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Abstract. Scattering amplitudes in planar N =4 super Yang–Mills theory reveal a remark-
able symmetry structure. In addition to the superconformal symmetry of the Lagrangian
of the theory, the planar amplitudes exhibit a dual superconformal symmetry. The pres-
ence of this additional symmetry imposes strong restrictions on the amplitudes and is con-
nected to a duality relating scattering amplitudes to Wilson loops defined on polygonal
light-like contours. The combination of the superconformal and dual superconformal sym-
metries gives rise to a Yangian, an algebraic structure which is known to be related to the
appearance of integrability in other regimes of the theory. We discuss two dual formula-
tions of the symmetry and address the classification of its invariants.
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1. Introduction

The aim of this article is to give an overview of the role of extended symme-
tries in the context of scattering amplitudes in N = 4 super Yang–Mills. We will
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begin by examining the structure of the loop corrections in perturbation theory.
The scattering amplitudes are typically described in terms of scalar loop integrals.
The integrals contributing in the planar limit turn out to reveal a remarkable prop-
erty; namely, that when exchanged for their dual graphs they exhibit a new confor-
mal symmetry, dual conformal symmetry.

This symmetry of scattering amplitudes is also revealed if one considers the
strong coupling description which is given in terms of minimal surfaces in AdS5.
More detail on this subject can be found in [1]. A T-duality transformation of the
classical string equations of motion then relates scattering amplitudes to Wilson
loops defined on polygonal light-like contour. The T-dual space where the Wilson
loop is defined is related to the momenta of the particles in the scattering ampli-
tude. The relation to Wilson loops has been observed for certain amplitudes also
in the perturbative regime. From the symmetry point of view, the most impor-
tant consequence of this is that the conformal symmetry naturally associated with
the Wilson loop also acts as a new symmetry of the amplitudes. Thus, the dual
conformal symmetry is at least partially explained by the duality between ampli-
tudes and Wilson loops. The explanation is by no means complete as the dual
description only applies to the special class of maximally-helicity-violating (MHV)
amplitudes. However, it turns out that the notion of dual conformal symmetry
seems to apply to all amplitudes and furthermore naturally extends to a full dual
superconformal symmetry. In particular, tree-level amplitudes of all helicity types
are covariant under dual superconformal symmetry. We will describe the formu-
lation of these symmetries and discuss to what extent the symmetry is controlled
beyond tree level.

The original Lagrangian superconformal symmetry and the dual superconformal
symmetry are finite-dimensional algebras. Taken together, they do not close how-
ever, generating an infinite-dimensional Yangian symmetry. This structure arises in
many regimes of the planar AdS/CFT system and can be thought of as the indi-
cator of the integrability of the model. A natural question which arises with such
an infinite-dimensional symmetry to hand is whether one can classify all of its
invariants. It turns out that a remarkable integral formula which gives all possi-
ble leading singularities of the perturbative scattering amplitudes also fills the role
of providing all possible Yangian invariants. In some sense, this indicates that the
planar amplitude is being determined by its symmetry at the level of its leading
singularities. More concretely one can say that the four-dimensional integrand of
the amplitude is Yangian invariant up to a total derivative. It remains to be seen
to what extent these ideas can be extended to determine the loop corrections them-
selves, i.e. after doing the loop integrations.

2. Amplitudes at Weak Coupling

We will begin our discussion by examining perturbative scattering amplitudes in
N = 4 super Yang–Mills theory in the planar limit. Further details on scattering
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Figure 1. Integral topologies up to three loops. The external momenta flow in at the four cor-
ners in each topology.

amplitudes in perturbation theory can be found in [2]. A lot can be learned from
the simplest case of the four-gluon scattering amplitudes. Owing to supersymmetry,
the only non-zero amplitudes are those for two gluons of each helicity type
[3,4]. These amplitudes are examples of the so-called maximally-helicity-violating
or MHV amplitudes which have a total helicity of (n −4). For four particles, this
quantity vanishes and so by applying a parity transformation one can see that the
amplitudes are also anti-MHV or MHV amplitudes. We will confine our discus-
sion to the colour-ordered partial amplitudes from which the full amplitude can
be reconstructed from a sum over inequivalent colour orderings. MHV amplitudes
are particularly simple in that they can naturally be written as a product of the
rational tree-level amplitude and a loop-correction function which is a series in the
‘t Hooft coupling a,

A MHV
n =A MHV

n,tree Mn(p1, . . . , pn;a). (2.1)

One can write any amplitude in this form of course, but the special property of
MHV amplitudes is that the function Mn is a function which produces a constant
after taking 2l successive discontinuities in the Mandelstam variables at l loops. In
other words, all leading singularities of MHV amplitudes are proportional to the
MHV tree-level amplitude. Strictly speaking, the amplitude is infrared divergent
and the function Mn also depends on the regularisation parameters. The operation
of taking 2l discontinuities at l loops yields an infrared finite quantity however and
the regulator can, therefore, then be set to zero.

The function Mn is given by a perturbative expansion in terms of scalar loop
integrals. If we consider the four-particle case, then the relevant planar loop inte-
gral topologies appearing up to three-loop order are of the form shown in Figure 1
[5,6]. The integrals contributing to M4 all have a remarkable property—they exhibit
an unexpected conformal symmetry called ‘dual conformal symmetry’ [7]. The way
to make this symmetry obvious is to make a change in variables from momentum
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Figure 2. Dual diagram for the one-loop box. The black lines denote the original momentum
space loop integral. The propagators can equivalently be represented as scalar propagators in
the dual space, denoted by the blue lines.

parameterisation of such integrals to a dual coordinate representation [8].1

pμ
i = xμ

i − xμ

i+1 ≡ xμ

i,i+1, xμ

n+1 ≡ xμ

1 . (2.2)

We will illustrate this here on the example of the one-loop scalar box integral
which is the one-loop contribution to M4,

I (1) =
∫

d4k

k2(k − p1)
2(k − p1 − p2)

2(k + p4)
2
. (2.3)

In this case, the change in variables takes the form,

p1 = x12, p2 = x23, p3 = x34, p4 = x41. (2.4)

The integral can then be written as a four-point star diagram (the dual graph for
the one-loop box) with the loop integration replaced by an integration over the
internal vertex x5 as illustrated in Figure 2. In the new variables, a new symmetry
is manifest. If we consider conformal inversions of the dual coordinates,

xμ
i −→− xμ

i

x2
i

, (2.5)

then we see that the integrand, including the measure factor d4x5, is actually
covariant,

d4x5

x2
15x2

25x2
35x2

45

−→ (x2
1 x2

2 x2
3 x2

4 )
d4x5

x2
15x2

25x2
35x2

45

. (2.6)

The property of dual conformal covariance of the integral form is not restricted
to one loop, but continues to all loop orders so far explored [10,11]. For example,

1A similar transformation is used in the context of the BFKL equation in [9].
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Figure 3. Dual diagrams for the three-loop box and for the ‘tennis court’ with its numerator
denoted by the dashed line corresponding to a factor in the numerator of the square distance
between the two points.

at three loops, one of the relevant integrals require a precise numerator factor to
remain dual conformally covariant (see Figure 3). Note that the operation of draw-
ing the dual graph is only possible for planar diagrams. This is the first indication
that the dual conformal property is something associated with the integrability of
the planar theory.

Beyond tree level, the scattering amplitudes are infrared divergent. This can be
seen at the level of the integrals, e.g. as defined in (2.3). We, therefore, need to
introduce an infrared regulator. One choice is to use dimensional regularisation.
This breaks the dual conformal symmetry slightly since the integration measure is
then no longer four dimensional,

d4x5 −→d4−2εx5. (2.7)

Alternatively, one can regularise by introducing expectation values for the scalar
fields [12]. The mass parameters then play the role of radial coordinates in Ad S5.
This Coulomb branch approach has the advantage that the corresponding action
of dual conformal symmetry transforms the regularised integral covariantly. If all
the integrals appearing in the amplitude are dual conformal, it implies that ampli-
tudes on the Coulomb branch of N = 4 super Yang–Mills in the planar limit
exhibit an unbroken dual conformal symmetry, as long as one allows the mass
parameters to transform accordingly. Another useful feature of this regularisation
is the fact that the logarithmic divergences cannot mix with the O(m2) terms to
produce finite contributions, a situation common in dimensional regularisation (see
e.g. discussions in [13]). For further details on this idea, see [14–16] and for work
relating it to high-dimensional theories, see [17–19].

To discuss the consequences of dual conformal symmetry further, it is very con-
venient to introduce a dual description for the scattering amplitudes. In the dual
description, planar MHV amplitudes are related to Wilson loops defined on a
piecewise light-like contour in the dual coordinate space. The dual conformal sym-
metry of the amplitude is simply the ordinary conformal symmetry of the Wilson
loop. Because the conformal symmetry of a Wilson loop has a Lagrangian origin,
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it is possible to derive a Ward identity for it. This will show us more precisely
the constraints that dual conformal symmetry places on the form of the scattering
amplitudes.

3. Amplitudes and Wilson Loops

Let us consider the general structure of a planar MHV amplitude in perturba-
tion theory. As we have discussed, we can naturally factorise MHV amplitudes into
a tree-level factor and a loop-correction factor Mn . The factor Mn contains the
dependence of the amplitude on the regularisation needed to deal with the infra-
red divergences. Here, we will use dimensional regularisation. The amplitudes will,
therefore, depend on the regulator ε and some associated scale μ.

Because we are discussing planar colour-ordered amplitudes, it is clear that the
infrared divergences will involve only a very limited dependence on the kinemati-
cal variables. Specifically, the exchange of soft or collinear gluons is limited to sec-
tors between two adjacent incoming particles and thus the infrared divergences will
factorise into pieces which depend only on a single Mandelstam variable si,i+1 =
(pi + pi+1)

2.
Moreover, the dependence of each of these factors is known to be of a particular

exponentiated form [20–32] where there is at most a double pole in the regulator
in the exponent. When combining these two facts together, it is most natural to
write the logarithm of the loop corrections Mn ,

logMn=
∞∑

l=1

al

[
�

(l)
cusp

(lε)2
+�

(l)
col

lε

]∑
i

(
μ2

I R

−si,i+1

)lε

+FMHV
n (p1, . . . , pn;a)+O(ε). (3.1)

The leading infrared divergence is known to be governed by �cusp(a)=∑
al�

(l)
cusp,

the cusp anomalous dimension [33,34], a quantity which is so-called because it
arises as the leading ultraviolet divergence of Wilson loops with light-like cusps.
This is the first connection between scattering amplitudes and Wilson loops.

In [6], Bern, Dixon and Smirnov (BDS) made an all order ansatz for the form of
the finite part of the n-point MHV scattering amplitude in the planar limit. Their
ansatz had the following form,

FBDS
n (p1, . . . , pn;a)=�cusp(a)Fn(p1, . . . , pn)+ cn(a). (3.2)

Here, cn(a) is a term with no kinematical dependence, but which depends on the
coupling and the number of points. Its specific form will not be important for us
here. The notable feature of the ansatz (3.2) is that the kinematical dependence
enters only via the coupling-independent function Fn . This function could, there-
fore, be defined by the one-loop amplitude, making the ansatz true by definition at
one loop. The formula (3.2) was conjectured after direct calculations of the four-
point amplitude to two loops [5] and three loops [6]. It was found to be consis-
tent with the five-point amplitude at two loops [35,36] and three loops [37]. As we
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will see the results for four and five points can be explained by dual conformal
symmetry which also permits for a deviation from the form (3.2) starting from six
points. Indeed, the ansatz breaks down at six points and as we will see this is in
agreement with dual conformal symmetry and the relation between amplitudes and
Wilson loops.

In planar N = 4 super Yang–Mills theory, the connection between amplitudes
and Wilson loops runs deeper than just the leading infrared divergence. As we have
seen one can naturally associate a collection of dual coordinates xi with a gluon
scattering amplitude. Each dual coordinate is light-like separated from its neigh-
bours,

(xi − xi+1)
2 =0 (3.3)

as the difference xi − xi+1 is the momentum pi of an on-shell massless particle. The
collection of points {xi }, therefore, naturally defines a piecewise light-like polygonal
contour Cn in the dual space. A natural object that one can associate with such a
contour in gauge theory is the Wilson loop,

Wn =
〈
P exp

∮

Cn

A

〉
. (3.4)

Here, in contrast to the situation for the scattering amplitude, the dual space is
being treated as the actual configuration space of the gauge theory, i.e. the theory
in which we compute the Wilson loop is local in this space.

A lot is known about the structure of such Wilson loops. In particular, due to
the cusps on the contour at the points xi , the Wilson loop is ultraviolet divergent.
The divergences of such Wilson loops are intimately related to the infrared diver-
gences of scattering amplitudes [33,34,38]. Indeed, the leading ultraviolet diver-
gence is again the cusp anomalous dimension and one can write an equation very
similar to that for the loop corrections to the MHV amplitude,

logWn=
∞∑

l=1

al

[
�

(l)
cusp

(lε)2
+�(l)

lε

]∑
i

(−μ2
U V x2

i,i+2)
lε+FWL

n (x1, . . . , xn;a)+O(ε). (3.5)

The objects of most interest to us here are the two functions FMHV
n from (3.1)

and FWL
n from (3.5) describing the finite parts of the amplitude and Wilson loop,

respectively. In fact, there is by now a lot of evidence that in the planar theory, the
two functions are identical up to an additive constant,

FMHV
n (p1, . . . , pn;a)= FWL

n (x1, . . . , xn;a)+dn(a) (3.6)

upon using the change of variables (2.2). Here dn(a) is a term independent of the
kinematical variables whose precise form is not relevant to this discussion.

The identification of the two finite parts was first made at strong coupling
[39], where the AdS/CFT correspondence can be used to study the theory. In this
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regime, the identification is a consequence of a particular T-duality transformation
of the string sigma model which maps the AdS background into a dual AdS space.
Shortly afterwards, the identification was made in perturbation theory, suggesting
that such a phenomenon actually holds for all values of the coupling. The match-
ing was first observed at four points and one loop [40] and generalised to n points
in [41]. Two-loop calculations then followed [13,42–45]. In each case, the duality
relation (3.6) was indeed verified.

An important point is that dual conformal symmetry finds a natural home
within the duality between amplitudes and Wilson loops. It is simply the ordi-
nary conformal symmetry of the Wilson loop defined in the dual space. More-
over, because this symmetry is a Lagrangian symmetry from the point of view of
the Wilson loop, its consequences can be derived in the form of Ward identities
[42,43]. Importantly, conformal transformations preserve the form of the contour,
i.e. light-like polygons map to light-like polygons. Thus, the conformal transforma-
tions effectively act only on a finite number of points (the cusp points xi ) defining
the contour. The generator of special conformal transformations relevant to the
class of light-like polygonal Wilson loops is therefore

Kμ =
∑

i

[
xiμxi · ∂

∂xi
− 1

2
x2

i
∂

∂xμ
i

]
. (3.7)

Indeed, the analysis of [43] shows that the ultraviolet divergences induce an anom-
alous behaviour for the finite part FWL

n which is entirely captured by the following
conformal Ward identity

K μFWL
n = 1

2
�cusp(a)

∑
i

(
2xμ

i − xμ

i−1 − xμ

i+1

)
log x2

i−1,i+1. (3.8)

A very important consequence of the conformal Ward identity is that the finite
part of the Wilson loop is fixed up to a function of conformally invariant cross-
ratios,

ui jkl =
x2

i j x2
kl

x2
ik x2

jl

. (3.9)

In the cases of four and five edges, there are no such cross-ratios available due to
the light-like separations of the cusp points (3.3). This means that the conformal
Ward identity (3.8) has a unique solution up to an additive constant. Remarkably,
the solution coincides with the BDS all-order ansatz for the corresponding scatter-
ing amplitudes,

F (BDS)

4 = 1
4
�cusp(a) log2

(
x2

13

x2
24

)
+ const, (3.10)

F (BDS)
5 =−1

8
�cusp(a)

5∑
i=1

log

(
x2

i,i+2

x2
i,i+3

)
log

(
x2

i+1,i+3

x2
i+2,i+4

)
+ const. (3.11)
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In fact, the BDS ansatz provides a particular solution to the conformal Ward iden-
tity for any number of points. From six points onwards, however, the functional
form is not uniquely fixed as there are conformal cross-ratios available. At six
points, for example there are three of them,

u1 = x2
13x2

46

x2
14x2

36

, u2 = x2
24x2

51

x2
25x2

41

, u3 = x2
35x2

62

x2
36x2

41

. (3.12)

The solution to the Ward identity is, therefore,

F (WL)

6 = F (BDS)

6 + f (u1,u2,u3;a). (3.13)

Here, upon the identification pi = xi − xi+1,

F (BDS)

6 = 1
4
�cusp(a)

6∑
i=1

[
− log

(
x2

i,i+2

x2
i,i+3

)
log

(
x2

i+1,i+3

x2
i,i+3

)

+1
4

log2

(
x2

i,i+3

x2
i+1,i+4

)
− 1

2
Li2

(
1− x2

i,i+2x2
i+3,i+5

x2
i,i+3x2

i+2,i+5

)]
+ const, (3.14)

while f (u1,u2,u3;a) is some function of the three cross-ratios and the coupling.
As we have discussed the function f is not fixed by the Ward identity and has to
be determined by explicit calculation of the Wilson loop. The calculation of [41]
shows that at one loop f vanishes (recall that at one loop the BDS ansatz is true
by definition and the Wilson loop and MHV amplitude are known to agree for
an arbitrary number of points). At two loops, direct calculation shows that f is
non-zero [44,45]. Moreover the calculation [13] of the six-particle MHV amplitude
shows explicitly that the BDS ansatz breaks down at two loops and the same func-
tion appears there,

FMHV
6 = FWL

6 + const, FMHV
6 �= FBDS

6 . (3.15)

The agreement between the two functions FMHV
6 and FWL

6 was verified numeri-
cally to within the available accuracy. Subsequently the integrals appearing in the
calculation of the finite part of the of the hexagonal Wilson loop have been eval-
uated analytically in terms of multiple polylogarithms [46].

Further calculations of polygonal Wilson loops have been performed. The two-
loop diagrams appearing for an arbitrary number of points have been described
in [47] where numerical evaluations of the seven-sided and eight-sided light-like
Wilson loops were made. These functions have not yet been compared with the
corresponding MHV amplitude calculations [48,49] due to the difficulty of numer-
ically evaluating the relevant integrals. However given the above evidence it seems
very likely that the agreement between MHV amplitudes and light-like polygonal
Wilson loops will continue to an arbitrary number of points, to all orders in the
coupling.
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Although the agreement between amplitudes and Wilson loops is fascinating, it
is clearly not the end of the story. First, the duality as we have described it applies
only to the MHV amplitudes. In the strict strong coupling limit this does not mat-
ter since all amplitudes are dominated by the minimal surface in AdS, indepen-
dently of the helicity configuration [39]. At weak coupling that is certainly not the
case and non-MHV amplitudes reveal a much richer structure than their MHV
counterparts. Recently, the duality has been extended to take into consideration
non-MHV amplitudes [50,51] by introducing an appropriate supersymmetrisation
of the Wilson loop.

Even without regard to a dual Wilson loop, one may still ask what happens to
dual conformal symmetry for non-MHV amplitudes. To properly ask this ques-
tion, one must first deal with the notion of helicity since non-MHV amplitudes are
not naturally written as a product of tree-level and loop-correction contributions.
In considering different helicity configurations, we are led to the notion of dual
superconformal symmetry.

4. Superconformal and Dual Superconformal Symmetry

The on-shell supermultiplet of N = 4 super Yang–Mills theory is conveniently
described by a superfield �, dependent on Grassmann parameters ηA which trans-
form in the fundamental representation of su(4). The on-shell superfield can be
expanded as follows

�= G++ηA�A+ 1
2!η

AηB SAB+ 1
3!η

AηBηCεABC D�
D+ 1

4!η
AηBηCηDεABC DG−. (4.1)

Here G+,�A, SAB = 1
2εABC D S

C D
,�

A
, G− are the positive helicity gluon, gluino,

scalar, anti-gluino and negative helicity gluon states, respectively. Each of the pos-
sible states φ ∈{G+,�A, SAB,�

A
, G−} carries a definite on-shell momentum

pαα̇ =λαλ̃α̇, (4.2)

and a definite weight h (called helicity) under the rescaling

λ−→αλ, λ̃−→α−1λ̃, φ(λ, λ̃)−→α−2hφ(λ, λ̃). (4.3)

The helicities of the states appearing in (4.1) are {+1,+ 1
2 ,0,− 1

2 ,−1}, respectively.
If, in addition, we assign η to transform in the same way as λ̃,

ηA −→α−1ηA, (4.4)

then the whole superfield � has helicity 1. In other words, the helicity generator,2

h =−1
2
λα ∂

∂λα
+ 1

2
λ̃α̇ ∂

∂λ̃α̇
+ 1

2
ηA ∂

∂ηA
, (4.5)

2In terms of the superconformal algebra su(2,2|4), the operator h is the central charge.
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acts on � in the following way,

h�=�. (4.6)

When we consider superamplitudes, i.e. colour-ordered scattering amplitudes of the
on-shell superfields, then the helicity condition (or ‘homogeneity condition’) is sat-
isfied for each particle,

hiA (�1, . . . ,�n)=A (�1, . . . ,�n), i =1, . . . ,n. (4.7)

Supersymmetry acts on the on-shell superfield (4.1) with the following generators,

qαA =λαηA, q̄ α̇
A = λ̃α̇ ∂

∂ηA
. (4.8)

The tree-level amplitudes in N = 4 super Yang–Mills theory can be written as
follows,

A (�1, . . . ,�n)=An = δ4(p)δ8(q)

〈12〉 . . . 〈n1〉Pn(λi , λ̃i , ηi )=A MHV
n Pn . (4.9)

Here the arguments of the delta functions are given by the multiplicative symmetry
generators pαα̇ =∑

i λα
i λ̃α̇

i ,qαA =∑
i λα

i ηA
i . The MHV tree-level amplitude,

A MHV
n = δ4(p)δ8(q)

〈12〉 . . . 〈n1〉 , (4.10)

contains the delta functions δ4(p)δ8(q) which are a consequence of translation
invariance and supersymmetry and it can be factored out, as in (4.9), leaving
behind a function with no helicity,

hiPn =0, i =1, . . . ,n. (4.11)

The function Pn can be expanded in terms of increasing Grassmann degree (the
Grassmann degree always comes in multiples of 4 dues to invariance under su(4)),

Pn =1+PNMHV
n +PNNMHV

n + · · · +PMHV
n . (4.12)

The explicit form of the function Pn which encodes all tree-level amplitudes was
found in [52] by solving a supersymmetrised version [53–55] of the BCFW recur-
sion relations [56,57].

Maximally supersymmetric Yang–Mills is a superconformal field theory so we
should expect that this is reflected in the structure of the scattering amplitudes.
Indeed, the space of functions of the variables {λi , λ̃i , ηi } admits a representation
of the superconformal algebra. The explicit form of the representation acting on
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the on-shell superspace coordinates (λi , λ̃i , ηi ) is essentially the oscillator represen-
tation [58],

pα̇α =
∑

i

λ̃α̇
i λα

i , kαα̇ =
∑

i

∂iα∂i α̇,

mα̇β̇ =
∑

i

λ̃i(α̇∂i β̇), mαβ =
∑

i

λi(α∂iβ),

d =
∑

i

[
1
2
λα

i ∂iα + 1
2
λ̃α̇

i ∂i α̇ +1
]

, r A
B =

∑
i

[
−ηA

i ∂i B + 1
4
δA

BηC
i ∂iC

]
,

qαA =
∑

i

λα
i ηA

i , q̄ α̇
A =

∑
i

λ̃α̇
i ∂i A,

sαA =
∑

i

∂iα∂i A, s̄ A
α̇ =

∑
i

ηA
i ∂i α̇,

c =
∑

i

[
1+ 1

2
λα

i ∂iα − 1
2
λ̃α̇

i ∂i α̇ − 1
2
ηA

i ∂i A

]
.

(4.13)

This realisation of the superconformal algebra also appears in the discussion of
gauge-invariant operators [59]. From the commutation relations of the supercon-
formal algebra, one finds that the algebra is generically su(2,2|4) with central
charge c =∑

i (1−hi ). Amplitudes are in the space of functions with helicity 1 for
each particle so we have that c =0 after imposing the helicity conditions (4.7) and
the algebra acting on the space of homogeneous functions is psu(2,2|4).

At tree level, there are no infrared divergences and amplitudes are annihilated
by the generators of the standard superconformal symmetry up to contact terms
which vanish for generic configurations of the external momenta (see [60–62]),

jaAn =0. (4.14)

Here, we use the notation ja for any generator of the superconformal algebra
psu(2,2|4),

ja ∈{pαα̇,qαA, q̄ α̇
A,mαβ, m̄α̇β̇ , r A

B,d, sα
A, s̄ A

α̇ , kαα̇}. (4.15)

In fact, even taking into consideration the contact term variations, one can con-
sider the invariance under the original superconformal transformations as being
unbroken [60]. To do this, one needs to add terms to the generators which com-
pensate the terms arising in the collinear regimes. This has the effect of introducing
operators which do not preserve the number of particles in a given amplitude and
invariance is best phrased in terms of a generating function for all amplitudes.

As well as superconformal symmetry, one can naturally define the action of dual
superconformal symmetry [63] on colour-ordered amplitudes. We have already seen
that one can define dual coordinates xi related to the particle momenta. These
variables implicitly solve the momentum conservation condition imposed by the
delta function δ4(p). The presence of a corresponding δ8(q) due to supersymmetry
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suggests defining new fermionic dual variables θi related to the supercharges.
Together, these variables parametrise a chiral dual superspace,

xαα̇
i − xαα̇

i+1 =λα
i λ̃α̇

i = pαα̇
i , θαA

i − θαA
i+1 =λα

i ηA
i =qαa

i . (4.16)

Dual superconformal symmetry acts canonically on the dual superspace variables
xi , θi . It also acts on the on-shell superspace variables {λi , λ̃i , ηi } to be compatible
with the defining relations (4.16). In particular, one can deduce an action of dual
conformal inversions on λi , λ̃i compatible with (4.16),

I [λα
i ]= (λi xi )

α̇

x2
i

, I [λ̃α̇
i ]= (λ̃i xi )

α

x2
i+1

. (4.17)

Alternatively, one may think about infinitesimal dual superconformal transforma-
tions. In this case, one should extend the canonical generators on the chiral
superspace variables xi and θi to act on the on-shell superspace variables λi , λ̃i

and ηi so that they commute with the constraints (4.16) modulo the constraints
themselves. We give explicitly the form of the dual conformal generator,

Kαα̇ =
∑

i

[
xiα

β̇ xi α̇
β∂iββ̇ + xi α̇

βθ B
iα∂iβB

+ xi α̇
βλiα∂iβ + xi+1α

β̇ λ̃i α̇∂i β̇ + λ̃i α̇θ B
i+1α∂i B

]
. (4.18)

The anti-chiral fermionic generators are also of interest,

Q
A
α̇ =

∑
i

[
θαA

i ∂iαα̇ +ηA
i ∂i α̇

]
, Sα̇A =

∑
i

[
xi α̇

β∂iβ A + λ̃i α̇∂i A

]
. (4.19)

The remaining generators can be found in [63]. Note that when restricted to the
on-shell superspace, the generators Q̄ A

α̇ and S̄α̇A coincide with the generators s̄ A
α̇

and q̄α̇A, respectively, from the original superconformal algebra.
Now that the symmetry has been defined we must also specify how the ampli-

tudes transform. In [63], it was conjectured, based on the supersymmetric forms of
the MHV and next-to-MHV (NMHV) tree-level amplitudes, that the full tree-level
superamplitude An,tree is covariant under dual superconformal symmetry. Explic-
itly, it was conjectured that the tree-level amplitudes obey

K αα̇An =−
∑

i

xαα̇
i An, (4.20)

SαAAn =−
∑

i

θαA
i An . (4.21)

The tree-level amplitudes also obey DAn = nAn and CAn = nAn , where D is the
dual dilatation generator which simply counts the overall dimension and C =∑

hi

is the dual central charge. The remaining generators of the dual superconformal
algebra annihilate the amplitudes.
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The amplitudes can be expressed in the dual variables by eliminating (λ̃i , ηi ) in
favour of (xi , θi ). If we relax the cyclicity condition on the dual points so that x1 �=
xn+1 and θ1 �= θn+1 then we have

An = δ4(x1 − xn+1)δ
8(θ1 − θn+1)

〈12〉 · · · 〈n1〉 Pn(xi , θi ). (4.22)

From the dual conformal transformations described earlier, we can see that the
MHV prefactor itself satisfies the covariance conditions (4.20, 4.21). The function
Pn must therefore be dual superconformally invariant. At the MHV level the func-
tion Pn is simply 1 while at NMHV level it is given by [52,63,64]

PNMHV
n =

∑
a,b

Rn,ab (4.23)

where the sum runs over the range 2 ≤a <b ≤n −1 (with a and b separated by at
least two) and

Rn,ab = 〈a a −1〉〈b b −1〉δ4 (〈n|xna xab|θbn〉+〈n|xnbxba |θan〉)
x2

ab〈n|xna xab|b〉〈n|xna xab|b −1〉〈n|xnbxba |a〉〈n|xnbxba |a −1〉 . (4.24)

This formula was originally constructed in [63] by supersymmetrising the three-
mass coefficients of NMHV gluon scattering amplitudes at one loop in [65]. It was
then derived from supersymmetric generalised unitarity [64] as the general form
of the one-loop three-mass box coefficient. One can see from the transformations
described earlier that each Rn,ab is by itself a dual superconformal invariant.

The pattern of invariance continues for all tree-level amplitudes. Indeed, the con-
jecture (4.20, 4.21) was shown to hold recursively in [53], using the supersymmetric
BCFW recursion relations. Indeed, the BCFW recursion relations admit a closed
form solution for all tree-level amplitudes in N = 4 super Yang–Mills theory [52]
with each term being a dual superconformal invariant by itself.

What happens to the symmetry of scattering amplitudes beyond tree-level? First,
we expect a breakdown of the original conformal symmetry due to infrared diver-
gences. One might also expect a breakdown of the dual superconformal symmetry
in the same way. However, at least for the MHV amplitudes, we have already seen
that the dual conformal symmetry is broken only mildly in that it is controlled by
the anomalous Ward identity (3.8). Based on the analysis of the one-loop NMHV
amplitudes, it was conjectured in [63] that the same anomaly controls the break-
down for all amplitudes, irrespective of the MHV degree. Specifically, if one writes
the all-order superamplitude as a product of the MHV superamplitude and an
infrared finite ratio function,3

An =A MHV
n Rn, (4.25)

3The ratio function Rn is infrared finite because the infrared divergences of all planar ampli-
tudes are independent of the helicity configuration and are thus contained entirely in the factor
A MHV

n .
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then the conjecture states that, setting the regulator to zero, Rn is dual conformally
invariant,

K μ Rn =0. (4.26)

In [64], it was argued that this conjecture holds for NMHV amplitudes at one
loop, based on the explicit calculations up to nine points using supersymmetric
generalised unitarity. Subsequently [66], it has been argued to hold for all one-
loop amplitudes by analysing the dual conformal anomaly arising from infrared
divergent two-particle cuts. It has also been directly checked for the two-loop six-
particle NMHV amplitudes [67].

Note that the conjecture (4.26) makes reference only to the dual conformal
generator K and not to the full set of dual superconformal transformations. The
reason is that some of these transformations overlap with the broken part of the
original superconformal symmetry. In particular, the generator Q̄ is not a symme-
try of the ratio function Rn . This fact is related to the breaking of the original
superconformal invariance by loop corrections since Q̄ is really the same symme-
try as s̄. Indeed, even at tree level s̄ is subtly broken by contact term contribu-
tions [60–62]. At one loop, unitarity relates the discontinuity of the amplitude in
a particular channel to the product of two tree-level amplitudes integrated over
the allowed phase space of the exchanged particles. The subtle non-invariance of
the trees therefore translates into non-invariance of the discontinuity and there-
fore of the loop amplitude itself [61,62,68]. In [68], a deformation of the ordinary
and dual superconformal generators is presented which takes into consideration
the one-loop corrections to the amplitudes. The existence of Wilson loops which
take into consideration the non-MHV amplitudes [50,51] suggests that the univer-
sality of the dual conformal anomaly is very natural from the dual perspective.

5. Yangian Symmetry

To put the dual superconformal symmetry on the same footing as invariance under
the standard superconformal algebra (4.14), the covariance (4.20, 4.21) can be
rephrased as an invariance of the tree-level amplitudes, An . This is achieved by a
simple redefinition of the generators [69],

K ′αα̇ = K αα̇ +
∑

i

xαα̇
i , (5.1)

S′αA = SαA +
∑

i

θαA
i , (5.2)

D′ = D −n. (5.3)

The redefined generators still satisfy the commutation relations of the supercon-
formal algebra, but now with vanishing central charge, C ′ = 0. Then dual super-
conformal symmetry is simply
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J ′
aAn =0. (5.4)

Here we use the notation J ′
a for any generator of the dual copy of psu(2,2|4),

J ′
a ∈

{
Pαα̇, QαA, Q̄ A

α̇ , Mαβ, M α̇β̇ , R A
B, D′, S′A

α , S
α̇

A, K ′αα̇
}

. (5.5)

To have both symmetries acting on the same space, it is useful to restrict the
dual superconformal generators to act only on the on-shell superspace variables
(λi , λ̃i , ηi ). Then one finds that the generators Pαα̇, QαA become trivial while the
generators {Q̄, M, M̄, R, D′, S̄} coincide (up to signs) with generators of the stan-
dard superconformal symmetry. The non-trivial generators that are not part of
the ja are K ′ and S′. In [69] it was shown that the generators ja and S′ (or K ′)
together generate the Yangian of the superconformal algebra, Y (psu(2,2|4)). The
generators ja form the level-zero psu(2,2|4) subalgebra,4

[ ja, jb]= fab
c jc. (5.6)

In addition, there are level-one generators j (1)
a which transform in the adjoint

under the level-zero generators,

[ ja, jb
(1)]= fab

c jc
(1). (5.7)

Higher commutators among the generators are constrained by the Serre relation,5[
j (1)
a ,

[
j (1)
b , jc

]]
+ (−1)|a|(|b|+|c|) [ j (1)

b ,
[

j (1)
c , ja

]]
+ (−1)|c|(|a|+|b|) [ j (1)

c ,
[

j (1)
a , jb

]]

=h2(−1)|r ||m|+|t ||n|{ jl , jm, jn} far
l fbs

m fct
n f rst . (5.8)

The level-zero generators are represented by a sum over single particle generators,

ja =
n∑

k=1

jka . (5.9)

The level-one generators are represented by the bilocal formula [70,71],

ja
(1) = fa

cb
∑
k<k′

jkb jk′c. (5.10)

Thus finally the full symmetry of the tree-level amplitudes can be rephrased as

yAn =0, (5.11)

for any y ∈Y (psu(2,2|4)).
It is particularly simple to describe the symmetry in terms of twistor variables.

These variables will become especially relevant in the next section where we relate

4We use the symbol [O1, O2] to denote the bracket of the Lie superalgebra [O2, O1] =
(−1)1+|O1||O2|[O1, O2].

5The symbol {·, ·, ·} denotes the graded symmetriser.
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the symmetry to a conjectured formula for all leading singularities of planar N =
4 SYM amplitudes. In (2,2) signature the twistor variables are simply related to
the on-shell superspace variables (λ, λ̃, η) by a Fourier transformation λ −→ μ̃.
Expressed in terms of the twistor space variables Z A = (μ̃α, λ̃α̇, ηA), the level-zero
and level-one generators of the Yangian symmetry assume a simple form [69]

jA B =
∑

i

Z A
i

∂

∂Z B
i

, (5.12)

j (1)A
B =

∑
i< j

(−1)C

[
Z A

i
∂

∂Z C
i

Z C
j

∂

∂Z B
j

− (i, j)

]
. (5.13)

Both of the formulas (5.12) and (5.13) are understood to have the supertrace
proportional to (−1)A δA

B removed.6 In this representation, the generators of su-
perconformal symmetry are first-order operators while the level-one Yangian
generators are second order.

In [72], it was demonstrated that there exists an alternative T-dual representation
of the symmetry. The dual superconformal symmetries Ja which play the role of
the level-zero generators, while some of the level-one generators are induced by the
ordinary superconformal symmetries. In this case, the generators act on the func-
tion Pn , where the MHV tree-level amplitude is factored out.

JaPn =0, J (1)
a Pn =0. (5.14)

It is possible to rewrite the generators in the momentum (super)twistor representa-
tion defined in [73] W A

i = (λα
i ,μα̇

i , χ A
i ). These variables are algebraically related to

the on-shell superspace variables (λ, λ̃, η) via the introduction of dual coordinates
(4.16) and are the twistors associated to this dual coordinate space,

μα̇
i = xαα̇

i λiα, χ A
i = θαA

i λiα. (5.15)

These variables linearise dual superconformal symmetry in complete analogy with
the twistor variables Zi and the original superconformal symmetry,

JA
B =

∑
i

W A
i

∂

∂W B
i

. (5.16)

The original conformal invariance of the amplitude kαα̇An = 0 induces a second-
order operator that annihilates Pn . When combined with the dual superconformal
symmetry, one finds that the following second-order operators annihilate Pn ,

J (1)A
B =

∑
i< j

(−1)C

[
W A

i
∂

∂W C
i

W C
j

∂

∂W B
j

− (i, j)

]
. (5.17)

6One removes the supertrace of an (m|m)× (m|m) matrix MA
B by forming the combination

MA
B − 1

2m (−1)A +C δA
B MC

C . In addition to the supertrace gl(m|m) also has a central element

proportional to the identity δA
B . In the present context the trace of (5.12) vanishes due to the homo-

geneity conditions while (5.13) is traceless due to the antisymmetrisation in i and j .
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Figure 4. The tower of symmetries acting on scattering amplitudes in N =4 super Yang–Mills
theory. The original superconformal charges are denoted by j and the dual ones by J . Each
can be thought of as the level-zero part of the Yangian Y (psu(2,2|4)). The dual supercon-
formal charges K and S form part of the level-one j (1), while the original superconformal
charges k and s form part of the level one charges J (1). In each representation, the ‘negative’
level (P and Q or p and q) is trivialised. T-duality maps j to J and j (1) to J (1).

As in the case of the original superconformal symmetry, both formulas (5.16) and
(5.17) are understood to have the supertrace removed.

The operation we have performed is summarised in Figure 4. A very similar
picture also arises in considering the combined action of bosonic and fermionic
T-duality in the AdS sigma model [74–76]. It can be thought of as the algebraic
expression of T-duality in the perturbative regime of the theory.

Having described the symmetry of the theory, one might naturally ask how one
can produce invariants and such a question is motivated by the fact that individual
invariant terms in the tree-level amplitudes also appear at loop level as coefficients
of certain loop integrals [63–65]. This fact is intimately connected to the conjecture
of [77] about the leading singularities of the scattering amplitudes of N =4 super
Yang–Mills theory. The construction of invariants has been addressed in various
papers [72,78–80].

6. Grassmannian Formulas

In [77], a remarkable formula was proposed which computes leading singularities
of scattering amplitudes in N =4 super Yang–Mills theory. The formula takes the
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form of an integral over the Grassmannian G(k,n), the space of complex k-planes
in C

n . The integrand is a specific k(n − k)-form K to be integrated over cycles C
of the corresponding dimension, with the integral being treated as a multi-dimen-
sional contour integral. The result obtained depends on the choice of contour and
is non-vanishing for closed contours because the form has poles located on certain
hyperplanes in the Grassmannian,

L =
∫

C

K . (6.1)

The form K is constructed from a product of superconformally-invariant delta
functions of linear combinations of twistor variables. It is through this factor that
the integral depends on the kinematic data of the n-point scattering amplitude of
the gauge theory. The delta functions are multiplied by a cyclically invariant func-
tion on the Grassmannian which has poles. Specifically, the formula takes the fol-
lowing form in twistor space

LACCK(Z )=
∫

Dk(n−k)c

M1 . . .Mn

k∏
a=1

δ4|4
(

n∑
i=1

caiZi

)
, (6.2)

where the cai are complex parameters which are integrated choosing a specific con-
tour. The form Dk(n−k)c is the natural holomorphic globally gl(n)-invariant and
locally sl(k)-invariant (k(n − k),0)-form given explicitly in [81]. The denominator
is the cyclic product of consecutive (k × k) minors Mp made from the columns
p, . . . , p + k −1 of the (k ×n) matrix of the cai

Mp ≡ (p p +1 p +2 . . . p + k −1). (6.3)

As described in [77], the formula (6.2) has a GL(k) gauge symmetry which implies
that k2 of the cai are gauge degrees of freedom and therefore should not be inte-
grated over. The remaining k(n −k) are the true coordinates on the Grassmannian.
This formula (6.2) produces leading singularities of Nk−2MHV scattering ampli-
tudes when suitable closed integration contours are chosen. This fact was explicitly
verified up to eight points in [77] and it was conjectured that the formula produces
all possible leading singularities at all orders in the perturbative expansion.

The formula (6.2) has a T-dual version [81], expressed in terms of momentum
twistors. The momentum twistor Grassmannian formula takes the same form as
the original

LMS(W )=
∫

Dk(n−k)t

M1 . . .Mn

k∏
a=1

δ4|4
(

n∑
i=1

taiWi

)
, (6.4)

but now it is the dual superconformal symmetry that is manifest. The integration
variables tai are again a (k ×n) matrix of complex parameters and we use the nota-
tion Mp to refer to (k × k) minors made from the matrix of the tai . The formula
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(6.4) produces the same objects as (6.2), but now with the MHV tree-level ampli-
tude factored out. They, therefore, contribute to NkMHV amplitudes.

The equivalence of the two formulations (6.2) and (6.4) was shown in [82] via a
change in variables. Therefore, because each of the formulas has a different super-
conformal symmetry manifest, they both possess an invariance under the Yangian
Y (psl(4|4)). The Yangian symmetry of these formulas was explicitly demonstrated
in [72] by directly applying the Yangian level-one generators to the Grassmannian
integral itself.

In [72], it was found that applying the level-one generator to the form K yields
a total derivative,

J (1)A
B K =dA

B. (6.5)

This property guarantees that L is invariant for every choice of closed contour.
Moreover, it has been shown [79,80] that the form K is unique after imposing the
condition (6.5). In this sense, the Grassmannian integral is the most general form
of Yangian invariant. Moreover, replacing δ4|4 −→ δm|m , the formulas (6.2,6.4) are
equally valid for generating invariants of the symmetry Y (psl(m|m)) where one no
longer has the interpretation of the symmetry as superconformal symmetry. Thus,
the Grassmannian integral formula is really naturally associated with the series of
Yangians Y (psl(m|m)).

It is very striking that the leading singularities seem to be all given by Yangian
invariants and even more striking that they seem to exhaust all such possibilities.
The first of these statements follows from the analysis of leading singularities in
[83,84]. The second still requires rigorous proof, but is consistent with all investiga-
tions so far conducted of leading singularities and residues in the Grassmannian.
In some sense, one can say that the leading singularity part of the amplitude is
being determined by its symmetry. In fact, the invariance of the leading singular-
ities is equivalent to the statement that the all-loop planar integrand is Yangian
invariant up to a total derivative. This was shown by constructing it via a BCFW
type recursion relation in a way which respects the Yangian symmetry [83].

It is not yet clear if the full Yangian invariance Y (psl(4|4)) exhibits itself on
the actual amplitudes themselves (i.e. after the loop integrations have been per-
formed). As we have discussed, the various symmetries are broken by the loop
corrections. The breaking of the dual conformal symmetry is mild in the sense
that its anomalous variation is known (and simple) and hence under control. The
real problem lies in the breakdown of the original (super) conformal symmetry. At
one loop for MHV amplitudes (or Wilson loops), a Y (sl(2)) ⊕ Y (sl(2)) subalge-
bra of the full symmetry is present [85] for a special restricted two-dimensional
kinematical setup [86]. It is possible to consider a particular finite, conformally
invariant ratio of light-like Wilson loops, introduced in [87,88] to understand the
OPE properties of light-like Wilson loops. The conformal symmetry of this setup
is sl(2)⊕ sl(2) and, acting on the finite ratio, the two commuting symmetries each
extend to their Yangians in a natural way. This is equivalent to the effects of the
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original conformal symmetry in the two-dimensional kinematics. It remains to be
seen to what extent this statement can be extended beyond the restricted kinemat-
ics and beyond one loop. Because the symmetry manifests itself as certain second-
order differential equations, it is possible that the differential equations found in
[89] for certain momentum twistor loop integrals will be important in understand-
ing whether this can be implemented. If the Yangian structure does manifest itself
on all the loop corrections this would in some sense amount to the integrability of
the S-matrix of planar N =4 super Yang–Mills theory.
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