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Abstract. We review the role of integrability in the planar spectral problem of four-
dimensional superconformal gauge theories besides N = 4 SYM. The cases considered
include the Leigh–Strassler marginal deformations of N = 4 SYM, quiver theories which
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1. Introduction

The fascinating integrable structures of the N =4 SYM theory, reviewed in other
contributions to this collection, highlight the unique position that this theory occu-
pies among quantum field theories in four dimensions. Planar integrability is just
the latest addition to a long list of remarkable properties, such as exact (per-
turbative and non-perturbative) conformal invariance, Montonen–Olive S-duality,
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as well as the celebrated AdS/CFT correspondence, stating its equivalence to IIB
string theory on the AdS5 ×S5 background.

The price to pay for these unique features is that the theory is highly unrealistic,
and arguably very far removed from QCD, the theory of the strong interactions. It
is thus natural to wonder whether the recent great advances in the understanding
of N =4 SYM are of any use when studying less supersymmetric theories. In the
specific context of AdS/CFT integrability, one can ask whether there exist other
four-dimensional field theories with similar integrability structures, where the tech-
niques developed in the N =4 SYM context can also be applied.

In this short review, we will attempt to provide a guide to the current state
of affairs regarding AdS/CFT integrability in less supersymmetric situations. We
will restrict ourselves to the very special class of four-dimensional supersymmet-
ric field theories with similar finiteness properties to N =4 SYM, which are there-
fore also superconformal.1 We will see that, despite many similarities to the N =4
SYM case, there also appear significant differences in the way integrability is man-
ifested. Therefore, although there still is quite a long way to go from these theo-
ries to QCD, their study is worthwhile and can be expected to provide a useful
stepping stone towards unraveling the implications of integrability in more realis-
tic field theories.

2. The Marginal Deformations of N = 4 SYM

For any conformal field theory, it is interesting to study its space of exactly mar-
ginal deformations, all the ways to deform the theory preserving quantum confor-
mal invariance. It has been known since the early eighties that N =4 SYM admits
N =1 supersymmetric marginal deformations, with a non-perturbative proof given
by Leigh and Strassler in 1995 [3] (where references to the earlier literature can
also be found).

In N =1 superspace language, the Leigh–Strassler deformations can be obtained
purely by deforming the superpotential of the N = 4 SYM theory. The relevant
part of the N =4 SYM lagrangian is (with g being the gauge coupling)

Lsup =
∫

d2θWN =4, where WN =4 = gTr(X [Y, Z ]). (2.1)

Here X,Y and Z are the three adjoint chiral superfields of the N = 4 theory. It
is not difficult to see that WN =4 possesses an SU(3)× U(1)R global invariance,
the maximal part of the SU(4) R-symmetry of the theory which can be made
explicit in N = 1 superspace. Now consider the following more general N = 1
superpotential:

WL S =κTr
(

X [Y, Z ]q + h

3
(X3+Y 3+Z3)

)
(2.2)

1We will thus not touch the topic of integrability in QCD, which is covered in [1] in this col-
lection or discuss integrability in the three-dimensional ABJM theory, referring instead to [2].
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where κ,q and h are a priori complex parameters and the q-commutator is defined
as [X,Y ]q = XY − qY X . The N = 4 SYM theory can be recovered by the choice
(κ,q,h)= (g,1,0). Generically, the only continuous symmetry of WL S is the U(1)R ,
which is always present in an N =1 superconformal theory. When h =0, it is stan-
dard to express q = exp(2π iβ) and call this case the β-de f ormation.2 Here, apart
from U(1)R,WL S has an extra U(1)×U(1) symmetry acting by phase rotations on
the scalars. The β-deformation with β real (i.e. q a phase) is variously known as
the real-β or the γ -deformation.

There are several more marginal terms one could add to the superpotential;
however (2.2) is special in that it preserves an important set of discrete symme-
tries:

(a) X→Y, Y→ Z , Z→ X,

(b) X→ X, Y→ωY, Z→ω2 Z
(2.3)

with ω a third root of unity. The first of these symmetries is particularly crucial,
because it ensures that all scalar anomalous dimensions are equal. This observa-
tion allowed Leigh and Strassler to argue that finiteness imposes a single complex
constraint on the four couplings (g, κ,q,h), implying the existence of a three-
dimensional parameter space of finite gauge theories. On this space, the superpo-
tential (2.2) is thus exactly marginal. The finiteness constraint can be calculated at
low loop orders, but its exact form is unknown, and its determination, even in the
planar limit, would be a major step in our understanding of superconformal gauge
theory. Here, we give it at one loop (see e.g. [4] for a derivation):

2g2 =κκ̄
[

2
N 2
(1+q)(1+ q̄)+

(
1− 4

N 2

)
(1+qq̄ +hh̄)

]
. (2.4)

Note that the constraint simplifies considerably in the planar (N →∞) limit, and
that for the real β-deformation it reduces to g2 = κκ̄, precisely the same as that
for N =4 SYM. It has been shown [5] that in this real-β case, the one-loop con-
straint is not modified at any higher order in the perturbative expansion. This is a
first indication that, in the planar limit, the theory will share many of the proper-
ties of N =4 SYM, including, as we will see, integrability.

2.1. THE GRAVITY DUAL OF THE β-DEFORMATION

If the N =4 SYM theory admits exactly marginal deformations, the same must be
true for its dual gravity background. Since the deformations preserve the confor-
mal group, the AdS5 factor of the geometry will not be affected, but we expect the
S5 part to be deformed, reflecting the reduction of the R-symmetry group to a sub-
group of SU(4)R � SO(6). For the β-deformation, the metric of this deformed S5

was found by Lunin and Maldacena [6]. Focusing first on the real-β deformation,

2There exist several other conventions in the literature, related by relabellings of β and κ.
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these authors showed that it can be obtained from S5 by a sequence of T-duality,
angle shift and T-duality, called a T sT transformation. To make this a bit more
explicit, let us start with the five-sphere embedded in R

6 as X̄ X + Ȳ Y + Z̄ Z = 1,
and parametrise

X = cosγ eiϕ1 , Y = sin γ cosψeiϕ2 , Z = sin γ sinψeiϕ3 (2.5)

to obtain the five-sphere metric in terms of angle coordinates

ds2 =dγ 2 + cos2 γdϕ2
1 + sin2 γ (dψ2 + cos2ψdϕ2

2 + sin2ψdϕ2
3). (2.6)

There are three explicit U(1) isometries related to the angles ϕi , with the diag-
onal shift ϕi → ϕi + a corresponding to the U(1)R , which is required by N = 1
superconformal invariance. The T sT procedure starts by T-dualising along the
other two isometry directions, then shifting the dual angles as ϕ̃2 → ϕ̃2 + βϕ̃3,
and finally T-dualising back. This breaks the SO(6) implicit in (2.6) and results
in a geometry preserving just a U(1)3 isometry group, the right amount of sym-
metry for the dual to the β-deformation. We refer to [6,7] for more details and
for the explicit IIB solution.3 Starting from the real-β background, a sequence of
S-dualities leads to the dual of the complex-β deformation [6]. However, the geom-
etry dual to the most general deformation (with h �=0) is still unknown.

2.2. THE REAL-β DEFORMATION AND INTEGRABILITY

In this section, we focus on the real-β deformation, which has received the most
attention in literature. The integrability properties of this theory were first inves-
tigated in [9], where it was shown that the one-loop planar dilatation generator
in the two-scalar SU(2)β sector corresponds to the hamiltonian of the integrable
XXX SU(2)β spin chain. This was extended to the SU(3)β sector in [10]. In the
latter work it was also noted that a suitable site-dependent transformation can map
the hamiltonian of the deformed theory to that of the undeformed one (i.e. N =4
SYM), but with twisted boundary conditions. Building on [6], where a simple star
product was introduced to keep track of the additional phases appearing in the
real-β theory compared to the undeformed case, the work [11] showed that given
an undeformed R-matrix satisfying the Yang–Baxter equation, the twisted one will
do so as well.4

The conclusion is that the real-β deformation is just as integrable as N = 4
SYM. It should thus be possible to find a Bethe ansatz encoding the spectrum of
the theory. This can indeed be done by introducing appropriate phases (“twisting”)
in the N =4 SYM Bethe ansatz. In the SU(2)β sector, this was performed at one

3It should also be noted that for β = 1/k (i.e. q being a k-th root of unity), the dual back-
ground is actually an AdS5 ×S5/Zk ×Zk orbifold [8].

4The effect of the twist on other algebraic structures of the theory, such as the Yangian
(reviewed in [12]), was considered in [13].
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loop in [10], at higher loops in [14], while the higher-loop twist for all sectors was
obtained in [11]. For simplicity, here we display just the one-loop, SU(2)β sector
case:

e−2π iβL
(

uk + i/2
uk − i/2

)L

=
M∏

j=1, j �=k

uk −u j + i

uk −u j − i
,

M∏
k=1

uk + i/2
uk − i/2

= e2π iβM (2.7)

where the second equation is the cyclicity condition. Very recently, [15] provided
a deeper understanding of the all-loop twisted Bethe equations by deriving them
from a suitable Drinfeld-twisted S-matrix combined with a twist of the boundary
conditions.

Integrability and the LM Background. Integrability of the IIB Green–Schwarz
sigma model in the real-β deformed case was demonstrated in [7] by explicit con-
struction of a Lax pair for the LM background. A Lax pair was also constructed
for the pure-spinor sigma model in [16]. Therefore, just as in the undeformed case
(reviewed in [17,18]), one can attempt to compare gauge theory results with strong
coupling ones by considering semiclassical strings moving on the LM background.
This was done in [19,20], with the construction of several semiclassical string solu-
tions, which were matched to specific configurations of roots of the twisted Bethe
ansatz. Their energies precisely agree with the gauge theory anomalous dimensions.

Giant magnons [21] on the LM background were constructed in [22,23], with
the latter considering multispin configurations, while [24] considered more general
rigid string solutions on the S3

γ subspace, with the giant magnons and spiky strings
as special cases. The first finite-size correction to the giant magnon energy was
computed in [25] and takes the following form:5

E − J =2g sin
p

2

(
1− 4

e2
sin2 p

2
cos

[
2π(n −β J )

23/2 cos3 p
4

]
e− J

g sin p/2 +· · ·
)

(2.8)

where n is the unique integer for which |n −β J |≤ 1
2 . This expression exhibits the

expected exponential falloff, but the momentum dependence is highly unusual and
indeed reproducing it from the Lüscher correction techniques discussed in [27] is
still an open problem.

Wrapping corrections. To calculate wrapping corrections to the spectrum (due to
interactions whose span is greater than the length of the spin chain), one needs
to go beyond the asymptotic Bethe ansatz. It turns out that the techniques devel-
oped for N = 4 SYM (reviewed in [27–29] in this collection) can be applied with
relative ease to the β-deformed theory. In particular, it was argued in [30] that the
β-deformation is described by the same Y-system as N =4 SYM. The β parame-
ter arises by appropriately modifying the asymptotic (large L) solution, exploiting

5Recently, this result was extended to the case of dyonic, or two-spin, giant magnons [26].
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the freedom to twist it by certain complex numbers. The authors of [30] showed
that this procedure correctly reproduces the higher-loop asymptotic Bethe ansatz
of [11] (for all sectors, and more general twists) and derived generalised Lüscher
formulae for generic operators in the β-deformed theory.

Turning to results for specific operators, an interesting feature of the β-deformed
theory compared to N =4 SYM (first noted in [31]) is that one-impurity operators

O1,L =TrφZ L−1, φ∈{X,Y } (2.9)

are not protected by supersymmetry and thus acquire anomalous dimensions.
Because of this, the real-β theory provides an excellent setting for the perturbative
study of wrapping effects for short operators (reviewed in [32] and also in [33]):
Apart from the calculations being simpler (compared to two-impurity cases like the
Konishi operator), it also allows for a clean separation of the effects of wrapping
from those due to the dressing factor, since the latter does not contribute at all
for these states. Wrapping effects for such states, at critical wrapping (where the
loop level equals the length of the operator) have been computed up to 11 loops
in [34,35] (who also provided a recursive formula for calculating them at higher
loop orders), and have recently been reproduced in [30] via the twisted solution to
the Y-system and in [36] using generalised Lüscher formulae.6

A very special case arises when β= 1
2 and one considers even length operators.

Then the (higher-loop version of the) Bethe ansatz (2.7) becomes the same as that
for N =4 SYM, apart from a sign in the cyclicity constraint. In this case, a closed
(instead of iterative) form for the critical wrapping correction at any L was found
in [37]. Also working at β= 1

2 , and using the Lüscher techniques reviewed in [27],
the work [38] calculated the wrapping corrections to the single-impurity operator
with L =4 up to five loops, i.e. the first two nontrivial orders:7

�4−loop
w =128(4ζ(3)−5ζ(5)),

�5−loop
w =−128(12ζ(3)2 +32ζ(3)+40ζ(5)−105ζ(7)).

(2.10)

The four-loop result agrees with the perturbative calculations in [34], while at
the time of writing there does not exist a perturbative result for the five-loop
(subleading wrapping) correction. In [39], the wrapping corrections at β= 1

2 were
used to argue for the equivalence [suggested by (2.7) for the asymptotic spectrum]
of the full (non-asymptotic) spectra of the β-deformed theory at β and β + 1/L,
with the recent leading finite-size results of [36] in complete agreement with this.

Moving on to the two L =4 two-impurity operators (Tr(XY XY ) and Tr(X XY Y )),
their anomalous dimensions were found to four-loop order through explicit

6Note that no TBA equations (see [28]) have yet been constructed for the β-deformed theory.
7Here �w denotes the wrapping contribution to the anomalous dimension, i.e. the difference of

the exact result from the asymptotic one.
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calculation in [34,35].8 They were also computed and matched (for arbitrary β)
using Lüscher methods in [40] as well as through the Y-system in [30]. Essentially
the same calculation (starting from a slightly different perspective) was performed
in [36].

Finally, there exists at the moment a prediction [36], coming from Lüscher meth-
ods, for the leading finite-size correction to the energy for one- and two- impurity
sl(2)-sector operators, which is yet to be checked by explicit perturbative calcula-
tions.9

Amplitudes. As reviewed in [43], one manifestation of integrability in the N = 4
SYM context is the appearance of iterative structures (which go by the name of
the BDS conjecture) expressing multiloop amplitudes in terms of one-loop ones.
One might therefore expect that amplitudes in the real-β theory satisfy such rela-
tions as well. It has indeed been shown [44] that all (MHV and non-MHV) pla-
nar amplitudes in the real-β theory are proportional to the corresponding N = 4
SYM ones, differing only in phases affecting the tree-level part of the amplitude.
Thus the BDS conjecture for N =4 SYM extends straightforwardly to the real-β
deformation. At strong coupling (where the tree-level part is not visible), gluon
amplitudes in the real-β theory have been shown to equal those for N = 4 SYM
[45].

2.3. INTEGRABILITY BEYOND THE REAL-β DEFORMATION?

In the above, we focused on a very special subset of the marginal deformations,
those where h = 0, while q is just a phase. One can ask whether there exist other
integrable values of the parameters (q,h). Keeping h =0 but passing to complex β,
the hamiltonian in the two-holomorphic scalar sector is that of the SU(2)q XXZ
model and is thus integrable [9]. However, this generically ceases to be the case
beyond this simple sector [10]: contrary to initial expectations, the one-loop hamil-
tonian in the full scalar sector is not that of the integrable SO(6)q XXZ spin chain,
but of a type not matching any known integrable hamiltonians. It was also shown
in [10] that, unlike the real-β case, it is not possible to transfer the deformation
to the boundary conditions by site-dependent redefinitions.10 The conclusion was
that the one-loop hamiltonian for the generic LS deformation is not integrable.11

8Note that in N = 4 SYM one linear combination of these operators is BPS, while the other
is a descendant of the Konishi operator. However, in the deformed theory, there is no BPS combi-
nation.

9See also [41,42] for more recent results on wrapping for twist operators in the β-deformed
theory.

10Note, furthermore, that the star-product techniques of [6] do not apply beyond real β, their
naive extension giving rise to a non-associative product.

11The question of whether higher-loop integrability persists in the (all-loop closed) SU(2)q
sector remains unanswered, with some progress towards constructing the required higher charges
reported in [46].
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Nevertheless, as demonstrated in [47], there do exist certain special choices of
parameters for which the one-loop hamiltonian is integrable:

(q,h)=
{
(0,1/h̄),

(
(1+ρ) e

2π im
3 , ρ e

2π in
3

)
,
(
−e

2π im
3 , e

2π in
3

)}
. (2.11)

Some of these choices were also discovered via the study of amplitudes in [48]:
They correspond to special cases where the one-loop planar finiteness condition
(2.4) does not receive corrections at higher loops, similarly to the real-β
deformation.

In [49], a unifying framework for all these integrable cases was proposed: Their
corresponding one-loop hamiltonians can be related to the real-β case by Hopf
twists. These are a way of modifying the underlying R-matrix, leaving the integra-
bility properties unaffected. Since (as shown in [11]) the real-β hamiltonian is itself
related to the undeformed hamiltonian by such a twist, all these integrable cases
can be seen to be nothing but Hopf-twisted N =4 SYM.

Another special (one-loop) integrable sector beyond real β was found in [50].
It is an SU(3) sector composed of two holomorphic and one antiholomorphic
scalar, for instance {X,Y, Z̄}. The hamiltonian in this sector actually turns out to
be XXZ SU(3)q , the standard (integrable) q-deformation of SU(3). However, this
sector is not closed beyond one loop, complicating the discussion of higher-loop
integrability.

Apart from these special cases, the deformed hamiltonian is not integrable. An
intuitive explanation for this [14] is that the construction of the dual gravity back-
ground for the complex β deformation involves a sequence of S-duality transfor-
mations on the LM background [6]. The strong–weak nature of S-duality means
that the intermediate stages involve interacting strings, which (as reviewed in [51])
are unlikely to preserve integrability.

A more direct argument for this lack of integrability was recently given in [49],
who noticed that there exists a Hopf algebraic deformation of the global SU(3)
R-symmetry group of the N = 4 theory under which the full LS superpotential
(2.2) is invariant. However, this symmetry, defined through a suitable R-matrix
depending on the deformation parameters q and h is not a “standard” quantum-
group deformation of SU(3). In particular, apart from the special cases discussed
above, the (q,h)–R-matrix does not respect the Yang–Baxter equation, and con-
sequently the corresponding Hopf algebra is not quasitriangular. Thus the con-
struction (reviewed in [52]) of the transfer matrices and eventually of the integrable
S-matrix of the theory would not be expected to go through.

2.3.1. More General TsT Transformations

A different way of generalising the Lunin–Maldacena solution is by performing
TsT transformations along all three available U(1)’s within the S5 [7]. Since one
of these corresponds to the R-symmetry, this procedure will completely break the
superconformal symmetry. However, it can be shown that these γi -deformations
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preserve integrability: The Lax pair construction goes through in this case as well
[7] and in [53] it was argued that the Green–Schwarz action on TsT-deformed
backgrounds is the same as the undeformed one, but with twisted boundary condi-
tions. In [54], string energies were shown to match anomalous dimensions coming
from the corresponding three-phase deformed spin chain. In addition, [55] showed
that the action for three-spin strings in the “fast string” limit admits a Lax pair
and thus that string motion is integrable. The integrability properties of the γi the-
ories are thus very similar to the real-β case.12

One can also perform integrability-preserving T sT transformations along one
Ad S5 and one S5 direction, leading to dipole-type deformations in the gauge the-
ory [57], as well as purely along the Ad S5 directions, leading to a noncommutative
deformation on the gauge theory side [58] (see [59] for a review of the latter case).

2.3.2. Non-field Theory Deformations

As was first noted in [10], there exist integrable deformations of the algebraic
structures at the N =4 SYM point, which do not have a good field theory inter-
pretation, in the sense of arising as the one-loop hamiltonian of a deformed field
theory. A large class of such deformations was presented in [11]. More recently, q-
deformations of the psu(2|2)�R

3 algebra were considered in [60]. The role of such
deformations in the AdS/CFT correspondence is not well understood, but their
further study can be expected to provide a deeper understanding of the N = 4
integrable structures by embedding them in a larger framework.13

3. Integrability and Orbifolds of N = 4 SYM

Besides adding marginal operators, another way of obtaining CFTs with less super-
symmetry from N = 4 SYM is by orbifolding [61,62]. On the gauge theory side,
this involves picking a discrete subgroup � of the R-symmetry group and perform-
ing the following projection on the fields (here for �=ZM ):

φ→ωsφ γ φγ−1 , where γ =diag(1,ω,ω2, . . . , ωM−1), ω= e
2π i
M . (3.1)

The integer sφ is related to the SU(4)R charge of the field φ. The resulting theo-
ries have a quiver structure: starting with an U(M N ) theory, one obtains a product
gauge group U(N )1 ×· · ·×U(N )M with matter fields in bifundamental representa-
tions. The amount of supersymmetry preserved can be N =2,1 or 0, depending on
the subgroup of SU(4)R on which � acts: SU(2),SU(3) or the whole SU(4)R , res-
pectively. For instance, a choice of sφ resulting in an N =2 theory is (sX , sY , sZ )=
(1,−1,0).

12As was the case for the β deformation, it is possible to generalise the γi -deformations to
complex values of γi while preserving integrability, but only for very special values, similar to (2.11)
[56].

13For a simple illustrative example of how considering a deformed theory can clarify aspects of
the undeformed one, the reader is referred to section 1.2 of [52] in this collection.
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One can easily keep track of gauge invariant operators by writing them in terms
of the unorbifolded fields but with suitable phases inserted in the trace:

Tr(γm XY X Z · · · ) , where γm =diag(1,ωm, . . . , ω(M−1)m) , m =1, . . . ,M −1.

(3.2)

Operators for different choices of m do not mix with each other and correspond
to different twisted sectors on the string side (m =0 being the untwisted sector). It
is easy to see that the parent and orbifolded theory will only differ by additional
phases in the Bethe equations, as well as a modification of the cyclicity condition.
The one-loop Bethe equations in various SU(2) sectors were considered in [63],
while their structure for the full scalar sector was derived in [64], who also argued
that the higher-loop N =4 SYM equations can easily be adapted to the orbifold
case.14 For the (X,Y) m-twisted SU(2) sector, the one-loop equations take the form

e− 4π im
M

(
uk + i

2

uk − i
2

)J

=
K∏

j �=k

uk −u j + i

uk −u j − i
,

K∏
k=1

(
uk + i

2

uk − i
2

)
= e

2π im
M . (3.3)

Note the strong similarity to the Bethe ansatz (2.7) for the β-deformation. The
Bethe ansatz for more general (e.g. non-abelian) orbifolds has been presented
in [65].

On the string side, one considers an AdS5 × S5/ZM background,15 constructed
via the following identifications (here for an N =2 orbifold):

(X,Y, Z)∼ (e 2π i
M X, e− 2π i

M Y, Z). (3.4)

An analysis of two-spin semiclassical strings on this and more general backgrounds
was performed in [63] and their energies were successfully compared to the corre-
sponding solutions of the orbifolded Bethe ansatz above.

An advantage of the orbifold theory compared to the parent one is that a single
giant magnon is a physical state. This was used in [67] to settle an issue of gauge
non-invariance (dependence of the magnon energy on the light-cone gauge fixing
parameter, once finite-size effects are considered), which had previously arisen in
the AdS5 × S5 case [68]. It was later argued that single magnons in N = 4 SYM
can always be thought of as living on the orbifolded theory [69]. Recently, TBA
equations and wrapping effects (up to next-to-leading order) were considered for
a particular orbifold theory in [36].

Another interesting application of orbifold theories is that, having a new param-
eter M , one can consider novel scaling limits. One such limit produces the “wind-
ing state” [70], where one starts with a string winding around an S3/ZM in an
N =2 orbifold and takes M →∞ while also taking large J , keeping M2/J finite.

14These authors also exhibited the Bethe equations for a combination of orbifolding and
twisting.

15Integrability for AdS5 ×S5/Zp ×Zq orbifolds has been considered in [66].
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In [71], finite-size corrections to this state, as well as to orbifolded circular strings,
were calculated up to order 1/J 2 and shown to match with the Bethe ansatz
results. In a related M →∞, BMN-type limit [72], the first finite-size corrections to
two-impurity operators in the N = 2 theory were computed in [73], both directly
using the dilatation operator (to two loops) and using the higher-loop version
of the twisted Bethe ansatz 3.3. They were shown to agree with each other and,
given the appropriate choice of dressing factor, with the dual pp-wave string result,
calculated using DLCQ methods (see [74] for related earlier work).

Starting from the N = 2U(N )× U(N ) quiver theory, one can move away from
the orbifold point by varying the two gauge couplings independently, while pre-
serving superconformal invariance. In [75] this was shown to break integrability,
but in the extremal case where one of the two couplings vanishes (and we obtain
an SU(N ) gauge theory with N f =2N flavors), it appeared that integrability might
be recovered. This result, if confirmed, would provide a first example of an integra-
ble theory in the Veneziano limit (N , N f →∞ with N/N f constant) instead of the
usual ’t Hooft limit. Recently, [76] considered magnon propagation on such inter-
polating non-integrable chains.

On the amplitude side, it is known that orbifold theories are planar equivalent
to the parent theory to all orders in perturbation theory [77]. Thus, the BDS iter-
ative conjecture is expected to immediately transfer to the orbifold theories.

3.1. OTHER BACKGROUNDS

Apart from the orbifold theories discussed above, there exist several AdS/CFT set-
ups with reduced supersymmetry in the literature, and one can ask whether inte-
grability appears in those cases as well. Perhaps the best-known example of this
kind [78] is constructed by taking the near horizon limit of a stack of D-branes
situated at the tip of the conifold, a noncompact six-dimensional Calabi–Yau man-
ifold, which can be written as a cone over the five-dimensional Sasaki–Einstein
manifold known as T 1,1. The near horizon geometry of this system is AdS5 × T 1,1

and corresponds to an N = 1 superconformal U(N )× U(N ) gauge theory with
bifundamentals, which is an infrared limit of a Z2 orbifold theory of the type
discussed above.

There has been intense activity in constructing semiclassical string solutions on
T 1,1, as well as generalisations known as T p,q ,Y p,q and L p,q,r [79–86]. How-
ever, these conformal fixed points only appear at strong coupling and thus do not
correspond to perturbatively finite field theories. It is therefore far from obvious
that one should expect to find integrability. Indeed, no Lax pair construction is
known for these backgrounds. Furthermore, as observed in [85] for T 1,1 and its
β-deformed analogue, the dispersion relation for magnons and spiky strings is
transcendental, in stark contrast to the AdS5 × S5 case. This is a clear indication
that integrability, if it appears at all, would have to do so in a much more com-
plicated way than in N = 4 SYM. On the other hand, it was shown in [87] that,
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for the cases mentioned above, the bosonic sector in the near-flat space limit [88]
is the same as for S5. Thus the full sigma models do at least possess an integrable
subsector.

4. Open Spin Chain Boundary Conditions

One can also investigate integrability in a less supersymmetric setting by consider-
ing systems involving spin chains with open boundary conditions. This clearly sig-
nals the presence of open strings, and therefore D-branes, on the dual string side.
After reviewing some universal aspects of open spin chains, we will proceed to dis-
cuss several different situations where they make an appearance in the AdS/CFT
context.

As reviewed in [52] in this collection, in the algebraic approach to integrabil-
ity for closed spin chains one begins by considering the RTT relations for the
monodromy matrix, defined in terms of an R-matrix satisfying the Yang–Baxter
equation:

R12(u, v)R13(u,w)R23(v,w)= R23(v,w)R13(u,w)R12(u, v). (4.1)

For open chains, these equations still hold, but have to be supplemented (at each
boundary) with the reflection, or boundary Yang–Baxter equation [89]:

R12(u, v)K1(u)R21(v,−u)K2(v)= K2(v)R12(u,−v)K1(u)R21(−u,−v). (4.2)

Here, the K1,2(u) are known as the boundary reflection matrices. See e.g. [90] for a
discussion of various boundary conditions, and the corresponding reflection matri-
ces, for sl(n) and sl(m|n) spin chains, as well as further references to the open-
chain literature. In the special case where the boundary conditions preserve the
same gl(n) symmetry as the bulk chain (which is often not the case in the setups
to be considered below), the general form of a perturbatively long-range integrable
gl(n) spin chain with open boundary conditions was given in [91].

The generic structure of any putative open string Bethe ansatz is

e2i pk L = B1(pk)B2(pk)

M∏
j=1, j �=k

S jk(p j , pk)Skj (−p j , pk) (4.3)

where the S jk are the bulk S-matrices, and B1,2 are the boundary reflection matri-
ces. To understand the above structure (see also [91] for a nice exposition), note
that a given excitation moving with momentum pi will scatter with a number of
other excitations, reflect from the boundary, scatter with the other excitations again
(but with opposite momentum) and reflect from the second boundary before finally
returning to its original position. Assuming that the bulk theory is integrable, the
question of integrability hinges on the precise form of the boundary matrices B1,2.

In the closed-chain case, the Bethe ansatz is normally accompanied by a cyclic-
ity condition (which on the string side arises from the closed-string level-matching
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condition). However, this is absent for the open-chain case. An immediate
consequence of this is that single-impurity states are physical, even for non-zero
momentum.

As in the closed spin-chain case, new effects arise when considering long-range
short open spin chains, in particular spanning terms, which are the analogues of
the closed-chain wrapping interactions for finite-length open spin chains. Little is
known at present about their structure from the field theory side, though a study
of such terms in [91] suggests that they are not strongly constrained by integra-
bility, which would therefore appear to lose some of its predictive power for short
chains.

4.1. OPEN SPIN CHAINS WITHIN N =4 SYM

Although this review is mainly concerned with integrable theories beyond N = 4
SYM, there exist several interesting cases where integrable open spin chains arise
within the N =4 theory itself. We will thus first discuss this class of theories, which
arise through the consideration of non-trivial backgrounds within N =4 SYM.

4.1.1. Open Strings on Giant Gravitons

The first case of this type is that of open strings ending on maximal giant gravi-
tons [92] in AdS5 ×S5. These are D3-branes wrapping three-cycles inside the five-
sphere. The gauge theory picture is that of an open spin chain word attached to a
baryon-like (determinant) operator in N =4 SYM, formed out of one of the sca-
lars in the theory, here denoted �B :

εi1···iN ε
j1··· jN (�B)

i1
j1

· · · (�B)
iN−1
jN−1

(�k1�k2 · · ·�kL )
iN
jN
. (4.4)

In the large-N limit, the determinant part becomes very heavy and has no dynamics
of its own, so this system behaves as a spin chain with open boundary conditions.

The one-loop hamiltonian for this type of chain was considered in [93] and
shown to be integrable. It was further investigated at two loops in [94], with the
final two-loop result, in the SU(2) sector, given in [95]:

H = (2g2 −8g4)

∞∑
i=1

(I − Pi,i+1)+2g4
∞∑

i=1

(I − Pi,i+2)

+(2g2 −4g4)q�B
1 +2g4q�B

2 (4.5)

with q�B
i = 1 if �i =�B and 0 otherwise. The first two terms are the same as

the bulk hamiltonian, the third is the naive boundary contribution coming from
all the derivatives in the dilatation operator acting outside the determinant, while
the last term comes from one of the derivatives acting on the determinant. This
term is naively 1/N suppressed, but survives in the planar limit, the suppres-
sion being compensated by the fact that it can act on any of the N − 1 terms
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in the determinant. As shown in [21], the hamiltonian (4.5) is consistent with
integrability. On the string side, [96] constructed non-local conserved sigma model
charges for classical open strings ending on maximal giant gravitons in the full
bosonic sector, thus providing strong supporting evidence for all-loop integrability
of the maximal graviton system.

For non-maximal giant gravitons (which correspond to sub-determinant-type
operators in the gauge theory), the open spin chain becomes dynamical, in the
sense that the number of sites can vary, even at one-loop level. This case was inves-
tigated in [97,98], where it was argued that the formalism of Cuntz chains provides
a better description than the standard spin chain and some (numerical) evidence
for integrability was provided. However, on the string side, the appearance of extra
conditions hinders the construction of non-local sigma model charges [96]. Thus,
the prospects for integrability in this case do not look particularly good.16

Reflecting Magnons. Giant magnons ending on maximal giant gravitons were con-
sidered in [95]. One can, without loss of generality, choose to consider open chains
made up of a large number of Z fields, which, on the string side, correspond to
semiclassical strings with a large angular momentum along the 5–6 plane within S5.
One can then consider two different orientations of the giant magnon relative to
this plane.

The Y =0 magnon: In this case, we choose the D3-brane to wrap the three-sphere
defined by Y = 0, which corresponds to the operator det Y in the gauge theory.
Attaching an open spin chain to this determinant, we are led to an operator of
the form:

εi1···iN ε
j1··· jN Y i1

j1
· · ·Y

iN−1
jN−1

(Z · · · Zχ Z · · · Z)iN
jN
. (4.6)

Here χ stands for any impurity, though it will need to be a Y field if we wish
to stay within the SU(2) sector. As explained in [95], this configuration has no
boundary degrees of freedom, and there is a unique vacuum state. The boundary
preserves an SU(1|2)2 out of the bulk SU(2|2) symmetry. The boundary scattering
phase was found in [100], while commuting open-chain transfer matrices, necessary
for the construction of the Bethe ansatz, were derived in [101].17 In [104], it was
shown that part of the bulk Yangian symmetry persists for boundary scattering
and can be used to determine the bound-state reflection matrices. This boundary
Yangian has been further discussed in [105]. The higher-loop Bethe ansatz for this
class of operators was proposed in [106], see also [107] for an earlier discussion. A
different derivation, which agrees with the one above, is in [108].

16Nevertheless, integrability was recently demonstrated for giant magnons scattering off Y = 0
non-maximal gravitons [99], indicating that integrable subcases do exist.

17The works [102,103] generalised the q-deformed S-matrix of [60] to the Y = 0 and Z = 0
magnon context, and studied open-chain transfer matrices for these cases.
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The Z =0 magnon: Here we consider a D3-brane wrapping the three-sphere defined
by Z =0, which is dual to the gauge theory operator det Z . The open chain is still
made up mainly of Zs, but it is easy to see that they cannot be attached directly
to the determinant: Such a configuration would factorise into a determinant plus
a trace. To obtain a nontrivial open spin chain, there need to be impurities (fields
other than Z ) stuck to the boundary:18

εi1···iN ε
j1··· jN Z i1

j1
· · · Z

iN−1
jN−1

(χ Z · · · Zχ ′′Z · · · Zχ ′)iN
jN
. (4.7)

In this case, there are boundary degrees of freedom, which (like the bulk magnon)
fall into representations of SU(2|2)2 [95]. There are thus 16 states living on each
boundary, which were identified on the string side in [109], by considering fer-
mionic zero modes around the finite-size string solution for an open string end-
ing on the Z = 0 graviton.19 The boundary scattering phase was found in [110].
One notable feature of the Z = 0 case is the presence of poles in the reflection
amplitude not corresponding to bound states, the origin of which was explained
in [111]. As for Y =0, a boundary R-matrix was proposed in [95]; however, it did
not directly satisfy the BYBE. This was reconsidered in [112], who found a suit-
able basis where the boundary R matrix does satisfy the BYBE. The higher-loop
nested Bethe ansatz in this case was constructed in [113].

Finite-Size Effects. Considerable recent activity in the N = 4 SYM context has
centered around understanding finite-size effects, or wrapping interactions on the
gauge theory side (see the reviews [27–29,32] in this collection). There is an anal-
ogous formalism for the open-chain case, which was used in [114] to compute
Lüscher-type corrections to open strings ending on giant gravitons (for vacuum
states) and compare with explicit gauge theory results. The anomalous dimension
of the Y = 0 vacuum chain was shown to vanish (a result expected by super-
symmetry), while in the Z = 0 case it was non-trivial. The Lüscher formulae of
[114] were extended to the multiparticle case in [115], allowing the computation
of finite-size corrections to one-excitation states in the Y = 0 case and leading to
an explicit prediction to be checked by future gauge theory perturbative calcula-
tions. The analogous computation for the (more challenging) Z =0 brane has not
yet been performed. Furthermore, no TBA or Y-system equations are available at
present for the boundary case.

Classical solutions for finite-size magnons on Z =0 gravitons (generalising those
in [109]) can be found in [116].

Other Graviton–Magnon Combinations. The work [117] studied open strings ending
on giant gravitons in the AdS part of the geometry and, on the gauge side, identi-
fied the planar dilatation operator as the hamiltonian of an open sl(2) spin chain.

18In the SU(2) sector, all the χs will have to be of the same type, e.g. Y fields.
19The string solution itself was previously found in an unpublished work by C. Ahn, D. Bak

and S.J. Rey.
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However, novel features such as a variable occupation number and continuous
bands in the spectrum prevented a clear understanding of integrability in this case.
Other configurations of strings on giant gravitons have been considered in [118] (in
the BMN limit), as well as in [119], where gauge theory operators dual to a giant
graviton/magnon bound state are proposed.

4.1.2. Operators with Very Large R-Charge

Giant gravitons are dual to baryonic operators in N = 4 SYM, the dimensions
of which grow linearly with N . One can consider other types of operators whose
dimension grows as N 2, which in the simplest case are of the form (det Z)M (with
M ∼ N ) but more generally are described by Schur polynomial operators related
to the Young diagram encoding their symmetries. On the dual gravity side, the
number of D3-branes is so large that it is no longer possible to ignore backreac-
tion, and this modifies the AdS geometry into an LLM-type background. Strings
“attached” to the above operators20 have recently been considered from the gauge
theory side in [120]. It is possible to integrate out the effect of the background
and construct an effective dilatation operator, which is integrable in a certain limit.
Interestingly, this limit includes non-planar diagrams between the trace operator
and the background. Although, as reviewed in [51], truly non-planar contribu-
tions (acting on the trace operator by splitting and joining) are still expected to
spoil integrability, this novel integrable limit of N =4 SYM is still interesting and
deserves further exploration.

4.1.3. Open String Insertions on Wilson Loops

In the absence of nontrivial background operators for the spin chain to end on,
open string boundary conditions would not be gauge invariant. A way to avoid
this problem is to consider open-chain insertions on Wilson loops [121]. As shown
in that work, which considered such operators in the SU(2) sector at one loop,
the boundary conditions turned out to be purely reflective (Neumann). Thus the
Bethe ansatz can be related to a closed-chain one by the method of images. The
dual description of the Wilson loop (which has angular momenta on S5 to account
for the scalar insertions) was shown to reduce to “half” the standard closed folded
string solution, whose energy precisely matches the Bethe ansatz computation. This
setup is thus at least one-loop integrable (no higher-loop checks have been per-
formed at present).

4.2. THEORIES WITH FUNDAMENTAL FLAVOR

One can also obtain open spin chains by extending the field content of N = 4
SYM by adding flavors, i.e. fields in the fundamental representation of the gauge

20Note that these are actually closed strings, since after the D3-branes have backreacted there
are no explicit open strings on the background.
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group. Introducing such fields into the spectrum means that, apart from trace
operators, one can construct gauge-invariant operators of the generic form:

Q̄�i1�i2 · · ·�iL Q (4.8)

where Q is one of the fundamental fields. This operator, having no cyclicity prop-
erties, will behave as an open chain. We will now review three distinct settings
where these types of operators have been studied in an integrability context.

4.2.1. The Orientifold Theory

In this setup, one considers a D3–O7–D7 system, where one first performs an ori-
entifold projection and then adds the required number of D7 branes (four, plus
their mirrors) to cancel the orientifold charge. The result is N = 2 SYM with
gauge group Sp(N ), one hypermultiplet in the antisymmetric representation and
four in the fundamental, which is known to be a finite theory.21 The N =2 vector
multiplet contains an adjoint chiral multiplet W , while the antisymmetric hyper-
multiplet has two chiral multiplets Z , Z ′. The near-horizon geometry is that of an
AdS5 ×S5/Z2 orientifold. Here, the Z2 acts as Z →−Z (or ϕ3 →ϕ3 +π ), leaving a
fixed plane at Z =0. The worldsheet coordinate is also identified as σ →π −σ .

Relatively few studies of integrability have been undertaken for this theory. The
pp-wave spectrum was discussed in [123]. Several open-spinning-string solutions on
the dual orientifold were considered in [124]. In [125], the one-loop hamiltonian
for the SU(3) sector comprising W, Z , Z ′ was shown to be integrable and the cor-
responding one-loop Bethe ansatz constructed. In the (Z , Z ′)SU(2) sector, it is:

(
uk + i

2

uk − i
2

)2L

=
K∏

j �=k

uk −u j + i

uk −u j − i

uk +u j + i

uk +u j − i
(4.9)

Note that it is of the form (4.3). Applying the doubling trick, by means of which
this Bethe ansatz can be related to a closed string one with the extra condition that
the set of roots is symmetric under u j → −u j , energies of two-spin open strings
were successfully compared to gauge theory in [126]. At the time of writing, three-
spin strings have not been compared, while the question of higher-loop integrabil-
ity is still open.

4.2.2. The D3–D7-Brane System

Here, one considers AdS5 ×S5, with a D7-brane filling AdS5 and wrapping an S3

in S5. Unlike the case above, this theory is conformal only in the strict large-N

21A different type of orientifold which preserves N =4 SYM but leads to gauge group SO(N )
or Sp(N ) was recently considered in [122], though in that case the focus was on non-planar correc-
tions, the differences to SU(N ) being relatively minor at the planar level.
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limit, where the backreaction of the D7 brane can be ignored. On the gauge theory
side, this corresponds to ignoring 1/N -suppressed processes with virtual fundamen-
tal flavors between bulk states (which would provide a non-zero contribution to
the β-function).

The bulk hamiltonian is the same as for N = 4 SYM, so closed spin chains
in this setup are automatically integrable. The one-loop open-chain hamiltonian is
integrable as well, with trivial boundary terms [127]. The one-loop, SU(2)-sector
Bethe ansatz is precisely the same as (4.9). The higher-loop reflection matrices
for this case were studied in [128], where it was shown that integrability survives,
largely thanks to the fact that the boundary respects the psl(2|2)×psl(2|2) factori-
sation of the bulk theory. More recently, the work [129] extended these results by
constructing the reflection matrices for boundary scattering of bound states.

On the gravity side, [96] showed integrability for the full bosonic sector by
observing that the equations governing open string motion are practically the same
as in the maximal giant graviton case discussed above. It is thus expected that this
system exhibits higher-loop integrability.

4.2.3. Defect Theories

A different setup with fundamentals can be obtained by considering a D3–D5 sys-
tem, with a single D5 sharing only three directions (say x0, x1 and x2) with the
stack of N D3 branes. The configuration thus has four Neumann–Dirichlet direc-
tions and preserves supersymmetry. Taking the D3-brane near-horizon limit, we
obtain the usual AdS5 × S5 geometry, but now the D5 brane wraps an AdS4 × S2

in AdS5 ×S5. On the gauge theory side, we obtain N =4 SYM coupled to a defect
located at x3 =0. The matter content on the defect is a 3d SU(N ) vector multiplet
plus a 3d fundamental hypermultiplet (containing two chiral multiplets q1,2).

As shown in [130], starting from a ground state of the form q̄1 Z · · · Zq1, there
are two types of excitations one can consider: If the excitations are along the D5
brane, the boundary conditions are Dirichlet, which on the gauge theory translates
to the boundary term being fixed. Otherwise, the string satisfies Neumann bound-
ary conditions, which for the spin chain means that the boundary excitations are
dynamical. The boundary state can flip from q1 to q2, which effectively increases
the length of the chain by 1. In both cases, the boundary matrix is trivial and the
full bosonic sector is integrable at one loop. As before, there is no boundary phase
in the SU(2) sector, though it does make an appearance in the SL(2) sector [131].
Spinning string solutions in this setup were considered in [132–134].

However, it was eventually understood that this one-loop integrability is an
accident. The first indication came from the gravity side, when [96] showed that
nonlocal charges could only be constructed in the SU(2) sector. Finally, by care-
ful analysis of the symmetries, [128] constructed the all-loop reflection matrices
(aspects of which were previously considered in [107]) with the result that they do
not satisfy the BYBE.
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5. Outlook

In this short review, we gave an overview of several different known ways of
pushing integrability beyond the highly symmetric case of N = 4 SYM. As we
have seen, it is relatively easy to maintain integrability at the one-loop level in
less supersymmetric (but still superconformal) situations, but all-loop integrability
is a much more stringent requirement. Indeed, it appears that all non-N =4 SYM
models where higher-loop integrability persists are really just N = 4 SYM in dis-
guise, in the sense that the bulk spin chain is undeformed, with differences arising
only in the boundary conditions: twisted ones for the real-β deformations, orbifold
ones for the quiver theories, and open ones for giant gravitons and theories with
fundamentals.

This observation seems to reaffirm how special the N =4 SYM theory is, even
within the already very restricted class of superconformal quantum field theories.
On the other hand, the rich pattern of integrability breaking in the theories dis-
cussed above should help us better appreciate the implications (and limitations) of
integrability for more realistic theories, in a more controllable setting than that of
QCD. Even in those cases which are believed to be higher-loop integrable, there
remain numerous open questions whose resolution can be expected to contrib-
ute to a deeper understanding of AdS/CFT integrability, and ultimately of the
AdS/CFT correspondence itself.
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