has been shown that the proposed all-loop Bethe ansatz can be der-
ived from an exact two-particle S-matrix [74]. The alternating nature of the spin-
chain naturally breaks the S-matrix up into pieces: interactions between two
A-particles, between two B-particles, and between one of each kind [74], where
each piece is proportional to the old and famous SU(2|2) S-matrix [7,85] from
Ads5/CFT4. Crossing symmetry relates AA- and B B- to AB-scattering and there-
fore does not fix the overall scalar factor for any of them uniquely. A solution that
is consistent with the Bethe equations was made in [74] and uses the BES dressing
phase [86].

This S-matrix does not have poles that correspond to the heavy particles, which
is in line with them not being asymptotic states. The heavy particles occur, how-
ever, as intermediate states. That is seen from the fact that they appear as inter-
nal lines in the Feynman diagrams that are used to derive the worldsheet S-matrix
from scattering amplitudes [48].

The S-matrix has the peculiarity that the scattering of A- and B-particles is
reflectionless [87]. Though at first unexpected, this property has been confirmed
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perturbatively at weak [88] and at strong coupling [48]. This reflectionlessness would
follow straightforwardly if one assumes that the two terms in (6.1) were individu-
ally conserved [89].

Algebraic curve. The algebraic curve for the Ads4/CFT3 duality was constructed
from the string coset sigma-model in [90]. It is a ten-sheeted Riemann surface q(x)
whose branches—or quasi-momenta—are pairwise related q1,2,3,4,5 = −q10,9,8,7,6.
The physical domain is defined for spectral parameter |x |> 1. The values of the
quasi momenta within the unit circle are related to their values outside it by an
inversion rule [90]. Branch cut and pole conditions are identical to the ones in
the Ads5/CFT4 case. The Virasoro constraints demand that the quasi momenta
q1, . . . ,q4 all have a pole with the same residue at x =1 and another one at x =−1,
while the quasi momentum q5 cannot have a pole at x =±1.

For a given algebraic curve, the charges of the corresponding string solution are
encoded in the large x asymptotics. For example, the curve

q1(x)=· · ·=q4(x)= L

2g

x

x2 −1
, q5(x)=0. (6.2)

carries the charges (�0, S, Jϕ1 , Jϕ2 , Jψ)= (L ,0, L
2 ,

L
2 , L) and δ�= 0 of tr(Y 1Y †

4 )
L

and thus corresponds to the vacuum. String excitations are represented by addi-
tional poles that connect the various branches. A dictionary between the polariza-
tions of the excitations and the different branch connections is given in [90]. The
light modes can be recognized as those which connect a non-trivial sheet with a
trivial sheet in (6.2), and the heavy modes are those which connect two non-trivial
sheets.

Thermodynamic Bethe ansatz and Y -system. The Y -system for the OSp(6|4) spin-
chain was conjectured along with the corresponding equations for Ads5/CFT4 in
[91]. A derivation of the Y -system, i.e. writing down the asymptotic Bethe ansatz
at finite temperature for the mirror theory, formulating the string hypothesis, and
Wick rotating back to the original theory, was performed in [92,93], and a modi-
fication of the original conjecture was found.
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