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1. Introduction

The discovery of the integrability of the planar spectral problem of AdS/CFT
[1–4] has provided us with a wealth of new results and tools for the study of
gauge and string theory. Given this success, it is natural to investigate whether the
integrability extends to other aspects of the AdS/CFT correspondence. Here, we
shall discuss this possibility mainly from the gauge theory perspective and stay-
ing entirely within the maximally supersymmetric gauge theory in four dimensions,
N = 4 SYM. The fate of the integrability of the planar spectral problem when
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reducing or completely removing the supersymmetry is discussed in the chapters [5]
and [6]. A natural direction in which to search for integrability is in the non-
planar version of the spectral problem. As we will review below, while the non-
planar version of the dilatation generator can easily be written down (at least in
some sub-sectors and to a certain loop order), attempts to diagonalize it have so
far not revealed any traces of integrability. For a conformal field theory like
N =4 SYM, natural observables apart from anomalous dimensions are the struc-
ture constants which appear in the three-point functions of the theory and govern
the theory’s operator product expansion. Three-point functions are of course not
unrelated to non-planar anomalous dimensions, as correlators of three traces can
be seen as building blocks for higher genus two-point functions. As we shall see,
the calculation of structure constants of N =4 SYM is impeded by extensive oper-
ator mixing. For a certain subset of operators, this mixing can be handled via the
diagonalization of the planar dilatation operator, and the structure constants can
be calculated using tools pertaining to planar integrability. An integrable structure
allowing to treat all types of three-point functions has not been identified.

Anomalous dimensions and structure constants are observables, which are asso-
ciated with local gauge invariant operators, but in a gauge theory one of course
also has at hand numerous types of non-local observables such as Wilson loops,
’t Hooft loops, surface operators and domain walls. Here, we will limit our discus-
sion to Wilson loops, more precisely to locally supersymmetric Maldacena–Wilson
loops. Another type of Wilson loops, Alday–Maldacena–Wilson loops and their
relation to scattering amplitudes of N = 4 SYM will be discussed in the chap-
ters [7–9]. As was known before the discovery of the spin-chain related integra-
bility of the AdS/CFT system, expectation values of Maldacena–Wilson loops can
in certain cases be expressed in terms of expectation values of a zero-dimensional
integrable matrix model and this connection has provided us with the most suc-
cessful test of the AdS/CFT correspondence beyond the planar limit to date. The
connection of Maldacena–Wilson loops to integrability in the form of spin-chain
integrability is so far very limited.

We start by discussing the role of integrability in connection with non-planar
anomalous dimensions in Section 2 and subsequently treat multi-point functions
and Maldacena–Wilson loops in Sections 3 and 4.

2. Non-Planar Anomalous Dimensions

In a CFT, conformal operators, {Oα}, and their associated conformal dimensions,
�α, are characterized by being eigenstates and eigenvalues of the dilatation gen-
erator, D̂. As a consequence of this, two-point functions of conformal operators,
upon appropriate normalization take the form

〈Oα(x)Oβ(y)〉= δαβ

(x − y)2�α
. (2.1)
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2.1. THE NON-PLANAR DILATATION GENERATOR

The dilatation generator, D̂, of N = 4 SYM has a double expansion in λ and 1
N

where λ is the ’t Hooft coupling, which we until further notice take to be

λ= g2
YM N

8π2
, (2.2)

and where N is the order of the gauge group, SU (N ). By the planar limit, we
mean the limit N → ∞, λ fixed. At a finite order in λ, the 1

N -expansion of the
dilatation generator starts at order N 0 and terminates after finitely many terms,
the number of which increases with the loop order. The planar dilatation gen-
erator and its loop expansion are discussed in the chapter [10]. The non-planar
part of the dilatation generator was first derived at one loop order in the SO(6)

sector [11,12], see also [13]. The derivation was based on evaluation of Feynman
diagrams and was extended to two-loop order in the SU (2) sector in [2]. Later,
a derivation based entirely on algebraic arguments gave the dilatation generator
including non-planar parts for all fields at one-loop order [14] and for the fields
in the SU (1,1|2) sector at two-loop order [15]. Recently, the non-planar part of
the dilatation generator was written down at order λ3/2 in the SU (2|3) sector [16].
In addition, the non-planar part of the dilatation generator is known in the scalar
sector in a certain N =2 superconformal gauge theory [17]. In ABJM theory [18]
and ABJ theory [19], the non-planar part of the two-loop dilatation generator has
been derived in a SU (2)× SU (2) sector [20,21].1

The diagonalization problem for the full dilatation generator of N =4 SYM has
mainly been studied in the SU (2)-sector, which consists of multi-trace operators
built from two complex scalar fields, say X and Z . For simplicity, we shall likewise
focus our discussion on this sector. The one-loop dilatation generator including the
non-planar parts reads for the SU (2) sector

D̂ =− λ

N
:Tr[X, Z ][X̌ , Ž ] :, where Žα β = δ

δZβα

, (2.3)

and similarly for X̌ . The normal ordering symbol signifies that the derivatives
should not act on the X and Z field belonging to the dilatation generator itself.
Below, we illustrate how the full dilatation generator acts on a double trace oper-
ator. Notice that we only consider one out of four terms contributing to the
dilatation generator and that we only represent one possible way of applying the
derivatives

1We remark that our D̂ is the dilatation generator describing the asymptotic spectrum. Hence
we ignore the wrapping contributions discussed in the chapters [10,22–24]. In particular, the split-
ting of the dilatation operator into planar and non-planar parts that we discuss here pertains to the
asymptotic regime. What is here referred to as non-planar parts of the dilatation generator might
for short operators give rise to planar wrapping contributions [25].
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Tr(Z X Ž X̌) ·Tr(X Z X X Z)Tr(X Z)=Tr(Z X Ž Z X X Z)Tr(X Z)

1 2 3

= NTr(Z X X X Z)Tr(X Z)+Tr(Z X)Tr(Z X X)Tr(X Z)+Tr(Z X Z Z Z X X Z).

As is evident from this example, the full one-loop dilatation generator can be writ-
ten as follows

D̂ =λ

(
D̂0 + 1

N
D̂+ + 1

N
D̂−

)
, (2.4)

where D̂+ and D̂−, respectively, increases and decreases the trace number by one
and where D̂0 conserves the number of traces. Suggestions for how to write D̂+
and D̂− in a more explicit form can be found in [26,27]. We notice that for gauge
group SO(N ) or Sp(N ), the one-loop dilatation operator will have a term which is
of order 1

N , but still conserves the number of traces [28]. At l-loop order, the dila-
tation operator can change the number of traces by at most l. Notice that since
the anomalous dimensions are the eigenvalues of the dilatation generator, these do
not necessarily have a 1

N -expansion that truncates. What is more, some anoma-
lous dimensions do not even have a well-defined double expansion in λ and 1

N .
An example of an operator with this property can be found in [2]. Speaking about
a one-loop anomalous dimension, however, always makes sense. To calculate the
leading 1

N -corrections to one-loop anomalous dimensions, one can make use of
standard quantum mechanical perturbation theory. Let us assume that we have
found an eigenstate of the planar dilatation generator D̂0, i.e.

D̂0|O〉=γO |O〉, (2.5)

and let us treat the terms sub-leading in 1
N as a perturbation. First, let us assume

that there are no degeneracies between n-trace states and (n +1)-trace states in the
spectrum. If that is the case, we can proceed by using non-degenerate quantum
mechanical perturbation theory. Clearly, the 1

N terms in equation (2.4) do not have
any diagonal components, so the correction to the anomalous dimension for the
state |O〉 reads

δγO = 1
N 2

∑
K �=O

〈O|D̂+ + D̂−|K 〉 · 〈K |D̂+ + D̂−|O〉
γO −γK

, (2.6)

and is of order 1
N 2 . If there are degeneracies between n-trace states and (n + 1)-

trace states, we have to diagonalize the perturbation in the subset of degenerate
states and the corrections will typically be of order 1

N . We remark that the dila-
tation generator is not a Hermitian operator, but it is related to its Hermitian
conjugate by a similarity transformation and therefore its eigenvalues are always
real [12,29,30].
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2.2. THE NON-PLANAR SPECTRUM AND INTEGRABILITY

Planar N = 4 SYM is described in terms of only one parameter, λ, and planar
anomalous dimensions have a perturbative expansion in terms of this single param-
eter. This fact made it possible initially to search for integrability in the planar
spectrum order by order in λ. In particular, the concept of perturbative integrabil-
ity was introduced, meaning that at l loops the planar spectrum could be described
as an integrable system when disregarding terms of order λl+1 [2]. Studying this
perturbative form of integrability eventually led to the all loop Bethe equations
conjectured to be true perturbatively to any loop order and non-perturbatively as
well [31–33]. When going beyond the planar limit, it is natural to follow a sim-
ilar perturbative approach. The question of integrability beyond the planar limit
has so far been addressed only perturbatively in 1

N at the one-loop order. The fact
that the non-planar part of the dilatation generator introduces splitting and join-
ing of traces enormously enlarges the Hilbert space of states of the system. This
complicates the direct search for integrability via the identification of conserved
charges or the construction of an asymptotic S-matrix with the appropriate prop-
erties. As a simple way of getting an indication of whether integrability persists
at the non-planar level, one can test for degenerate parity pairs [2]. Parity pairs
are operators with the same anomalous dimension, but opposite parity where the
parity operation on a single trace operator is defined by [34]

P̂ ·Tr
(
Xi1 Xi2 . . . Xin

)=Tr
(
Xin . . . Xi2 Xi1

)
. (2.7)

(For a multi-trace operator, P̂ must act on each of its single trace components.) At
the planar one-loop level, one observes a lot of such parity pairs. The presence of
these degeneracies has its origin in the integrability of the model. N = 4 SYM is
parity invariant and its dilatation generator commutes with the parity operation,
i.e. [

D̂, P̂
]
=0. (2.8)

Notice that this only tells us that eigenstates of the dilatation generator can be
organized into eigenstates of the parity operator and nothing about degeneracies
in the spectrum. The degeneracies can be explained by the existence of an extra
conserved charge, Q̂3, which commutes with the dilatation generator but anti-
commutes with parity, i.e.[

D̂, Q̂3

]
=0,

{
P̂, Q̂3

}
=0. (2.9)

Acting on a state with Q̂3, one obtains another state with the opposite parity but
with the same energy.2 Taking into account non-planar corrections, the degener-
acies are lifted. Since parity is still conserved, this is taken as an indication (but

2There exist states which are unpaired and annihilated by Q̂3.
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not a proof, obviously) of the disappearance of the higher conserved charges and
thus a breakdown of integrability. Notice that in accordance with this picture, the
parity pairs survive the inclusion of planar higher loop corrections. The situation
in ABJM theory is the same. Degenerate parity pairs are seen at the planar level,
but disappear once non-planar corrections are taken into account [20]. (For N =4
SYM with gauge group SO(N ) or Sp(N ), parity is gauged and the concept of
planar parity pairs loses its meaning [28]. For ABJ theory, parity is broken at
the non-planar level [21].) Hence, it seems that one cannot hope for integrabil-
ity of the spectrum of AdS/CFT beyond the planar limit, at least not in a simple
perturbative sense.3

2.3. RESULTS ON NON-PLANAR ANOMALOUS DIMENSIONS

Prior to the derivation of the dilatation generator of N = 4 SYM, anomalous
dimensions were determined through a rather complicated process which involved
for each set of operators considered an explicit calculation of their two-point cor-
relation functions through Feynman diagram evaluation. Early results on non-
planar anomalous dimensions for short operators obtained by this method can be
found in [36–39].

With the derivation of the dilatation generator, the calculation of anomalous
dimensions was enormously simplified. At the planar level, one now even has at
hand the tools of integrability and all information about the (asymptotic) spectrum
is encoded in a set of algebraic Bethe equations. As argued above, similar tools are
not currently available at the non-planar level. Thus to obtain spectral information
beyond the planar limit, one has to explicitly diagonalize the dilatation generator
in each closed subset of states. For the following discussion, it is convenient to
divide the set of operators into three different types, short operators, BMN type
operators and operators dual to spinning strings.

By short operators we mean operators which contain a finite, small number of
fields. Such operators only mix with a finite, small number of other operators and
the resulting mixing matrix can be calculated and diagonalized by hand (or using
Mathematica). Various results on non-planar corrections to anomalous dimensions
of short operator in the SU (2) sector of N =4 SYM can be found in [2] and [26].
Reference [26] in addition contains results on the SL(2)-sector of N = 4 SYM.
Results for the SU (2) × SU (2) sector of ABJM and ABJ theory were obtained
in [20] and [21].

3The paper, [35], entitled “Hints of Integrability Beyond the Planar Limit:Non-trivial Back-
grounds” deals with anomalous dimensions of operators from the SU (2)-sector consisting of the
factor (det(Z))M multiplying a single trace operator. In the limit N , M → ∞ with N

M → 0 and

g2
YM M fixed, the authors find a set of conserved charges commuting with the dilatation generator.

We remark, however, that in the limit considered the terms D̂+ and D̂− do not contribute to the
dilatation generator.
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BMN-type operators [40] are operators consisting of many fields of one type
and a few excitations in the form of fields of another type (or of derivatives). Two-
excitation eigenstates can easily be written down at the planar level. In the SU (2)

sector, they read

O J0,J1,...,Jk
n = 1

J0 +1

J0∑
p=0

cos
(

πn(2p +1)

J0 +1

)
Tr(X Z p X Z J0−p)Tr

(
Z J1

)
. . .Tr(Z Jk ),

(2.10)

where 0≤n ≤
[

J0
2

]
and the corresponding planar eigenvalues are

En =8λ sin2
(

πn

J0 +1

)
. (2.11)

Acting with the non-planar part of the dilatation generator on BMN states only
requires a finite and small number of operations and the non-planar part of the
mixing matrix for BMN states can easily be written down [12]. Treating D̂+ + D̂−
as a perturbation of D̂0, one should thus be able to determine the leading non-
planar corrections to the anomalous dimensions of BMN operators by standard
quantum mechanical perturbation theory, cf. Section 2.2. However, degeneracies
between single and multiple-trace states require the use of degenerate perturbation
theory and, due to the complexity of the coupling between degenerate states, the
mixing problem for BMN states was never resolved. For a discussion of this prob-
lem, see [41–43]. There is one case, however, for which there is no degeneracy issue
and that is for states with mode number, n =1. Here, it is possible to find the lead-
ing non-planar correction to the anomalous dimension in the limit Ji → ∞, i =
0,1, . . . , k, and λ→∞ with λ′ =λ/J 2 and g2 = J 2/N fixed, where J =∑k

i=0 Ji . The
result reads [11,44]

δEn=1 =λ′g2
2

(
1

12
+ 35

32π2

)
. (2.12)

There exist similar results for BMN operators belonging to the SL(2) sector of
N = 4 SYM [45] and for BMN operators in a certain N = 2 superconformal
gauge theory [17]. The result in equation (2.12) was extended to two-loop order
in [12].

The third class of operators, operators dual to spinning strings, consist of an
infinitely large number of background fields and an infinite number of excitations.
In the SU (2) sector, they take the form

O =Tr
(

Z J−M X M
)

+· · · , (2.13)

where · · · denotes similar terms obtained by permuting the fields and where J,

M → ∞, but M/J is kept finite. Acting with the non-planar dilatation genera-
tor on such an operator involves an infinite number of operations and becomes
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unfeasible. In [46], based on a coherent state formalism, matrix elements of the
non-planar dilatation generator between operators dual to particular folded spin-
ning strings were calculated but an explicit diagonalization of the non-planar
dilatation generator for the situation in question did not seem tractable.

2.4. COMPARISON TO STRING THEORY

To generate string theory data with which to compare non-planar corrections to
anomalous dimensions, one needs to take into account string loop corrections cor-
responding to considering string worldsheets of higher genus. For short operators,
such a comparison is currently out of sight, since we do not even have any exam-
ples of a successful comparison at the planar level, except for certain BPS states
which can be shown to have vanishing anomalous dimensions [47]. Recently, it was
shown at one-loop order that certain 1/4 BPS states can be labeled by irreducible
representations of the Brauer algebra [48], see also [49].

The situation is slightly more encouraging in the case of BMN operators.
Considering the BMN limit on the gauge theory side corresponds on the string
theory side to taking the Penrose limit of the AdS5 × S5 background, and this
turns the geometry into a PP-wave. On the PP-wave, one can quantize the free
IIB string theory in light cone gauge and find the corresponding free spectrum. In
addition, considering higher genus effects is possible by means of light cone string
field theory (LCSFT). A review of the PP-wave/BMN correspondence including
an introduction to LCSFT can be found in the References [50–54]. In LCSFT,
string interactions are described in terms of a three-string vertex, which encodes
the information about the splitting and joining of strings. There seems to be sev-
eral ways of consistently defining this three-string vertex and there exist at least
three proposals for its exact form. For all proposals, however, it holds that there is
a freedom of choosing a certain pre-factor of the vertex. Reference [55] constitutes
the most recent review of this topic describing the different possible choices of the
three vertex and containing all the relevant references. Furthermore, the authors
of [55] show that the one-loop gauge theory result (2.12) can be obtained from
LCSFT provided one chooses one particular of the proposed vertices, and its pre-
factor in a specific way.4 It is, however, not possible to recover the two-loop gauge
theory result from the LCSFT and generically LCSFT gives rise to half-integer
powers of λ′ appearing in the expressions for non-planar anomalous dimensions.
Such half-integer powers of λ′ were also found in the analysis of worldsheet one-
loop corrections to the planar energies of spinning strings [56] and eventually led
to the recognition that the BMN expansion breaks down not only at strong cou-
pling, but also at weak coupling starting at four-loop order [32,57,58]. Hence, it

4It should be noticed, though, that the match to the one-loop gauge theory result is obtained
after a truncation to the so-called impurity conserving channel, while at the same time it is proved
that generically all channels would contribute to the result. In addition, it is pointed out that an
undetermined supercharge could potentially also contribute to the result.
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appears that to obtain complete agreement between gauge and string theory, we
are forced to consider the full AdS5 × S5 geometry.

Finally, in the case of operators dual to spinning strings no direct comparison
between gauge theory and string theory has been possible. In Reference [27], the
decay of a single folded spinning string into two such strings was studied in a
semi-classical approximation and a certain relation between the conserved charges
of the decay products was found. If the semi-classical decay channel were the dom-
inant one, as it is known to be in flat space, one could hope that the matrix
elements for string splitting and joining found in [46] could encode some similar
relation. The analysis of [46], however, did not point towards the semi-classical
decay channel being the dominant one.

3. Multi-Point Functions

By multi-point functions, we mean correlation functions of the following type

〈O�1(x1)O�2(x2) . . .O�n (xn)〉, (3.1)

where the operators involved are eigenstates of the dilatation generator and carry
the conformal dimensions �1,�2, . . . ,�n . Three-point functions play a particular
role since their form is fixed by conformal invariance and since they contain the
information about the structure constants Ci j k , which appear in the theory’s oper-
ator product expansion. For appropriately normalized conformal operators, the
three-point functions take the form

〈O�1(x1)O�2(x2)O�3(x3)〉= C�1 �2 �3

(x1 − x2)
�−2�3(x2 − x3)

�−2�1(x3 − x1)
�−2�2

,

(3.2)

where �=�1 +�2 +�3.

3.1. RESULTS ON MULTI-POINT FUNCTIONS

Before the advent of the BMN paper in 2002 [40], results on multi-point functions
mostly had to do with protected versions of these. A good review and a com-
plete list of references can be found in [59]. Here, we will only very briefly list
the pre-BMN results. One-, two- and three-point functions of 1/2 BPS and 1/4
BPS operators do not renormalize. Secondly, a large class of multi-point functions
of 1/2 BPS operators have very simple renormalization properties. These are the
so-called extremal, next-to-extremal and near extremal correlators. Extremal corre-
lators fulfil that �1 =�2 +· · ·+�n and can always be expressed entirely in terms
of two-point functions. Next-to-extremal correlators obey �1 = �2 + · · · + �n − 2
and factorize into a product of n − 3 two-point functions and one three-point
function. Finally, near extremal multi-point functions have the property that
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�1 = �2 + · · · + �n − 2m, where 2 ≤ m ≤ n − 3 and 4 ≤ �1 ≤ 2n − 2. These multi-
point functions can all be expressed in terms of lower point functions. The results
on multi-point functions, briefly reviewed here, can also be understood from the
string theory side [59].

With the advent of the BMN limit [40], the focus was shifted from BPS oper-
ators to near BPS operators or BMN operators. As mentioned above, these are
operators are created from long BPS operators by the insertion of a few impuri-
ties. A much studied set of BMN operators belonging to the SO(6) sector are the
following ones

O J
i j,n = 1√

J N J+2

⎛
⎝ n∑

p=0

e
2π in

J Tr
(
	i Z p 	 j Z J−p

)
− δi j Tr

(
Z̄ Z J+1

)⎞⎠ , (3.3)

where Z is one of the three complex scalars of N = 4 SYM, say Z = 	1 + i	2

and i, j ∈{3,4,5,6}. These operators are determined by the requirement that they
should be eigenvectors of the one-loop planar dilatation generator [40] in the limit
J →∞. (For the exact finite J version of (3.3), see [60].) They can be organized
into representations of SO(6) in the obvious way. The calculation of three-point
functions of non-protected operators such as BMN operators necessitates a highly
non-trivial resolution of operator mixing. First, in the case of extremal correlators,
to calculate the classical three-point function to leading order in 1/N , one needs
to take into account mixing between single and double trace states [61]. For BMN
operators, this calculation was carried out in Reference [11,44] with the following
result for the space–time independent part of the three-point functions involving
two BMN operators and one 1/2 BPS operator of the form O J = 1√

J N J
Tr(Z J ).

〈
Ō J

i j,n Or ·J
kl,m O(1−r)·J 〉= 2 J 3/2

√
1− r sin2(πnr)

N
√

r π2
(
n2 −m2/r2

)2

(
1− λ(n2 −m2/r2)

2J 2

)

×
(

δi(kδl) j n
2 + δi[kδl] j

nm

r
+ 1

4
δi jδkl

m2

r2

)
, (3.4)

where it is understood that the operators appearing on the left hand side of (3.4)
have been redefined to take into account the effects of the just mentioned operator
mixing.5 To determine the order λ correction to the structure constants requires
a number of considerations. First, one actually has to resolve the operator mix-
ing problem to two loop order [39], see also the discussion in [64] as well as the
remarks in [11,44]. The reason is that whereas the diagonalization of the dilatation
generator to one-loop order does not introduce any coupling constant-dependent
mixing of the states, this is not so at two-loop order. At one-loop order, one has a

5Notice that in References [13,62,63] where classical three-point functions of BMN operators
also appear, the contribution to the three-point function from the mixing with double trace states
was not taken into account.
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set of states {Oα} which are simultaneously eigenstates at the classical and one-loop
level. However, when two-loop corrections are taken into account, these eigenstates
are changed to {Oα + λcαβOβ}. The coupling constant-dependent modification of
the states which occur at two-loop level gives contributions to the structure con-
stants of order λ. Finally, one of course has to ensure that the structure constants
one reads off from the three-point functions are renormalization scheme indepen-
dent. This can be achieved by normalizing the two-point functions of the operators
involved to unity at order λ; see discussion in [64].

The early papers which dealt with three-point functions ignored either one or
both of the two complications from operator mixing, i.e. the mixing with multi-
trace states and the mixing which naively appears to be of higher order. Refer-
ences [65,66] dealt with the second type of mixing phenomenon and suggested
to solve it using purely algebraic means, hence avoiding the explicit evaluation
of higher loop two-point functions. References [64,67,68] which studied one-loop
properties of structure constants, did not take into account any of the two above-
mentioned mixing issues. However, these references pointed out certain connec-
tions of three-point functions to integrable spin chains, which we will review below
together with some very recent progress along the same lines [69].

3.2. MULTI-POINT FUNCTIONS AND INTEGRABILITY

As explained above, calculating three-point functions involves first dealing with a
subtle mixing problem and secondly executing the Wick contractions between the
appropriate eigenstates. We will follow the historical development and postpone the
discussion of the mixing problem to the end of this section.

For one-loop three-point functions of scalar operators, one has tried to derive
a kind of effective vertex, which when applied to the three operators involved,
gives the order λ contribution to the structure constant [64,67]. When evaluating
three-point functions (apart from non-extremal ones), one generically encounters
two types of Feynman diagrams. One type is two-point-like involving only non-
trivial contractions between fields from two of the three operators appearing in
the three-point function, whereas the other type involves non-trivial contractions
between fields from all three operators. The generic term of the effective vertex
of [64] correspondingly acts on the indices of three different operators. However,
one can show that in a certain renormalization scheme, the one-loop correction to
the structure constant only obtains contributions from Feynman diagrams, which
are two-point-like [67] and therefore it is possible to construct an effective vertex
whose terms act at most on indices from two different operators at a time [67].
Both of the resulting effective vertices have a close resemblance to the Hamiltonian
of the integrable SO(6) spin chain. Notice, however, that both approaches [64,67]
ignore the two particular mixing issues discussed in the previous section.

An approach to the calculation of three-point functions which explicitly exploits
the integrability of the planar dilatation generator was presented in Reference [68].
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Here, the field theoretic three-point functions are represented as matrix elements of
certain spin operators of the integrable spin chain determining the spectrum, and
it is shown how these matrix elements can in principle be expressed in terms of
the elements of the spin chain’s monodromy matrix. However, the method does not
allow one to resolve the mixing between single and multi-trace operators.

More recently, it was understood how, for a certain subclass of operators, the
mixing due to one-loop corrections and the calculation of tree-level three-point
functions could be efficiently dealt with using integrability tools having their ori-
gin in the planar integrability of the theory and this led to exact results for a class
of tree-level structure constants [69]. Furthermore, combining these tools with the
ideas of [68], a wealth of new data on one-loop three-point functions for short
operators was obtained [69]. Notice again that these studies are restricted to cases
without mixing between single and multi-trace operators. Reference [70] also con-
tains extensive data on one-loop three-point functions for short operators, but here
even the single trace mixing problem was not fully resolved for all cases.

3.3. COMPARISON TO STRING THEORY

Given the success of the comparison of the anomalous dimensions of gauge theory
operators with the energies of string states, it is natural to look for a repre-
sentation of the structure constants entering the three-point functions of non-
protected operators in terms of string theory quantities. With the discovery of the
PP-wave limit of the type IIB string theory and the corresponding BMN limit of
N =4 SYM, hope was raised that in this limit the AdS/CFT dictionary could be
extended to include the structure constants of the gauge theory and a first pro-
posal for the translation of these into string theory was put forward in [13]. Here,
some structure constants Ci jk were suggested to be related in a simple way to
the matrix elements of the three-string vertex of the light cone string field theory.
A lot of debate followed this initial proposal. First of all, it was debated whether
the Ci jk were supposed to be the true CFT structure constants appearing after tak-
ing into account the two types of operator mixing discussed in Section 3.1, or if
the translation to string theory would not involve this mixing. Secondly, as men-
tioned in Section 2.4, the exact form of the three-string vertex of LCSFT was also
a subject of debate. The status of the discussion by the end of 2003 is well sum-
marized in the review [54]. In 2004, Reference [71] provided a unifying description
of the various earlier approaches. The true LCSFT vertex was argued to be a lin-
ear combination of the two earlier proposed ones, and the Ci jks of relevance for
the comparison between gauge and string theory were argued to be the true CFT
structure constants. The precise translation of the gauge theory structure constants
to the string theory language is well explained in [72]. All this should, however,
be considered with some caution, as it has been understood that only for the full
AdS/CFT system can one hope for a complete matching of string and gauge the-
ory, cf. the discussion in Section 2.4.
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In the past year, there has been quite some progress in the calculation of two-
and three-point correlation functions of string states in the full Ad S5 × S5 geom-
etry using semi-classical methods. First, in [73] (see also [74–76]), a semi-classical
approach was shown to reproduce the characteristic conformal scaling of the two-
point function with the energy for spinning strings with large quantum numbers
and it was suggested that a similar approach could be applied to three-point func-
tions. In [77], the semi-classical calculation of two-point functions was formulated
in terms of vertex operators describing classical spinning strings [78,79]. Subse-
quently, the semi-classical approach was extended to the calculation of three-point
functions involving two heavy states and one BPS state [80,81] and various cases of
this type were considered [82–84]. Furthermore, using the vertex operator represen-
tation of the correlation functions, a number of three-point functions between two
heavy states and one light non-BPS state was determined [85]. So far, an explicit
comparison of the string theory three-point functions discussed here and gauge
theory three-point functions has only been possible for protected correlators. How-
ever, very recently it has been suggested that an expansion of the string theory
three-point functions in a large angular momentum of the heavy states might allow
for a comparison with a gauge theory perturbative expansion of the same quantity,
at least for the first few loop orders [86].

4. Maldacena–Wilson Loops

Wilson loops constitute an important class of gauge invariant non-local observ-
ables in any gauge theory. The idea that Wilson loops should have a dual string
representation has a long history, see [87] and references therein. A realization of
this idea in the context of the AdS/CFT correspondence was obtained by Maldac-
ena, who introduced the following special type of locally supersymmetric Wilson
loops [88]

W [C]= 1
dim(R)

TrR

⎛
⎝P exp

⎡
⎣∮

C

dτ
(

i Aμ(x)ẋμ +	i (x)θ i |ẋ |
)⎤⎦

⎞
⎠ . (4.1)

Here, R denotes an irreducible representation of SU (N ), xμ(τ) is a parametriza-
tion of the loop C, 	i (x) are the six real scalar fields of N =4 SYM and θi (τ ) is
a curve on S5. In the present section, we will use the following definition of the
’t Hooft coupling constant

λ= g2
YM N . (4.2)

According to Maldacena [88], the expectation value of such a Wilson loop in the
fundamental representation should be determined by the action of a string ending
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at the curve C at the boundary of Ad S5, i.e.

〈W [C]〉=
∫

∂X=C

D X exp
(
−√

λS[X ]
)

. (4.3)

Expectation values of many supersymmetric Wilson loops have turned out to be
expressible in terms of expectation values in integrable zero-dimensional matrix
models. Furthermore, Wilson loops have provided us with the most promising
test of the AdS/CFT correspondence beyond the planar limit to date. The rela-
tion between Maldacena–Wilson loops and spin chain integrability is so far rather
sparse, cf. Section 4.4.

4.1. THE 1/2 BPS LINE AND CIRCLE

A Wilson loop in form of a single straight line, i.e. given by x(τ )=τ, θ i (τ )=const ,
constitutes a 1/2 BPS object. Its expectation value does not get any quantum cor-
rections and is exactly equal to one. The circular Wilson loop parameterized by

x(τ )= (cos τ, sin τ,0,0), (4.4)

and θ i (τ )= const can be obtained from the straight line by a conformal transfor-
mation and is likewise 1/2 BPS. However, its expectation value does get quantum
corrections. The expectation value of the circular Wilson loop was calculated at
the planar level in perturbation theory to two-loop order in [89] and it was found
that only ladder-like diagrams (i.e. diagrams whose vertices all lie on the loop)
contributed. The authors of [89] proposed that this could be true for all orders
and showed that under that assumption the calculation of the expectation value
could be reduced to a combinatorial problem the answer to which was given by
an expectation value in a zero-dimensional Gaussian matrix model. Subsequently,
it was understood that the reason why the problem was zero dimensional in nature
was that the expectation value of the circular Wilson loop could be understood as
an anomaly arising at the point at infinity when conformally mapping the straight
line to a circle [90]. In addition, the proposal of [89] was extended to all orders
in the 1

N -expansion [90]. Stated precisely, the proposal says that the expectation
value of the circular Wilson loop is given to all orders in λ and all orders in 1

N
by the following expression6

〈Wcircle〉=
〈

1
N

Tr (exp(M))

〉
= 1

Z

∫
D M

1
N

Tr (exp(M)) exp
(

−2N

λ
Tr M2

)
. (4.5)

Using matrix model techniques, the expectation value can be calculated exactly
and yields [90]

〈Wcircle〉= 1
N

L1
N−1(−λ/4N ) exp(λ/8N ), (4.6)

6Here, the integration is over Hermitian matrices, i.e. D M =∏
i d Mii

∏
j>i d�(Mi j )d�(Mi j ) and

Z is the partition function of the model.
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where L1
N−1 is a Laguerre polynomial. One can explicitly write down the genus

expansion of (4.6), and then taking the strong coupling, λ→∞, limit of this one
gets

〈Wcircle〉=
∞∑

p=0

1
N 2p

e
√

λ

p!
√

2
π

λ
6p−3

4

96p

[
1− 3

(
12p2 +8p +5

)
40

√
λ

+O

(
1
λ

)]
. (4.7)

The possibility of the expectation value getting additional contributions from
instantons was investigated in [91,92]. Recently, however, the proposal of [89,90]
was proved to be true [93].

The expectation value of the circular Wilson loop can be found from the string
theory recipe (4.3) in the strong coupling limit by performing a saddle point anal-
ysis. It turns out that the string action is dominated by its bosonic part at the
saddle point and the calculation becomes equivalent to determining the area of
the minimal area surface ending at the loop C . The minimal surface area, how-
ever, diverges and requires a regularization, which results in the saddle point action
being negative [88]. The minimal area corresponding to the circle was first deter-
mined in [94,95] and led to the first crude estimate of the expectation value of the
planar circular Wilson loop from the string theory side 〈Wcircle〉string ∼ e

√
λ. Later,

the string analysis was extended to include sub-leading corrections in λ coming
from integration over zero-modes and to include higher genus surfaces [90]. This
led to the following string theory estimate of the expectation of the circular Wilson
loop

〈Wcircle〉string ∝
∞∑

p=0

1
N 2p

e
√

λ

p! λ
6p−3

4

[
1+O

(
1√
λ

)]
. (4.8)

The matching between (4.7) and (4.8) provides a piece of evidence in favour of the
validity of the AdS/CFT correspondence beyond the planar level. To reproduce the

additional factor
√

2
π

appearing in (4.7) from string theory, one needs to take into
account the fluctuations about the minimal surface. The framework for performing
this calculation at the planar level was laid out in [96] and recently interesting pro-
gress was achieved in the explicit evaluation of the missing sub-leading contribu-
tion in the planar case [97].

4.2. MORE SUPERSYMMETRIC WILSON LOOPS

In Reference [98], Zarembo found a series of Wilson loops of 1/4, 1/8 and 1/16
BPS type, which can be viewed as generalizations of the 1/2 BPS Wilson line in the
higher dimensional subspaces R

2, R
3 and R

4. These Wilson loops all have trivial
expectation values. This was argued from the gauge theory side in [98,99] and an
understanding from the string theory perspective was provided in [100]. Finally, it
was explained by topological arguments in [101].
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The first example of a 1/4 BPS Wilson loop with non-trivial expectation value
was found by Drukker [102]. Later, a large family of supersymmetric Wilson loops
with non-trivial expectation values was identified [103–105]. This family of loops
constitute generalizations of the 1/2 BPS circular loop above. The most generic
type is 1/16 BPS and exists on an S3 sub-manifold of four-dimensional space–time.
Loops further restricted to an S2 are 1/8 BPS, and their expectation values were
conjectured to be equal to the analogous expectation values in the zero instanton
sector of two-dimensional Yang-Mills theory on a sphere [104,105], which implies
that they can again be evaluated using a matrix model. More precisely, for such
loops we should have

〈W [C]〉= 1
N

L1
N−1

(
g2

YM
A1A2

A 2

)
exp

[
−g2

YM

2
A1A2

A 2

]
, (4.9)

where A1 and A2 are the two areas of the sphere bounded by the loop and A =
A1 +A2 =4π . Perturbative gauge theory arguments supporting the conjecture have
been presented in [104–107], and string theoretic arguments in favour of the con-
jecture appeared in [108]. The conjecture was further supported by studies using
localization techniques in [109].

A unifying and exhaustive description of all supersymmetric Wilson loops has
been given in [110] and it was found that the two classes of Wilson loops described,
respectively, by Zarembo and Drukker et al. are indeed the two most natural ones.

Some aspects of the analysis outlined above have been generalized to N = 6
supersymmetric Chern–Simons matter theory. The 1/2 BPS Wilson loop has been
constructed [111] and its expectation value shown to be expressible in terms of an
expectation value in a zero-dimensional supermatrix model [111,112]. In addition,
one has identified a 1/6 BPS Wilson loop [113–115], the expectation value of which
can likewise be calculated using a matrix model [112,116].

4.3. HIGHER REPRESENTATIONS

Having obtained the result (4.5) and using the Schur polynomial formula, one has
access to the expectation value of the 1/2 BPS circular Wilson loop in any given
irreducible representation of SU (N ). When the rank of the representation, k, i.e.
the number of boxes in the Young tableau, fulfils that k ∼ O(N ), the appropri-
ate string theory description of the Wilson loop is in terms of Dp-branes rather
than fundamental strings. Early ideas in this direction were presented in [117–
119]. The precise dictionary between Wilson loops in higher representations and
Dp-branes was found in [120]. A Wilson loop operator in a representation given
by a Young diagram with M rows and K columns with ni boxes in the i ’th row
and m j boxes in the jth column has two different string realizations. One is in
terms of K D3-branes carrying electric charges n1, . . . ,nK and the other is in
terms of M D5-branes carrying electric charges m1, . . . ,mM . In both cases, as long
as k � N 2, one should be able to determine the expectation value of the Wilson
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loop by treating the Dp-brane using the probe approximation, i.e. ignoring the
back reaction of the Ad S5 × S5 geometry.7

For the completely symmetric and the completely antisymmetric representation
of rank k, the gauge theory expectation value of the 1/2 BPS circular Wilson loop
has been extracted from the matrix model in the limit N →∞, k →∞ with k/N
fixed using saddle point techniques. In the antisymmetric case, the result in the
large λ limit reads [124]

〈WAk (C)〉= exp
[

2N

3π

√
λ sin3 θk

]
, (4.10)

where θk is given by

π

(
1− k

N

)
= (θk − sin(θk) cos(θk)). (4.11)

This result matches the result of a supergravity calculation on the string theory
side using D5-brane probes [125]. For the completely symmetric representation, the
situation is more involved since in the large N analysis one encounters two differ-
ent saddle points. Which one dominates depends on the precise values of λ and
k/N . If one considers the limit of large λ and N with a fixed value of κ, defined by

κ =
√

λk

4N
, (4.12)

one finds [124,126]

〈W (1)
Sk

[C]〉= exp
[
2N

(
κ
√

1+κ2 + sinh−1(κ)
)]

. (4.13)

This result matches a supergravity calculation carried out using D3-brane probes
[119]. The same saddle point dominates in the limit λ → ∞, k → ∞, N → ∞
with k/N fixed. In other regions of the parameter space, the second saddle point
might come into play and, in general, one has that the expectation value of the
Wilson loop in the symmetric representation is a sum of two terms, i.e. WSk [C]=
W (1)

Sk
[C]+ W (2)

Sk
[C].

When the rank of the representation reaches the size k ∼ O(N 2), the probe
approximation breaks down as the back reaction of the Ad S5 × S5 geometry can
no longer be ignored. In this case, the resulting string background can be described
as a bubbling geometry [127]. The determination of the bubbling geometry cor-
responding to 1/2 BPS Wilson loops was initiated in [128,129] and completed
in [130]. The calculation of the expectation value of the Wilson loop from the
gauge theory side still proceeds via the matrix model and was carried out in [131,
132].

7In particular, it is expected that energies of certain spinning D3- and D5-branes correspond to
anomalous dimensions of local twist operators (cf. the chapter [121]) carrying higher representations
of the gauge group [122,123].
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Like the 1/2 BPS Wilson loop, the less supersymmetric Wilson loops can be
studied in higher representations of the gauge group. This was done for a number
of 1/4 BPS Wilson loops in [133]. There also exist numerous results on correlation
functions involving multiple Wilson loops, as well as Wilson loops and local oper-
ators for loops in various representations.

4.4. OTHER INSTANCES OF INTEGRABILITY OF WILSON LOOPS

As explained in Section 4.1, expectation values of Wilson loops in the strong cou-
pling, λ → ∞ limit can be evaluated by finding a classical string solution with
appropriate boundary conditions. The string sigma model describing type IIB
strings on Ad S5 × S5 is known to be classically integrable [3,4] and this fact was
exploited in Reference [134] to find the strong coupling expectation values of
numerous Wilson loops with xμ(t) and θ i (t) periodic. More recently, a class of
polygonal (non-supersymmetric) Wilson loops built from light like segments have
attracted attention due to their relation with gluon scattering amplitudes [135]. The
minimal surfaces corresponding to these loops have turned out to be described by
integrable systems of the Hitchin type. For a discussion of Wilson loops related to
scattering amplitudes and the relevant set of references, we refer to the chapters
[7–9].

It seems difficult to relate the expectation value of supersymmetric Wilson loops
to integrable spin chains, but there exists one special construction which exposes
such a relation. In Reference [136], the authors studied insertion of composite
operators into Wilson loops. The Wilson loop was taken to be a straight line or
a circle and θ i to describe a single point on S5. Furthermore, the composite oper-
ator was assumed to be built from two complex scalars Z = (	1 + i	2) /

√
2 and

X = (	3 + i	4) /
√

2. It is possible to assign a conformal dimension to such an
inserted operator, and to determine this dimension one has to solve a certain mix-
ing problem involving two-point functions of the type

〈
Wline

[
O†

β(t)Oα(0)
]〉

=
〈

1
N

Tr
(

P O†
α(t)Oβ(0) exp

[
i
∫

(At + i 	6)dt

])〉
. (4.14)

An operator insertion O� with a well-defined conformal dimension fulfils

〈
Wline

[
O†

�(t)O�(0)
]〉

∼ 1
t2�

. (4.15)

The above mixing problem was studied at the planar one-loop order in [136]
and mapped onto the problem of diagonalizing the Hamiltonian of an SU (2)

open Heisenberg spin chain with completely reflective boundary conditions. This
spin chain is integrable and can be solved by Bethe ansatz. For a description
of the Bethe equations associated with integrable open spin chains, we refer to
the chapter [5]. The string dual of the inserted operator can be identified and a
successful comparison between the gauge theory side and string theory side for
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inserted operators of BMN type and of the type dual to spinning strings was car-
ried out in [136].

5. Conclusion

The search for spin chain-like integrable structures in N =4 SYM regarding non-
planar anomalous dimensions and Maldacena–Wilson loops has so far not pro-
vided us with very strong positive results. Maldacena–Wilson loops are more
naturally related to zero-dimensional integrable matrix models than to spin chains,
and non-planar anomalous dimensions have not yet provided us with any traces of
integrability. It is possible that one can learn more about non-planar anomalous
dimensions by studying the three-point functions or structure constants of the the-
ory. Non-trivial operator mixing issues, however, make the evaluation of structure
constants quite involved. For a subset of single trace operators, the mixing is an
entirely planar effect and can in principle be handled using tools originating from
the planar integrability of the theory. In the generic case, however, single trace
operators will mix with multi-trace operators and the calculation of structure con-
stants requires a diagonalization of the non-planar dilatation operator. The most
naive approach to studying non-planar anomalous dimensions, namely doing per-
turbation theory in 1

N requires dealing with the splitting and joining of spin chains
and leads to a Hilbert space of states for which the standard concepts of integra-
bility, such as the asymptotic S-matrix and two-particle scattering, do not imme-
diately apply. Going beyond the planar limit hence seems to require a rethinking
of the entire framework of integrability or invoking some non-perturbative way of
handling the higher topologies.
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