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Abstract. There is a growing amount of evidence that QCD (and four-dimensional gauge
theories in general) possesses a hidden symmetry which does not exhibit itself as a symme-
try of classical Lagrangians but is only revealed on the quantum level. In this review we
consider the scale dependence of local gauge invariant operators and high-energy (Regge)
behavior of scattering amplitudes to explain that the effective QCD dynamics in both cases
is described by completely integrable systems that prove to be related to the celebrated
Heisenberg spin chain and its generalizations.
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1. Introduction

QCD is a four-dimensional gauge theory describing strong interaction of quarks
and gluons. There is a growing amount of evidence that QCD (and Yang–Mills
theories in general) possesses a hidden symmetry. This symmetry has a dynami-
cal origin in the sense that it is not seen at the level of classical Lagrangian and
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Figure 1. The total cross-section of deep inelastic scattering γ ∗(q) + h(p) → everything is
related by the optical theorem to imaginary part of the forward scattering amplitude. Solid
and wavy lines denote quarks and gluons, respectively.

manifests itself at the quantum level through remarkable integrability properties of
effective dynamics.

The simplest example which allows us to explain integrability phenomenon is
a process of deeply inelastic scattering (DIS) of an energetic hadron off a vir-
tual photon, γ ∗(q)+ h(p)→ everything. This process played a distinguished rôle
in early days of QCD development and it led, in particular, to important discov-
eries such as QCD factorization and formulation of a parton model for hard pro-
cesses (see e.g. [1]). The total cross-section of DIS process is related by the optical
theorem to an imaginary part of the forward scattering amplitude γ ∗(q)+h(p)→
γ ∗(q)+h(p) (see Figure 1). It is parameterized by the so-called structure functions
F(x,q2) depending on the photon virtuality q2<0 and dimensionless Bjorken var-
iable 0< x<1. The latter is related to the total center-of-mass energy of the process
as s = (p +q)2 =−q2(1− x)/x .

The integrability has been first discovered in References [2–5] in the study of
high-energy, s �−q2 (or equivalently x → 0) asymptotics of F(x,q2). Experimen-
tal data indicate that the structure functions increase in this limit as a power of
the energy, F(x,q2) ∼ (1/x)ω, in a quantitative agreement with the Regge the-
ory prediction. At weak coupling, the same behavior can be obtained through
resummation of perturbative corrections to the structure functions enhanced by
logarithm of the energy [6,7]. The structure functions obtained in this way satisfy
nontrivial multi-particle Bethe–Salpeter like evolution equations [8,9]. These equa-
tions have a rich mathematical structure – conformal SL(2,C) invariance, holo-
morphic separability, nontrivial integrals of motion [10–12], but they have resisted
analytical solution for some time. A breakthrough occurred after it was found
[2–5] that, in multi-color limit, these equations can be mapped into a Schödinger
equation for a completely integrable quantum (noncompact) Heisenberg SL(2,C)
spin chain. This opened up the possibility of applying the quantum inverse scatter-
ing methods for the construction of the exact solution to the evolution equation in
planar QCD.

Later, similar integrability phenomenon has been found in the study of depen-
dence of the structure functions F(x,q2) on the momentum transferred q2. First
hints for integrability of the corresponding evolution equations in the planar limit
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have appeared in References [13,14] and the underlying integrable structures have
been identified in References [15–18]. At large Q2 = −q2, the operator product
expansion can be applied to expand the moments of the structure functions in
powers of a hard scale 1/Q

1∫

0

dx x N−1 F(x,q2)=
∑
L≥2

cN ,L(αs(Q2))

QL
〈p|ON ,L |p〉μ2=Q2 . (1.1)

Here the expansion runs over local composite gauge invariant operators (Wilson
operators) of Lorentz spin N and twist L. The corresponding coefficient functions
cN ,L(αs(Q2)) can be computed at weak coupling as a series in the QCD coupling
constant αs(μ

2)= g2/(4π) normalized at μ2 = Q2. At the same time, the matrix
element of the Wilson operator with respect to hadron state 〈p|ON ,L |p〉μ2=Q2 is
a nonperturbative quantity. Its absolute value cannot be computed perturbatively,
whereas its dependence on the hard scale Q2 is governed by the renormalization
group (Callan–Symanzik) equations

μ2 d
dμ2

〈p|O(α)
N ,L |p〉=−γ (α)N ,L(αs)〈p|O(α)

N ,L |p〉. (1.2)

Here we introduced the superscript (α) to indicate that for given N and L there
are a few Wilson operators parameterized by the index α. The Callan–Symanzik
equation (1.2) has the meaning of a conformal Ward identity for the Wilson oper-
ators with the anomalous dimension γ

(α)
N ,L(αs) being the eigenvalue of the QCD

dilatation operator (see e.g. review [19]). For the twist-two operators (L =2), their
matrix elements are given by the moments of parton distribution functions
〈p|O(α)

N ,L=2|p〉∼∫ 1
0 dx x N−1 f (α)(x). Subsequently, the evolution equation (1.2) leads

to Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equation [20–22] for f (α)(x).
The Wilson operators are built in QCD from elementary quark and gluon fields

and from an arbitrary number of covariant derivatives. In general, such operators
mix under renormalization with other operators carrying the same Lorentz spin
and twist. Diagonalizing the corresponding mixing matrix we can find the spec-
trum of the anomalous dimensions γ (α)N ,L(αs). For the Wilson operators of the low-
est twist, L = 2, the anomalous dimensions can be obtained in the closed form
[23,24], whereas for higher twist operators the problem becomes extremely non-
trivial already at one loop due to a complicated form of the mixing matrix [25].
Quite remarkably, the spectrum of the anomalous dimensions can be found exactly
in QCD in the sector of the so-called maximal-helicity Wilson operators. The rea-
son for this is that the one-loop mixing matrix in QCD in this sector can be
mapped in the multi-color limit into a Hamiltonian of the Heisenberg SL(2,R)
spin chain [15–18]. The twist of the Wilson operator L determines the length of
the spin chain while the spin operators in the each site are defined by the gener-
ators of the ‘collinear’ SL(2,R) subgroup of the full conformal group [26,27]. As
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a result, the exact spectrum of one-loop anomalous dimensions can be computed
with a help of Bethe Ansatz [28–30].

Let us now examine the relation (1.1) for large Lorentz spin, N � 1. This limit
has important phenomenological applications in QCD [31–33]. It is known [23,24]
that the anomalous dimensions of Wilson operators grow as their Lorentz spin
increases. As a consequence, the dominant contribution to (1.1) only comes from
the operators with the minimal anomalous dimension γ

(0)
N ,L = minα γ

(α)
N ,L . Quite

remarkably, this anomalous dimension has a universal (twist L independent) loga-
rithmic scaling behavior at large N to all loops [34–36]

γ
(0)
N ,L =2�cusp(αs) ln N + O(N 0), (1.3)

where �cusp(αs) is the cusp anomalous dimension [37].
By definition, �cusp(αs) governs the scale dependence of Wilson lines with light-

like cusps [38–40] and its relation to anomalous dimensions of large spin Wilson
operators is by no means obvious. It can be understood [34,35] by invoking the
physical picture of deep inelastic scattering at large N . In terms of the moments
(1.1), large N corresponds to the region of x →1. For x →1 the final state in the
deep inelastic scattering has a small invariant mass, s = Q2(1 − x)/x 	 Q2, and it
consists of a collimated jet of energetic particles accompanying by soft gluon radi-
ation. Interacting with soft gluons, the particles inside the jet acquire the eikonal
phases given by the Wilson line operators P exp(i

∫ ∞
0 dt p · A(pt)) evaluated along

semi-infinite line in the direction of the particle momenta. In this way, for x → 1,
complicated QCD dynamics in deep inelastic scattering admits an effective descrip-
tion in terms of Wilson lines [41–43]. The relation (1.3) between anomalous dimen-
sions and cusp singularities of light-like Wilson lines is just one of the application
of this formalism. Another examples include the relation between light-like Wilson
loops with on-shell scattering amplitudes, Sudakov form factors, gluon Regge tra-
jectories etc. (see Reference [44] and references therein).

At present, integrability of the dilatation operator in planar QCD has been
verified to two loops in the SL(2;R) sector of maximal helicity operators [45–
47]. In other sectors, the dilatation operator receives additional contribution that
breaks integrability already to one loop. This contribution vanishes however for
large values of the Lorentz spin N �1 thus suggesting that integrability in planar
QCD gets restored to all loops in the leading large N limit [48]. Indeed, as was
shown in Reference [36], the all-loop dilatation operator in QCD in the SL(2;R)

sector can be mapped in the large N limit into a Hamiltonian of a classical
Heisenberg SL(2;R) spin chain. In this manner, the Wilson operators with large
N are described by the so-called finite-gap solutions and the spectrum of anom-
alous dimension can be found through their semiclassical quantization. In partic-
ular, the relation (1.3) naturally appears as describing the ground state energy of
the classical SL(2;R) spin chain of an arbitrary length L and total spin N .

The above mentioned integrability structures (those of the scattering amplitudes
in the Regge limit and of the dilatation operator) are not specific to QCD. They
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are also present in generic four-dimensional gauge theories including supersymmet-
ric Yang–Mills models with N =1,2,4 supercharges. Supersymmetry enhances the
phenomenon by extending integrability to a larger class of observables. In this con-
text, the maximally supersymmetric N =4 Yang–Mills theory is of a special inter-
est with regards to the AdS/CFT correspondence [49–51]. The gauge/string duality
hints that these structures should manifest themselves through hidden symmetries
of the scattering amplitudes and of anomalous dimensions in dual gauge theories
to all loops.

2. Integrability of Dilatation Operator in QCD

In this section, we review a hidden integrability of the dilatation operator in a
generic four-dimensional Yang–Mills theory describing the coupling of gauge fields
to fermions and scalars. Depending on the representation in which the latter fields
are defined, we can distinguish two different types of the gauge theories: QCD and
supersymmetric extensions of Yang–Mills theory (SYM).

In QCD, the gauge fields are coupled to quarks in the fundamental represen-
tation of the SU (Nc) gauge group. The quarks are described by four-component
Dirac fermions ψ and the gauge field strength Fμν = i

g [Dμ, Dν] is determined in
terms of the covariant derivatives Dμ=∂μ− ig Aa

μta with generators ta in the fun-
damental representation of the SU (Nc) normalized conventionally as tr (tatb)=
1
2δ

ab. In SYM theory, the gauge fields are coupled to fermions (gauginos) and sca-
lars belonging to the adjoint representation of the SU (Nc) group. The supersym-
metric Yang–Mills theories with N = 1,2 and 4 supercharges are obtained from
the Lagrangian of generic Yang–Mills theory by adjusting the number of gaugi-
no and scalar species. The gauginos are described by the Weyl fermion λA which
belongs to the fundamental representation of an internal SU (N ) symmetry group
with its complex conjugate λ̄A = (λA)∗. The scalars are assembled into the anti-
symmetric tensor φAB = −φB A, with its complex conjugate (φAB)∗ = φ̄AB . As we
explain below, integrability is not tied to supersymmetry and the phenomenon per-
sists in the generic Yang–Mills theory for arbitrary N , to two loop orders at least.

2.1. LIGHT-RAY OPERATORS

Let us first consider renormalization of local gauge invariant operators in QCD.
As the simplest example, we examine the following twist-two operator contribut-
ing to the moments of DIS structure function (1.1)

〈p|ON ,L=2(0)|p〉=〈p|ψ̄ γ+DN−1+ ψ(0)|p〉. (2.1)

It is built from two quark fields and (N −1) covariant derivatives D+ = (n · D) pro-
jected onto light-like vector nμ= qμ− pμq2/(2pq) and γ+ = (n · γ ) being the pro-
jected Dirac matrix. Discussing renormalization properties of Wilson operators like
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(2.1) it is convenient to switch from infinite set of local operators (2.1) parameter-
ized by positive integer N to a single nonlocal light-ray operator

O(z1, z2)= ψ̄(z1n)γ+[nz1,nz2]ψ(z2n)

=
∑
N≥1

[
ψ̄ γ+DN−1+ ψ

] (z1 − z2)
N−1

(N −1)! + · · · (2.2)

Here z1 and z2 are scalar variables defining the position of quark fields on the
light-cone and the gauge link [nz1,nz2] ≡ P exp(ig

∫ z2
z1

dt A+(nt)) is inserted to
ensure gauge invariance of O(z1, z2). In addition, ellipses in the right-hand side
of (2.2) stand for terms involving total derivatives of the twist-two operators and,
therefore, providing vanishing contribution to the forward matrix element
〈p|O(z1, z2)|p〉.

We recall that local gauge invariant operators satisfy the evolution equation
(1.2). The same is true for the light-ray operators (2.2) although the explicit form
of the evolution equation is different due to nonlocal form of the light-ray opera-
tors. In particular, for the operators (2.2) the evolution equation takes the follow-
ing form [25,52–55]

(
μ

∂

∂μ
+β(g2)

∂

∂g2

)
O(z1, z2)=−[H2(g

2) ·O](z1, z2), (2.3)

with the evolution kernel H2 to be specified below. The evolution equation (2.3)
expresses the conformal Ward identity in QCD and the beta-function term takes
into account conformal symmetry breaking contribution. The evolution operator
H2 in the right-hand side of (2.3) defines a representation of the dilatation opera-
tor on the space spanned by nonlocal light-ray operators (2.2). In general, H2 has
a matrix form as the light-ray operators with different partonic content could mix
with each other.

The evolution kernel H2 has a perturbative expansion in powers of the coupling
constant and admits a representation in the form of an integral operator acting on
light-cone coordinates z1 and z2 of O(z1, z2). To the lowest order in the coupling,
its explicit form has been found in QCD in Reference [53] and its generalization to
Yang–Mills theories with an arbitrary number of supercharges has been derived in
Reference [56,57]. The corresponding expressions for H2 are given below in Equa-
tion (2.11). The main advantage of (2.3) compared with the conventional approach
based on explicit diagonalization of the mixing matrix for local Wilson operators is
that the problem of finding the spectrum of anomalous dimensions can be mapped
into spectral problem for one-dimensional quantum mechanical Hamiltonian H2.
As we will see in a moment, the same happens in QCD for Wilson operators of
high twist L ≥3, in which case the corresponding evolution operator HL in the sec-
tor of maximal helicity operators turns out to be equivalent for a Hamiltonian of
Heisenberg SL(2;R) spin chain of length L.
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2.2. LIGHT-CONE FORMALISM

Discussing integrability of the dilatation operator in QCD and in SYM theories, it
is convenient to employ the “light-cone formalism” [58–61]. In this formalism one
integrates out non-propagating components of fields and formulates the (super)
Yang–Mills action in terms of “physical” degrees of freedom. Although the result-
ing action is not manifestly covariant under the Poincaré transformations, the main
advantage of the light-cone formalism for SYM theories is that the N -extended
supersymmetric algebra is closed off-shell for the propagating fields and there is
no need to introduce auxiliary fields. This allows us to design a unifying light-cone
superspace formulation of various N -extended SYM, including the N =4 theory
for which a covariant superspace formulation does not exist.

In the light-cone formalism, one quantizes the Yang–Mills theory in a nonco-
variant, light-cone gauge (n · A)≡ A+(x)=0. Introducing an auxiliary complemen-
tary light-like vector n̄μ, such that n̄2 = 0 and (n · n̄)= 1, we split three remaining
components of the gauge field into longitudinal, A−(x), and two transverse holo-
morphic and antiholomorphic components, A(x) and Ā(x), respectively,

A− ≡ (n̄ · A), A ≡ 1√
2
(A1 + i A2), Ā ≡ A∗ = 1√

2
(A1 − i A2). (2.4)

In the similar manner, the fermion field ψ(x) can be decomposed with a help of
projectors ± = 1

2γ±γ∓ as

ψ=+ψ+−ψ≡ψ+ +ψ−, (2.5)

where the fermion field ψ+ has two nonzero components

q↑ = 1
2
(1−γ5)ψ+ , q↓ = 1

2
(1+γ5)ψ+. (2.6)

Then, one finds that the fields ψ−(x) and A−(x) can be integrated out and the
resulting action of the Yang–Mills theory is expressed in terms of “physical” fields:
complex gauge field, A(x) and Ā(x), two components of fermion fields, q↑(x) and
q↓(x), and, in the case of supersymmetric gauge theory, complex scalar fields φ(x).
When applied to the vacuum states, the fields (A, q↓, φ, q↑, Ā) create massless
particles of helicity (−1,− 1

2 ,0,
1
2 ,1), respectively.

Taking the product of ‘physical’ fields and light-cone derivatives D+ = ∂+, we
can construct the set of local gauge invariant operators. Such operators define the
representation of the so-called collinear SL(2;R) subgroup of the conformal group
and they are known in QCD literature as quasipartonic operators. A distinguished
feature of these operators is that their twist equals the number of constituent phys-
ical fields [25]. In analogy with (2.2), we can replace an infinite number of Wilson
operators of a given twist L with a few nonlocal light-ray operators O(z1, . . . , zL).
The latter can be thought of as generating functions for the former. Due to dif-
ferent SU (Nc) representation of fermions (fundamental in QCD and adjoint in
SYM), the definition of such operators is slightly different in the two theories.
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In QCD, in the simplest case of twist two, we can distinguish four different
light-ray operators (plus complex conjugated operators)

O
(0)
qq (z1, z2)= q̄↑(nz1)q↑(nz2), O

(0)
gg (z1, z2)= tr

[
∂+ Ā(nz1)∂+ A(nz2)

]
,

O
(1)
qq (z1, z2)= q̄↓(nz1)q↑(nz2), O

(2)
gg (z1, z2)= tr [∂+ A(nz1)∂+ A(nz2)] ,

(2.7)

where the subscript (qq and gg) indicates particle content of the operator and the
superscript defines the total helicity. In this basis, the operator (2.2) is given by a
linear combination of O

(0)
qq (z1, z2) and complex conjugated operator. The operators

O
(0)
qq and O

(0)
gg have the same quantum numbers and mix under renormalization.

At the same time, the operators O
(1)
qq and O

(2)
gg carry different helicity and have an

autonomous scale dependence. In what follows, we shall refer to them as maxi-
mal helicity operators. The reason why we distinguish such operators is that the
one-loop dilatation operator in QCD is integrable in the sector of maximal helic-
ity operators only.

For higher twist L ≥ 3 we can define three different types of maximal helicity
operators in QCD:

O
(3/2)
qqq (z1, z2, z3)= εi jk qi↑(z1n)q j

↑(z2n)qk↑(z3n), (2.8)

O
(L−1)
qg...gq(z1, . . . , zL)= q̄↓(nz1)∂+ A(nz2) . . .∂+ A(nzL−1)q↑(nzL), (2.9)

O
(L)
g...g(z1, . . . , zL)= tr [∂+ A(nz1) . . .∂+ A(nzL)] , (2.10)

to which we shall refer as baryonic (L = 3) operators, mixed quark-gluon opera-
tors and gluon operators, respectively. We remind that since quark fields belong to
the fundamental representation of the SU (Nc) group, the length of the operator
(2.8) ought to be Nc = 3. At the same time, gluon fields are in the adjoint repre-
sentation and the single trace operator (2.10) is well-defined for arbitrary Nc and
twist L. The same applies to the mixed quark-gluon operators (2.9). The operators
(2.8) and (2.9) have a direct phenomenological significance: their matrix elements
determine the distribution amplitude of the delta-isobar [62] and higher twist con-
tribution to spin structure functions, respectively.

2.3. EVOLUTION KERNELS

The light-ray operators (2.7)–(2.10) satisfy the evolution equation (2.3). Let us
first examine twist-two quark operators O

(0)
qq and O

(1)
qq defined in (2.7). The oper-

ator O
(0)
qq can mix with the gluon operator O

(0)
gg . To simplify the situation, we can

suppress the mixing by choosing the two quark fields inside O
(0)
qq to have differ-

ent flavor. To one-loop order, the evolution kernel receives the contribution from
one-gluon exchange between two quark fields and from self-energy corrections. The
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latter one is the same for the two operators while the former one is different

H
(1)
qq = g2CF

8π2

[
H12 +2γq

]
,

H
(0)
qq = g2CF

8π2

[
H12 + V12 +2γq

]
.

(2.11)

Here CF = tata = (N 2
c −1)/(2Nc) is the quadratic Casimir of the SU (Nc) in the fun-

damental representation, γq =1 is one-loop anomalous dimension of quark field in
the axial gauge A+ =0 and H12 and V12 are integral operators

(z1, z2)=
1∫

0

dα
α
ᾱ [2O(z1, z2)−O(ᾱz1 +αz2, z2)−O(z1, αz1 + ᾱz2)] ,

[V12 ·O] (z1, z2)=
1∫

0

dα1

ᾱ1∫

0

dα2 O(α1z1 + ᾱ1z2, α2z2 + ᾱ2z1),

(2.12)

where ᾱi ≡1−αi . These operators have a transparent physical interpretation: they
displace two particles along the light-cone in the direction of each other.

To find the spectrum of anomalous dimensions of twist-two quark operators
generated by light-ray operators (2.7), we have to diagonalize the operators H

(1)
qq

and H
(0)
qq . This can be done with a help of conformal symmetry. We recall that

the conformal symmetry is broken in QCD at the loop level. However, the dila-
tation operator receives conformal symmetry breaking contribution only starting
from two loops and, as a consequence, the one-loop evolution kernels in QCD
have to respect conformal symmetry of QCD Lagrangian. For nonlocal light-ray
operators built from fields X (nz), the full SO(2,4) conformal symmetry reduces to
its collinear SL(2;R) subgroup acting on one-dimensional light-cone coordinates
of fields [26,27]

z → az +b

cz +d
, X (zn)→ (cz +d)−2 j X

(
az +b

cz +d
n

)
(2.13)

with ad −bc =1. The generators of these transformations are

L− =−∂z, L+ =2 j z + z2∂z, L0 = j + z∂z . (2.14)

Here j is the conformal weight of the field. For ‘physical’ components of fermions,
ψ+, it equals jq =1, for transverse components of gauge field, ∂+ A and ∂+ Ā, it is
jg =3/2 and for scalars js =1/2.

In application to light-ray quark operators, O
(0)
qq (z1, z2) and O

(1)
qq (z1, z2), the

conformal symmetry dictates that the one-loop evolution kernels (2.11) have to
commute with the two particle conformal spin Lα1 + Lα2 (with α = −,+,0). As
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a consequence, H
(h=0,1)
qq is a function of the corresponding two-particle Casimir

operator

L2
12 =

∑
α=+,−,0

(Lα1 + Lα2 )
2 = J12(J12 −1). (2.15)

To find the explicit form of this dependence, it suffices to examine the action of
the two operators, H

(h)
qq and L2

12, on the same test function (z1 − z2)
n , which is

just the lowest weight in the tensor product of two SL(2;R) representations carrying
the spin J12 =n +2. Replacing O(z1, z2)→ (z1 − z2)

J12−2 in (2.12) we find

H12 =2 [ψ(J12)−ψ(2)] , V12 =1/(J12(J12 −1)), (2.16)

where ψ(x)=d ln�(x)/dx is the Euler psi-function. Together with (2.11) these rela-
tions determine the spectrum of anomalous dimensions of twist-two quark opera-
tors.

2.4. RELATION TO HEISENBERG SL(2;R) SPIN CHAIN

As the first sign of integrability, we notice that H12 coincides with the known
expression for two-particle Hamiltonian of Heisenberg spin chain [63,64]

HL = H12 +· · ·+ HL1, Hi,i+1 =ψ(Ji,i+1)−ψ(2 j), (2.17)

where the spin operators are identified as SL(2;R) conformal generators (2.14).
As follows from (2.11), the one-loop dilatation operator H

(1)
qq depends on H12

and, therefore, it is mapped into Heisenberg SL(2;R) spin chain of length 2. At
the same time, the dilatation operator H

(0)
qq receives the additional contribution

V12. It preserves the conformal symmetry but breaks integrability. Notice that V12

vanishes for large values of the conformal spin J12 � 1 so that the two evolution
kernels, H

(0)
qq and H

(1)
qq , have the same asymptotic behavior at large J12. This sug-

gests that for the operator H
(0)
qq integrability is restored in the limit of large con-

formal spin only.
For twist-two operators, the anomalous dimensions are uniquely determined by

their conformal spin. To appreciate the power of integrability, we have to consider
Wilson operators of high twist L ≥3. For example, for the maximal helicity bary-
onic operators (2.8) the one-loop dilatation operator has the form [17]

H
(3/2)
qqq = αs

2π

[
(1+1/Nc)(H12 + H23 + H31)+ 3

2
CF

]
, (2.18)

with Nc = 3 and H12 given by (2.16). Comparing this relation with (2.17) we rec-
ognize that H

(3/2)
qqq can be mapped into Heisenberg spin chain of length L =3. The

spin at each site j =1 is determined by the conformal spin of the quark field.
For gluon operators of the maximal helicity (2.10), the dilatation operator

receives contribution from self-energy corrections to gluon fields and from one-
gluon exchange between any pair of gluons. The latter produces both planar and
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nonplanar corrections (for L>3). In the planar limit, the one-loop dilatation oper-
ator has the following form [65]

H
(L)
g...g = g2 Nc

8π2
(H12 +· · ·+ HL1), (2.19)

where two-particle kernel Hi,i+1 acts locally on light-cone coordinates of gluons
with indices i and i + 1. The conformal symmetry implies that Hi,i+1 is a func-
tion of the conformal spin of two gluons Ji,i+1. Quite remarkably, the dependence
of Hi,i+1 on Ji,i+1 has the same form as in (2.17). As a consequence, the one-
loop planar dilatation operator for maximal helicity gluon operator (2.10) coin-
cides with the Hamiltonian of the Heisenberg SL(2;R) spin chain. The length of
the spin chain equals the twist of the operator L and the spin in each site j =3/2
coincides with the conformal spin of the gluon field.

For mixed quark-gluon operators of the maximal helicity (2.9), the quark fields
can interact in the planar limit with the adjacent gluon fields only, whereas quark-
quark interaction is suppressed in this limit. As a consequence, the one-loop dila-
tation operator has the following form in the planar limit

H
(L−1)
qg...gq = g2 Nc

8π2
(U12 + H23 +· · ·+ HL−1,L +UL−1,L). (2.20)

Here Hi,i+1 describes the interaction of two gluons with aligned helicities and it
is the same as in (2.17). The kernels U12 and UL−1,L describe quark-gluon inter-
action and their explicit form can be found in References [65,66]. Notice that the
operator H

(L−1)
qg...gq has the form of a Hamiltonian of open spin chain of length L.

The spin in sites 1 and L coincides with the conformal spin of quark jq = 1 and
the spin in all remaining sites is given by gluon conformal spin jg = 3/2. As was
shown in Reference [66,65], the open spin chain (2.20) is integrable.

2.5. EXACT SOLUTION

Integrability of the one-loop dilatation operator allows us to find the exact spec-
trum of anomalous dimensions with a help of the Bethe Ansatz [15–18]

γN ,L = g2 Nc

8π2
EN ,L + O(g4),

EN ,L =
N∑

k=1

2 j

u2
k + j2

= i
d

du
ln

Q(u + i j)

Q(u − i j)

∣∣∣∣
u=0

.

(2.21)

Here j is the conformal spin in each site ( j = 1 for quark operators and j = 3/2
for gluon operators), uk are Bethe roots and Q(u) is a polynomial of degree N of
the form

Q(u)=
N∏

j=1

(u −u j ). (2.22)
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The function Q(u) defined in this way has the meaning of the eigenvalue of the
Baxter operator for the SL(2,R) magnet [5,67]. It satisfies the finite-difference
Baxter equation

tL(u)Q(u)= (u + i j)L Q(u + i)+ (u − i j)L Q(u − i), (2.23)

where tL(u) is the transfer matrix of the spin chain

tL(u)=2uL +q2uL−2 +· · ·+qL (2.24)

and q2, . . . ,qL are the conserved charges.
The Baxter equation (2.23) alone does not specify Q(u) uniquely and it has to

be supplemented by additional condition for analytical properties of Q(u). For the
SL(2;R) spin chains describing the anomalous dimensions, Q(u) has to be a poly-
nomial in the spectral parameter. Being combined with the Baxter equation (2.23),
this condition determines Q(u) up to an overall normalization and, as a conse-
quence, allows us to establish the quantization conditions for the q-charges and to
compute the exact energy EN ,L .

Solving the Baxter equation (2.23) for N = 0,1, . . . one finds the eigenspectrum
of the Hamiltonian HL and, as a consequence, determines the exact spectrum of
the anomalous dimensions of the maximal helicity baryon operators (for j =1 and
L =3) and of maximal helicity gluon operators (for j =3/2 and L ≥2). The spec-
trum obtained in this way exhibits remarkable regularity: almost all eigenvalues
are double degenerate and for large N they belong to the set of trajectories [5,68].
Both properties are ultimately related to integrability of the dilatation operators
and can be served to test integrability at high loops.

For the SL(2;R) spin chains under consideration, the Baxter equation approach
and conventional Bethe Ansatz are equivalent. Indeed, substituting (2.22) into the
Baxter equation (2.23), one finds that the roots u j satisfy the conventional SU (2)
Bethe equations for spin (− j). The fact that the spin is negative leads to a number
of important differences as compared to “compact” SU (2) magnets. In particular,
the Bethe roots take real values only and the number of solutions is infinite [5,68].

2.6. SEMICLASSICAL LIMIT

The Baxter operator approach becomes advantageous when one studies the prop-
erties of anomalous dimensions at large spin N and/or twist L. The reason for this
is that the Baxter equation (2.23) takes the form of a discretized Schrödinger equa-
tion. After rescaling of the spectral parameter, u → (N + L j)x , we can seek a solu-
tion to (2.23) in the WKB form [68–70,72,72]

Q(N x)= exp
(

i

�
S(x)

)
, �=1/(N + L j), (2.25)

where the action function S(x) admits an expansion in powers of �. Substitution
of (2.25) into the Baxter equation (2.23) yields the equation for S(x) which can be
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solved as a series in �. To leading order we have

S(x)=
x∫

x0

dx p(x)+ O(�), (2.26)

where the momentum p(x) is defined on the spectral curve (“equal energy” condi-
tion) of the classical SL(2;R) magnet y(x)=2x L sinh p(x) with [73]

�L : y2 = (tL(x))
2 −4x2L . (2.27)

The classical dynamics on this spectral curve has been studied in detail in Refer-
ences [48,74]. Using (2.25) we can compute the asymptotic behavior of the energy
as [68,75]

E (as)
N ,L =2 ln 2+

L∑
n=1

[ψ( j + iδn)+ψ( j − iδn)−ψ(2 j)]+· · · , (2.28)

where ellipses denote terms subleading at large (N + j L). Here δn are roots of the
transfer matrix defined in (2.24), tL(δn)=0. They depend on the conserved charges
q2, . . . ,qL whose values satisfy the WKB quantization conditions

∮

αk

dx p(x)=2π�

(
�k + 1

2

)
, (for k =1, . . . , L −1). (2.29)

Here integration goes over the cycles αk on the complex curve (2.27) encircling
intervals on the real axis satisfying y2(x)>0 and integers �k enumerate the quan-
tized values of the charges q2, . . . ,qL and the energy EN ,L =EN ,L(�1, . . . , �L−2). For
large spin N and twist L, the minimal energy E (0)N ,L =min�k EN ,L has the following
scaling behavior [75]

E (0)N ,L = f (ρ) ln N + O(N 0), ρ= L

ln N
=fixed, N , L �1 (2.30)

where f (ρ) is the so-called generalized scaling function. Detailed analysis of the
relations (2.28) and (2.29) can be found in References [17,48,65,68,75]. For recent
development in the generalized scaling function in N = 4 SYM see review Refer-
ence [76].

So far we have discussed the exact solution for the one-loop anomalous dimen-
sions of quark and gluon maximal helicity operators. For the anomalous dimen-
sions of mixed quark-gluon operators (2.9), similar analysis of the spin chain (2.20)
can be carried out using Bethe Ansatz for open SL(2;R) spin chains [65,66].

2.7. INTEGRABILITY OF DILATATION OPERATORS IN SYM THEORIES

In this subsection, we extend consideration to supersymmetric Yang–Mills theories.
Discussing integrability of dilatation operator in these theories, it is convenient to
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employ supersymmetric version of light-cone formalism due to Mandelstam [61]
and Brink et al. [59,60]. In this formalism, all symmetries of SYM theory become
manifest and calculations can be performed in a unified manner for different num-
bers of supercharges N = 0,1,2,4. The maximally-supersymmetric N = 4 SYM
theory is a finite, four-dimensional conformal field theory [59–61,77,78], whereas
the N =0 theory corresponds to pure gluodynamics.

Defining a SYM theory on the light-cone, one starts with the component form
of the action, fixes the light-cone gauge A+(x)= 0, decompose all propagating,
“physical” fields into definite helicity components. In the case of N =4 SYM, they
include helicity (±1) fields, A(x) and Ā(x), built from two-dimensional transverse
components of the gauge field, complex scalar fields φAB of helicity 0 and helicity
±1/2 components of Majorana–Weyl fermions, λA and λ̄A, all in the adjoint rep-
resentation of the SU (Nc) gauge group. An important property of the light-cone
formalism, which makes it advantageous over the covariant one, is that the latter
fields have only one non-vanishing component. As a consequence, one can describe
helicity (±1/2) fermions by Grassmann-valued complex fields without any Lorentz
index. Introducing four fermionic coordinates θ A (with A=1, . . . ,4) possessing the
helicity (− 1

2 ) and their conjugates θ̄A with helicity 1
2 , we can assemble the above

fields into a single, complex chiral N =4 superfield [59,60]

�(x, θ A)=∂−1+ A(x)+ θ A∂−1+ λ̄A(x)+ i

2!θ
Aθ B φ̄AB(x)

− 1
3!εABC Dθ

Aθ BθCλD(x)− 1
4!εABC Dθ

Aθ BθCθD∂+ Ā(x). (2.31)

It embraces all particle helicities, from −1 to 1 with half-integer step, and, there-
fore, �(x, θ A) describes a CPT self-conjugate supermultiplet.

Gauge theories on the light-cone with less or no supersymmetry can be deduced
from the maximally supersymmetric N =4 theory by removing “unwanted” physi-
cal fields. In the superfield formulation this amounts to a truncation of the N =4
superfield, or equivalently, reduction of the number of fermionic directions in the
superspace [79]. For instance, to get the N =1 superfields one removes three odd
coordinates θ2 = θ3 = θ4 = 0, whereas for N = 0 all θ ’s in (2.31) have to be set to
zero. Notice that under this procedure the truncated N =2,N =1 and N =0 the-
ories involve only half of the fields described by the N -extended SYM theory and
the other half of the needed particle content arises from the complex conjugated
superfields �̄≡�∗. Explicit expressions for the action of the SYM theory in terms
of the light-cone superfields can be found in References [56,57].

In a close analogy with (2.10), we can introduce multiparticle single-trace oper-
ators built from light-cone superfields

O(Z1, . . . , ZL)= tr {�(Z1)�(Z2) · · ·�(ZL)}, (2.32)

where �(Z) ≡ �a(Z)ta is a matrix (SU (Nc)) valued superfield and Z = (x, θ A)

denotes its position in the superspace with four even coordinates, xμ, and N odd
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coordinates, θ A with A = 1, . . . ,N . In addition, we choose all superfields to be
located along the light-cone direction in the four-dimensional Minkowski space
defined by the light-like vector nμ (with n2 = 0), so that n · A = A+ = 0. Similarly
to the QCD case, the positions of the superfields on the light-cone are parame-
terized by real numbers xμ = znμ,�(Zk)≡�(zkn, θ A

k ). The single-trace operators
(2.32) represent a natural generalization of nonlocal light-ray operators in QCD,
cf. Equation (2.10). To obtain the latter it is sufficient to expand O(Z1, . . . , ZL) in
powers of odd variables θ A1

1 . . . θ
AL
L . As in QCD, nonlocal operators (2.32) serve

as generating functions for Wilson operators with the maximal Lorentz spin and
minimal twist equal to the number of constituent fields L. Such operators define
a representation of the SL(2|N ) subgroup of the full superconformal group.

Examining light-ray operators (2.32) in SYM theories with different number of
supercharges, we find that N = 4 case is special. In N = 4 SYM theory there is
only one independent chiral superfield �(Z) and, as a consequence, the operators
(2.32) generate all Wilson operators of twist-L built from L fundamental fields.
For N ≤ 2, the superfield �(Z) and its conjugate �̄(Z) are independent of each
other and, in addition to the operators in (2.32), one can introduce “mixed” oper-
ators built from both superfields. This means that in the N = 0,1 and 2 SYM
theories, the operators (2.32) only generate a certain subset of the existing Wilson
operators in the SL(2|N ) subsector.

The light-ray operators (2.32) play a special role as far as integrability is con-
cerned. Namely, as was shown in References [56,57], the one-loop dilatation
operator acting on the space of single-trace operators (2.32) can be mapped in
the multicolor limit into a Hamiltonian of a completely integrable Heisenberg
SL(2|N ) spin chain. As before, the length of the spin chain coincides with the
number of superfields in (2.32) and spin operators are generators of a collinear
SL(2|N ) subgroup of the full superconformal group [56,57].

We recall that in SYM theories with N ≤ 2 supercharges the operators (2.32)
only generate a subsector of Wilson operators of twist L. To describe the remaining
operators, one has to consider single-trace operators built from both superfields,
like tr {�(Z1)�̄(Z2) · · ·�(ZL)}. For such operators, the one-loop dilatation opera-
tor involves the additional term describing the exchange interaction between super-
fields on the light-cone ��̄→ �̄�. It breaks integrability symmetry and generates
a mass gap in the spectrum of the anomalous dimensions [17]. At the same time,
for large values of the superconformal spin, the exchange interaction vanishes and
integrability gets restored in the leading large spin asymptotics of the anomalous
dimensions.

2.8. INTEGRABILITY IN QCD AND SYM BEYOND ONE LOOP

It is well-known that the conformal symmetry is broken in QCD and SYM theo-
ries with N <4 supercharges while in the maximally supersymmetric N =4 model
it survives on the quantum level. However, the conformal anomaly modifies anom-
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alous dimensions starting from two loops only and, therefore, the one-loop dilata-
tion operator inherits the conformal symmetry of the classical theory [19,80].

Starting from two-loop order, the dilatation operator in the SL(2) sector acquires
several new features. First, it receives conformal symmetry breaking corrections
arising both due to a nonzero beta-function and a subtle symmetry-violating effect
induced by the regularization procedure [81,82]. Second, the form of the dilata-
tion operator starts to depend on the representation of the fermion fields, i.e., fun-
damental SU (3) in QCD and adjoint SU (Nc) in SYM theories. The difference
between the two is that it is only in the latter case that one can select planar
diagrams by going over to the multi-color limit, while in the former case the large-
Nc counting is inapplicable and the two-loop dilatation operator receives equally
important contributions from both planar and nonplanar Feynman graphs. Thus,
by studying the two-loop dilatation operator in the SL(2) sector we can identify
what intrinsic properties of gauge theories (conformal symmetry, supersymmetry
and/or planar limit) are responsible for the existence of the integrability phenom-
enon per se.

For an all-loop dilatation operator H(λ), depending on ’t Hooft coupling con-
stant λ= g2 Nc/(8π2) and acting on a Wilson operator built from L constituent
fields and an arbitrary number of covariant derivatives, integrability would require,
in general, the existence of L conserved charges. Two of the charges – the light-
cone component of the total momentum of L fields and the scaling dimension of
the operator – follow immediately from the Lorentz covariance of the gauge the-
ory. However, the identification of the remaining charges qk(λ) with k =3, . . . , L is
an extremely nontrivial task. The eigenvalues of the charges qk define the complete
set of quantum numbers parameterizing the eigenspectrum of the dilatation oper-
ator. Integrability imposes a nontrivial analytical structure of anomalous dimen-
sions of Wilson operators and implies the double degeneracy of eigenvalues with
the opposite parity [5,17,83]. At the same time, breaking of integrability leads to
lifting of the degeneracy in the eigenspectrum of the one-loop dilatation operator.

Explicit two-loop calculation of the anomalous dimensions of the aforemen-
tioned aligned-helicity fermionic operators in all SYM theories showed that the
same relation between integrability and degeneracy of the eigenstates holds true
to two loops. Namely, as was found in References [45–47], the desired pairing
of eigenvalues occurs for three-gaugino operators in SYM theories with N = 1,2
supercharges and the SU (Nc) gauge group.

The two-loops dilatation operator in SYM theories receives conformal symme-
try breaking contribution and, in addition, it depends on the number of super-
charges N . The latter dependence comes about through the contribution of
2(N − 1) real scalars and N gaugino fields propagating inside loops. Both con-
tributions to two-loop dilatation operator can be factored out (modulo an addi-
tive normalization factor) into a multiplicative c-number. This property makes
the eigenspectrum of the two-loop dilatation operator alike in all gauge theories
including the N = 4 SYM in which case the dilatation operator is believed to be
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integrable to all loops [84]. Summarizing the results of two-loop calculations of the
anomalous dimension in QCD and in SYM theories, integrability of the dilatation
operator only requires the planar limit but it is sensitive neither to conformal sym-
metry, nor to supersymmetry [45–47]. For recent discussion of integrability in rela-
tion to non-planar corrections to the anomalous dimensions in N = 4 SYM see
review Reference [85].

In this section, discussing the properties of anomalous dimensions we restricted
ourselves to the SL(2) sector. There have been several developments that we can-
not address here in detail. In particular, an important observation was made in
References [86,87], where it was shown that the diagonal part of one-loop QCD
evolution kernels governing the scale dependence of Wilson operators of arbitrary
twist, can be written in a Hamiltonian form in terms of quadratic Casimir oper-
ators of the full conformal SO(2,4) group. This observation was used in Refer-
ence [88] to work out the non-diagonal parts of the evolution kernels for generic
twist-four operators.

3. Integrability in High Energy Scattering

In the previous section, we described how integrability emerges in the problem of
finding the dependence of the structure functions F(x,Q2) on the hard scale Q2.
In this section, we explain that yet another integrability symmetry arises in the
high-energy limit.

In application to the structure function F(x,Q2) this limit corresponds to x →0
for fixed Q2. At small x , the invariant energy s = Q2(1 − x)/x of colliding virtual
photon and hadron becomes large and the structure function is expected to have
Regge-like scaling behavior F(x,Q2)∼ (1/x)ω. In terms of moments (1.1), this cor-
responds to appearance of the Regge pole at N =ω

F̃N (q
2)=

1∫

0

dx x N−1 F(x,q2)∼ 1
N −ω . (3.1)

It is well-known [6,7] that perturbative corrections to F(x,q2) are enhanced at
small x by large logarithms ∼ (αs ln(1/x))p. This raised the hope that the Regge
behavior (3.1) can be derived in QCD from resummation of such corrections to all
loops. Going to moments, the expansion over (αs ln s)p is traded for the expansion
of F̃N (q2) over (αs/N )p.

3.1. EVOLUTION EQUATION

Careful study of asymptotic behavior of Feynman diagrams describing interac-
tion between virtual photon and hadron shows that the dominant contribution
to F(x,q2) only comes t-channel exchange of particles of maximal spin, i.e., glu-
ons (see Figure 2). Moreover, in the center-of-mass frame of γ ∗(q) and h(p), due
to hierarchy of the scales, s � Q2, interaction takes place in the two-dimensional
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Figure 2. The Feynman diagrams contributing to the deep inelastic scattering in the general-
ized leading logarithmic approximation. Wavy lines denote (reggeized) gluons. They couple to
virtual photons through a quark loop.

plane orthogonal to the plane defined by the momenta of scattered particles, pμ
and qμ. This implies that in generic Yang–Mills theory the leading high-energy
asymptotic behavior of the scattering amplitudes is driven by t-channel exchange
of an arbitrary number of gluons. In the so-called generalized leading logarithmic
approximation, their contribution to the moments (3.1) takes the form

F̃N (q
2)=

∑
L≥2

∫
[d2k]

∫
[d2k′] �γ ∗({k}) TL({k}, {k′}; N )�h({k′}), (3.2)

where integration goes over two-dimensional momenta of L gluons propagating in
the t-channel, [d2k] = ∏L

1 d2ki and similarly for [d2k′]. Here, the wave functions
�γ ∗({k}) and �h({k′}) describe the coupling of L gluons to virtual photon and
hadron, respectively. Furthermore, TL({k}, {k′}; N ) describes elastic scattering of L
gluons in the t-channel (see Figure 2) and is the main object of our consideration.

It is convenient to rewrite (3.2) as the following matrix element

F̃N (q
2)=

∑
L≥2

〈�γ ∗ |TL(N )|�h〉, (3.3)

where the minimum number of two gluons, L = 2, is required in order to get a
colorless exchange. The transition operator TL(N ) describes the elastic scattering
of L gluons. In the generalized leading logarithmic approximation, the Feynman
diagrams contribution to TL(N ) have ladder structure as shown in Figure 2. They
can be resummed leading to the following Bethe–Salpeter equation [8,9]

N TL(N )= T (0)L + αs

2π
HL TL(N ), (3.4)

where T (0)L corresponds to the free propagation of L gluons in the t-channel and
the evolution operator HL describes their pair-wise interaction. The operator HL

acts both on two-dimensional momenta and on colors of L gluons and has the
following two-particle form

HL =
∑

1≤i< j≤L

Hi j ta
i ta

j . (3.5)
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Each term in this sum is given by the product of the color factor involving color
charges of two gluons and two-particle kernel Hi j acting locally on the transverse
momenta of gluons with indices i and j . The kernel Hi j is known as BFKL oper-
ator [6,7] and it is defined below in (3.19).

Combining together (3.4) and (3.3) we obtain the following expression for F̃N (q2)

F̃N (q
2)=

∑
L≥2

〈
�γ ∗

∣∣∣∣
(

N − αs

2π
HL

)−1
T (0)L

∣∣∣∣�h

〉
. (3.6)

We observe that F̃N (q2) has (Regge) singularities in N which are determined by
the eigenspectrum of the operator Hn , the so-called BKP equation [8,9],

HL�L ,{q}(k1, . . . , kL)= EL ,{q}�L ,{q}(k1, . . . , kL). (3.7)

The solutions to (3.7) define color singlet compound states of L gluons and we
introduced {q} to denote the set of quantum numbers parameterizing all solutions.
Having solved Schrödinger like equation (3.7), we can compute the moments of
the structure function as [5]

F̃N (q
2)=

∑
L≥2

∑
{q}

(
N − αs

2π
EL ,{q}

)−1
βL ,{q}. (3.8)

Here the impact factor βL ,{q} = 〈�γ ∗ |�L ,{q}〉〈�L ,{q}|T (0)L |�h〉 measures the projec-
tion of the eigenstates onto the wave functions of scattered particles. The double
sum in (3.8) runs over the possible number of gluons L ≥ 2 and over all eigen-
states of the BKP Hamiltonian (3.7) parameterized by the conserved charges q. We
observe that this relation has an expected Regge form (3.1). Moreover, the leading
Regge behavior of the structure function is controlled by right-most singularity of
F̃N (q2) in complex N plane. According to (3.8), it corresponds to the maximal
value of the ‘energy’ EL ,{q}.

3.2. CONFORMAL SL(2;C) SYMMETRY

We recall that ki in the BKP equation (3.7) describe two-dimensional transverse
momenta of ith gluon and the relation (3.7) can be interpreted as two-dimensional
Schrödinger equation for n particles carrying SU (Nc) color charges.

As was found in [2–5,11,12], the BKP equation (3.7) becomes integrable in the
multi-color limit. In this limit, the relevant ladder Feynman diagrams contributing
to F̃N (q2) have the topology of a cylinder and, as a consequence, the evolu-
tion operator HL reduces to the sum of terms corresponding to pairwise nearest-
neighbor BFKL interactions:

HL = 1
2

L∑
k=1

Hk,k+1 + O(1/N 2
c ) (3.9)
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with periodic boundary conditions HL ,L+1 = HL ,1. Notice that this relation is exact
for L =2.

The BFKL operator Hk,k+1 has a number of remarkable properties, which allow
us to solve the Schrödinger equation (3.7) exactly [10–12]. To elucidate these
properties it is convenient to switch from two-dimensional momenta ki to two-
dimensional coordinates bi via Fourier transform and, then, introduce complex
holomorphic and the antiholomorphic coordinates

�ki �→ �bi ={xi , yi } �→ (zi = xi + iyi , z̄i = xi − iyi ). (3.10)

Quite remarkably, H12 is invariant under the conformal SL(2;C) transformations
of the gluon coordinates on the plane [10–12]

zk → azk +b

czk +d
, (ad −bc =1), (3.11)

and similarly for antiholomorphic coordinates z̄k . The generators of these transfor-
mations are

Lk,− =−∂zk , Lk,0 = zk∂zk , Lk,+ = z2
k∂zk , (3.12)

and the corresponding antiholomorphic generators L̄k,−, L̄k,0 and L̄k,+ are given
by similar expressions with zk replaced by z̄k , with k = 1,2 enumerating particles.
Then, H12 commutes with all two-particle generators

[H12, L1,a + L2,a]= [H12, L̄1,a + L̄2,a]=0 (3.13)

with a = +,−,0. This implies that, firstly, H12 only depends on the two-particle
Casimir operators of the SL(2,C) group

L2
12 =−(z1 − z2)

2∂z1∂z2 , L̄2
12 =−(z̄1 − z̄2)

2∂z̄1∂z̄2 , (3.14)

and, secondly, the eigenstates of H12 have to diagonalize the Casimir operators

L2
12�n,ν =h(h −1)�n,ν, L̄2

12�n,ν = h̄(h̄ −1)�n,ν . (3.15)

Here a pair of complex conformal spins is introduced

h = 1+n

2
+ iν, h̄ = 1−n

2
+ iν, (3.16)

with a non-negative integer n and real ν that specify the irreducible (principal
series) representation of the SL(2,C) group to which �n,ν belongs. The solutions
to Equations (3.15) are [10]

�n,ν(b1,b2)=
(

z12

z10z20

)(1+n)/2+iν (
z̄12

z̄10 z̄20

)(1−n)/2+iν

, (3.17)
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where z jk = z j − zk and b0 =(z0, z̄0) is the collective coordinate, reflecting the invari-
ance of H12 under translations. The corresponding eigenvalue of H12 reads [6,7,10]

En,ν =2ψ(1)−ψ
(

n +1
2

+ iν

)
−ψ

(
n +1

2
− iν

)
. (3.18)

Its maximal value, max En,ν = 4 ln 2, corresponds to n = ν= 0, or equivalently h =
h̄ = 1/2. It defines the position of the right-most singularity ω= 4 ln 2αs Nc/π in
(3.1) known as the BFKL pomeron [6,7]. The relations (3.17) and (3.18) define the
exact solution to the Schrödinger equation (3.7) for n = 2, that is for the color-
singlet compound state built from two Reggeized gluons.

3.3. HEISENBERG SL(2;C) SPIN CHAIN

Using (3.18) one can reconstruct the operator form of the BFKL kernel H12 on
the representation space of the principal series of the SL(2,C) group

H12 = 1
2

[
H(J12)+ H( J̄12)

]
, H(J )=2ψ(1)−ψ(J )−ψ(1− J ), (3.19)

where, as before, the two-particle spins are defined as L2
12 = J12(J12 −1) and L̄2

12 =
J̄12( J̄12 − 1). Notice that we already encountered the similar Hamiltonian in Sec-
tion 2 (see Equation (2.17)) and found that it gives rise to integrability for the dila-
tation operator.

Most remarkably, the Hamiltonian (3.9) has the same hidden integrability as
the dilatation operator (2.17) and it coincides in fact with the Hamiltonian of the
SL(2,C) Heisenberg magnet [2–5]. The important difference between the two oper-
ators is that they are defined on the different space of functions: the operator
(2.17) acts on the nonlocal light-ray operators (2.2) which are polynomials in the
light-cone coordinates while the eigenfunctions of the operator (3.19) are single-
valued functions on the two-dimensional plane, Equation (3.17). This leads to a
dramatic change in the properties of the two evolution kernels.

The number of sites in the Heisenberg SL(2,C) spin chain (3.9) equals the num-
ber of particles and the corresponding spin operators are identified as six genera-
tors, L±

k , L0
k and L̄±

k , L̄0
k , of the SL(2,C) group. It possesses a large-enough set of

mutually commuting conserved charges qn and q̄n (n =2, . . . , L) such that q̄n =q†
n

and [HL ,qn]=[HL , q̄n]=0. The charges qn are polynomials of degree n in the ho-
lomorphic spin operators. They have the following form [2–5]

qn =
∑

1≤ j1< j2<···< jn≤L

z j1 j2 z j2 j3 . . . z jn j1 p j1 p j2 . . . p jn (3.20)

with z jk = z j − zk and p j = i∂z j . The “lowest” charge q2 is related to the total spin
of the system h. For the principal series of the SL(2,C) it takes the following val-
ues

q2 =−h(h −1), h = 1+nh

2
+ iνh, (3.21)
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with nh integer and νh real. The eigenvalues of the integrals of motion, q2, . . . ,qL ,
form the complete set of quantum numbers parameterizing the L-gluon states (3.7).

Identification of (3.9) as the Hamiltonian of the SL(2,C) Heisenberg magnet
allows us to map the L-gluon states into the eigenstates of this lattice model.
In spite of the fact that the Heisenberg SL(2,C) magnet represents a generaliza-
tion of the SL(2,R) spin chain, finding its exact solution is a much more com-
plicated task. The principal difficulty is that, in distinction with SL(2,R) magnet,
the quantum space of the SL(2,C) magnet does not possess a highest weight – the
so-called “pseudo-vacuum state” – and, as a consequence, conventional methods
like the Algebraic Bethe Ansatz method [28–30] are not applicable. The eigenprob-
lem (3.9) has been solved exactly in References [89–91] using the method of the
Baxter Q-operator [69,70,72,72,92,93] which does not rely on the existence of a
highest weight. In this approach, it becomes possible to establish the quantization
conditions for the integrals of motion q3, . . . ,qL and to obtain an explicit form for
the dependence of the energy EL on the integrals of motion.

In this manner, the spectrum of the L-gluon state has been calculated for L ≥3
particles: For L =3 few low-lying states have been found in [94–96] and the com-
plete spectrum of states for 3 ≤ L ≤ 8 was determined in [90,91] (see also [97,98]).
The obtained eigenspectrum has a very rich structure. The quantized values of the
conserved q-charges and the energy EL depend on the integer nh and the real
number νh defining the total SL(2,C) spin of the state, Equation (3.16). In addi-
tion, they also depend on the “hidden” set of integers �= (�1, �2, . . . , �2(L−2)). As
a function of νh , the charges form a family of trajectories in the moduli space
q = (q2,q3, . . . ,qL) labeled by integers nh and �. Each trajectory in the q-space
induces a corresponding trajectory for the energy EL = EL(νh;nh, �). The origin of
these trajectories and the physical interpretation of the integers � can be under-
stood by solving the Schrödinger equation (3.7) within the semiclassical approach
described in the next subsection.

3.4. SEMICLASSICAL LIMIT

In the semiclassical approach [99], we assume that the SL(2;C) spins h and h̄ are
large and apply the WKB methods to construct the asymptotic solution to (3.7).
One might expect a priori that this approach could be applicable only for highly-
excited states. Nevertheless, as was demonstrated in [99], the semi-classical formu-
lae work with good accuracy throughout the whole spectrum.

From the viewpoint of classical dynamics, the multi-gluon states (3.7) are
describe by a chain of interacting particles ‘living’ on the two-dimensional �b−plane
[48,74]. The classical model inherits the complete integrability of the quantum
noncompact spin magnet. Its Hamiltonian and the integrals of motion are obtained
from (3.9), (3.19) and (3.20) by replacing the momentum operators by the cor-
responding classical functions. Since the Hamiltonian (3.9) is given by the sum
of holomorphic and antiholomorphic functions, from point of view of classical
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dynamics the model describes two copies of one-dimensional systems defined on
the complex z- and z̄-lines. The solutions to the classical equations of motion have
a rich structure and turn out to be intrinsically related to the finite-gap solutions
to the nonlinear equations [100–103]; namely, the classical trajectories have the
form of plane waves propagating in the chain of L particles. Their explicit form in
terms of the Riemann θ -functions was established in [74] by the methods of finite-
gap theory [100–103].

In the semiclassical approach, the eigenfunctions in (3.9) have the standard WKB
form, �WKB(�z1, . . . , �zL) ∼ exp(i S0/�) where the Planck constant � = |q2|−1/2 is
related to the lowest charge (3.21) and the action function S0 satisfies the Ham-
ilton–Jacobi equations in the classical SL(2;C) spin chain. It turns out that the
solutions to these equations are determined by the same spectral curve (2.27) as
for the SL(2;R) spin chain. The charges q define the moduli of this curve and take
arbitrary complex values in the classical model. Going over to the quantum model,
we find that charges q are quantized.

The quantization conditions for the charges q follow from the requirement that
�WKB(�z1, . . . , �zL) has to be a single-valued function of �zi . As was shown in Ref-
erences [48,99], these conditions can be expressed in terms of the periods of the
“action” differential over the canonical set of the α- and β-cycles on the Riemann
surface corresponding to the complex curve (2.27)

Re
∮

αk

dx p(x)=π �2k−1, Re
∮

βk

dx p(x)=π �2k, (3.22)

with k = 1, . . . , L − 2 and � = (�1, . . . , �2L−4) being the set of integers. The rela-
tions (3.22) define the system of 2(L − 2) real equations for (L − 2) complex
charges q3, . . . ,qL (we recall that the eigenvalues of the “lowest” charge q2 are
given by (3.21)). Their solution leads to the semiclassical expression for the eigen-
values of the conserved charges. In turn, the energy of the L-gluon states EL ,q

can be expressed as a function of q3, . . . ,qL . In the semiclassical approach, the
corresponding expression is

E (as)
L =4 ln 2

+2 Re
L∑

k=0

[ψ(1+ i Re δk +| Im δk |)+ψ(i Re δk +| Im δk |)−2ψ(1)] , (3.23)

where δk are roots of the polynomial tL(u) defined in (2.24).
The expression in Equation (3.23) is similar to the energy of the SL(2,R) mag-

net in Equation (2.28) although the properties of the two models are different. As
was demonstrated in [99], the resulting semiclassical expressions for q3, . . . ,qL and
EL are in good agreement with exact results [90,91]. A novel feature of the quan-
tization conditions (3.22) is that they involve both the α- and β-periods on the
Riemann surface. This should be compared with the situation in the Heisenberg
SL(2,R) magnet discussed in Section 2.6. There, the WKB quantization conditions
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involve only the α-cycles, Equation (2.29), since the β-cycles correspond to classi-
cally forbidden zones. For the SL(2,C) magnet, the classical trajectories wrap over
an arbitrary closed contour on the spectral curve (2.27) leading to (3.22). This fact
allows us to explore the full modular group [104] of the complex curve (2.27) and
explain the fine structure of the exact eigenspectrum of the SL(2;C) magnet. More
details can be found in Reference [99].

4. Concluding Remarks

In this review, we have described integrability symmetry in application to the deeply
inelastic scattering in QCD. Due to space limitations, we did not review vari-
ous important topics and we refer the interested reader to Reference [80] for a
comprehensive review on the subject. We would like to emphasize that integra-
bility is not of a mere academic interest in QCD as it offers a powerful tech-
nique for solving important phenomenological problems such as finding the scale
dependence of hadronic structure functions of higher twist and describing their
high-energy (Regge) asymptotic behavior. On theory side, the very fact that QCD
evolution equations exhibit integrability property provides yet another indication
that QCD possesses some hidden (integrable) structures waiting to be uncovered.
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