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1. Introduction

Despite the success obtained so far by the integrability program, many questions
are left unanswered. Most notably, the problem remains of understanding what is
the non-perturbative definition of the model that seems to reproduce so well all
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the available data [1]. Answering this question may also be important for a deeper
understanding of the finite-size problem and its solution. An essential role in this
respect is played by the symmetries of the factorized S-matrix. A clear sign is the
presence of a Hopf algebra [2–4], then promoted to a Yangian [5]. In relativistic
integrable quantum field theories, symmetries like the Yangian or quantum affine
algebras completely determine the tensorial part of the S-matrix, up to an over-
all scalar factor. They also entail important consequences for the transfer matri-
ces and for the Bethe equations [6]. This happens also in the AdS/CFT case [7,8].
However, the AdS/CFT Yangian has very distinctive features still preventing a full
mathematical understanding. For instance, there exists an additional Yangian sym-
metry of the S-matrix [9,10] with properties not yet entirely understood, pointing
to a new type of quantum group.1 In order to give an ultimate solution of the
AdS/CFT integrable system, one needs to understand the features of this novel
quantum group and of the associated quantum integrable model. The scope of this
review is illustrating such group-theory aspects.

2. Hopf Algebras

Let us begin by recalling a few concepts in the theory of Hopf algebras, as these
are very important algebraic structures appearing in the context of integrable mod-
els. We will attempt to motivate these concepts mostly from the physical viewpoint
and refer the reader to standard textbooks, such as [12], for a thorough treatment.

The starting point is the algebra of symmetries of a system. Let us consider the
case when this algebra is a Lie (super)algebra g, and let us also consider its uni-
versal enveloping algebra A ≡ U (g). This step allows us to ‘multiply’ generators,
besides taking the Lie bracket. In such universal enveloping algebra there is a unit
element 1 with respect to the multiplication map μ. We think about multiplication
as μ : A ⊗ A → A, and we introduce a unit map η :C→ A. A few compatibility con-
ditions on these maps guarantee that we are dealing with the physical symmetries
of, say, a single-particle system.

In order to treat multiparticle states, we equip our algebra with two more maps
and obtain a bialgebra structure. One map is the coproduct � : A → A ⊗ A, which
tells us how symmetry generators act on two-particle states. The other map is the
counit ε : A →C. A list of compatibility axioms ensures that these maps are con-
sistent with the (Lie) (super)algebra structure, so we can safely think of them as
the symmetries we started with, just acting on a Fock space. In fact, for a generic
n-particle state, we can generalize the action of the coproduct as the composition
�n = . . . (�⊗1⊗1)(�⊗1)�. The coassociativity axiom

(�⊗1)�= (1⊗�)� (2.1)

1The relation with Yangian symmetry in n-p.t amplitudes [11] is also a fascinating problem.
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guarantees that a change in the positions of the �’s in the sequence �n is
immaterial.

One more map turns our structure into a Hopf algebra. This map is the anti-
pode � : A → A, which is needed to define antiparticles (conjugated representations
of the symmetry algebra). Therefore, the antipode should also be consistent with
the (Lie) (super)algebra structure,2 and be compatible with the coproduct action.
If a bialgebra admits an antipode, it is unique.

In the scattering theory of integrable models, the fundamental object encoding
the dynamics is the two-particle S-matrix, which exchanges the momenta of the
two particles and reshuffles their colors. One has therefore the possibility of defin-
ing the coproduct action as acting on, say, in states. Likewise, the composed map
P�≡�op, with P the permutation map, will act on out states. The discovery of
quantum groups revealed that these two actions need not be the same. They are
the same only for cocommutative Hopf algebras, one example being the Leibniz
rule �(a) = a ⊗ 1+ 1⊗ a one normally associates with local actions. In general,
coproducts can be more complicated, as we will amply see in what follows.3

However, as � and �op produce tensor product representations of the same
dimensions, they may be related by conjugation via an invertible element (the
S-matrix itself). The Hopf-algebra is then said to be quasi-cocommutative, and,
if the S-matrix satisfies an additional condition (‘bootstrap’ [13,14]), it is called
quasi-triangular. The S-matrix must also be compatible with the antipode map, a
condition that in physical terms goes under the name of crossing symmetry. One
can prove that bootstrap implies that the S-matrix satisfies the Yang–Baxter equa-
tion and the crossing condition.

As one can easily realize, the framework of Hopf algebras is particularly suitable
for dealing with integrable scattering. Integrability reduces the scattering problem
to an algebraic procedure, and the axioms we have been discussing just formal-
ize that procedure. However, instead of being a mere translation, the mathemat-
ical framework of Hopf algebras provides a set of powerful theorems that unify
the treatment of arbitrary representations. To this purpose, the notion of universal
R-matrix is very important. This is an abstract solution to the quasi-cocommut-
ativity condition, purely expressed in terms of algebra generators. This solution
gives an expression for the S-matrix which is therefore free from a particular rep-
resentation, at the same time being valid in any of them upon plug-in. As we will
explicitly see in what follows, the study of the properties of the universal R-matrix
reveals a big deal about the structure of the (hidden) symmetry algebra of the inte-
grable system.

2Being the antipode connected to conjugation, one imposes �(ab) = (−)ab�(b)�(a), where
multiplication is via the map μ.

3This is another reason why the Coleman-Mandula theorem does not apply to the S-matrices
we will be discussing (besides being in 1+1 dimensions).
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3. Yangians

Let g be a finite dimensional simple Lie algebra with generators JA, structure con-
stants f AB

C defined by [JA,JB] = f AB
C JC and a non-degenerate invariant bilinear

form κ AB . The Yangian Y (g) of g is a deformation of the universal enveloping
algebra of half of the loop algebra of g. The loop algebra is defined by (4.5),
“half” meaning non-negative indices m,n. Drinfeld gave two isomorphic realiza-
tions of the Yangian.4 The first realization [25] is as follows: Y (g) is defined by
relations between level zero generators JA and level one generators ̂JA:

[JA,JB]= f AB
C JC , [JA,̂JB]= f AB

C
̂JC . (3.1)

The generators of higher levels are derived recursively by computing the commu-
tant, subject to the following Serre relations (for g �= su(2)):

[̂JA, [̂JB,JC ]]+ [̂JB, [̂JC ,JA]]+ [̂JC , [̂JA,JB]]= 1
4

f AG
D f B H

E f C K
F fG H K J{DJEJF}.

(3.2)

Indices are raised (lowered) with κ AB (its inverse). The Yangian is equipped with
a Hopf algebra structure. The coproduct is uniquely determined for all generators
by specifying it on the level zero and one generators as follows:

�(JA)=JA ⊗1+1⊗JA, �(̂JA)=̂JA ⊗1+1⊗̂JA + 1
2

f A
BCJB ⊗JC . (3.3)

Antipode and counit are easily obtained from the Hopf algebra definitions.5 We
will not present here Drinfeld’s second realization of the Yangian [26], which is
suitable for constructing the universal R-matrix [27]. It suffices to say that it explic-
itly solves the recursion implicit in the first realization.

3.1. THE psu(2,2|4) YANGIAN

Generically, the level zero local generators are realized on spin-chains as

JA =
∑

k

JA(k), k ∈{spin-chain sites}. (3.4)

For infinite length, the level one Yangian generators are bilocal combinations

̂JA =
∑

k<n

f A
BCJB(k)JC (n). (3.5)

4The reader is referred to, e.g. [12,15–17] for a thorough treatment. We will not discuss the
‘RTT’ realization, see e.g. [17,18]. For generalizations to Lie superalgebras, see e.g. [19–24].

5Via a rescaling of the algebra generators, one can make a parameter (say, �) appear in front of
the mixed term 1

2 f A
BCJB ⊗JC in the Yangian coproduct (3.3). This parameter is sometimes useful

as it can be made small, as in the classical limit, cf. Section 3.
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The relationship with the coproduct (3.3) will be clear later when discussing the
Principal Chiral Model. Level n generators are n + 1-local expressions. At finite
length, boundary effects usually prevent from having conserved charges such as
(3.5), while Casimirs of the Yangian may still be well defined. We refer to [28] for
a review.

The N = 4 SYM spin-chain is based on the superconformal symmetry algebra
psu(2,2|4). The Yangian charges for infinite length have been constructed, at lead-
ing order in the ’t Hooft coupling, in [29]. The Serre relations for the relevant rep-
resentations have been proved in [30]. In [31] the first two Casimirs of the Yangian
are computed and identified with the first two local abelian Hamiltonians of the
spin-chain with periodic boundary conditions.

Perturbative corrections to the Yangian charges in subsectors have been studied
in [32–36]. The integrable structure of spin-chains with long-range (LR) interac-
tions, like the one emerging from gauge perturbation theory, lies outside the estab-
lished picture [37], but a large class of LR spin-chains has been shown to display
Yangian symmetries, see also [38–41]. In absence of other standard tools, Yangian
symmetry provides a formal proof of integrability order by order in perturbation
theory. The two-loop expression of the Yangian (3.5) for the su(2|1) sector has
been derived in [35]. In [36], a large degeneracy of states in the psu(1,1|2) sector
is explained via non-local charges related to the loop-algebra of the su(2) auto-
morphism of psu(1,1|2). Further references include [42,43]. For a recent review, we
recommend [44].

Higher non-local charges analogous to (3.5) emerge in 2D classically integra-
ble field theories [45,46]. If not anomalous, their quantum versions [47] form a
Yangian. E.g., for the Principal Chiral Model

d
dt

̂JA = d
dt

∞
∫

−∞
dx

⎡

⎣εμν J ν,A + 1
2

f A
BC J B

μ

x
∫

−∞
dx ′ J C

0 (x ′)

⎤

⎦=0, (3.6)

where JA are Noether currents for the global (left or right) group multiplication.
The classical integrability of the Green–Schwarz superstring sigma model in the

AdS5 × S5background has been established in [48]. The corresponding infinite set
of non-local classically conserved charges is found according to a logic very close
to the one described above (similar observations for the bosonic part of the action
were made in [49]). Further work can be found in [50–57].

We conclude with a remark on the Hopf algebra structure of the non-local
charges. How charges (3.6) can give rise to the coproduct (3.3) is shown in [58].
A semiclassical treatment [59,60] is as follows: One imagines two well-separated
solitonic excitations as the classical version of a scattering state. Soliton 1 is
localized in the region (−∞,0), soliton 2 in (0,∞). Defining the semiclassical
action of a charge on such solution as evaluation on the profile, one splits the
current-integration in individual domains relevant for each of the two solitons,
respectively:



552 ALESSANDRO TORRIELLI

JA
|profile =

∞
∫

−∞
dx J A

0 |profile =
0

∫

−∞
dx J A

0 +
∞

∫

0

dx J A
0 −→�(JA)=JA ⊗1+1⊗JA,

̂JA
|profile =

⎡

⎣

0
∫

−∞
dx J A

1 + 1
2

f A
BC

0
∫

−∞
dx J B

0 (x)

x
∫

−∞
dy J C

0 (y)

⎤

⎦

+
⎡

⎣

∞
∫

0

dJ A
1 + 1

2
f A
BC

∞
∫

0

dx J B
0 (x)

x
∫

0

dy J C
0 (y)

⎤

⎦

+ 1
2

f A
BC

∞
∫

0

dx J B
0 (x)

0
∫

−∞
dy J C

0 (y). (3.7)

Upon quantization in absence of anomalies this gives (3.3) on the Hilbert space.

3.2. THE CENTRALLY EXTENDED psu(2|2) YANGIAN

In the previous section, we have described how algebraic structures related to inte-
grability arise at the two perturbative ends of the AdS/CFT correspondence. To
fully exploit these powerful symmetries one needs to take a further step, which
allows to go beyond the perturbative regimes. One introduces the choice of a vac-
uum state and considers excitations upon this vacuum. This choice breaks the full
psu(2,2|4) symmetry down to a subalgebra. The excitations carry the quantum
numbers of the unbroken symmetry, and they scatter via an integrable S-matrix.

The choice that is normally made is, for instance, to consider a string (composite
operator) of Z fields (one of the three complex combinations of the six scalar fields
of N =4 SYM) as the vacuum state. The unbroken symmetry consists then of two
copies of the psu(2|2) Lie superalgebra, which receive central extensions through
quantum corrections. The same algebra appears on the string theory side. The exci-
tations carrying the unbroken quantum numbers are called magnons, in analogy to
the theory of spin-chains and magnetism.

3.2.1. The Hopf Algebra of the S-Matrix

Upon choosing a vacuum, the residual symmetry carried by the magnon excita-
tions is (two copies of) the centrally extended psu(2|2) Lie superalgebra
(or psu(2|2)c):

[

L
b

a ,Jc
]= δb

c Ja − 1
2
δb

aJc,
[

R
β

α ,Jγ

]

= δ
β
γ Jα − 1

2
δβ
αJγ ,

[

L
b

a ,J
c
]=−δc

aJ
b + 1

2
δb

aJ
c,

[

R
β

α ,J
γ
]

=−δ
γ
α J

β + 1
2
δβ
αJ

γ ,

{Q a
α ,Q

b
β }= εαβεab

C, {S α
a ,S

β
b }= εαβεabC

†,

{Qa
α,S

β
b }= δa

b R
β

α + δ
β
αL

a
b + 1

2
δa

bδβ
αH.

(3.8)
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The generators R
β

α and L
b

a form the two su(2) subalgebras which, together with
the central elements {H,C,C

†}, form the bosonic part of psu(2|2)c. The names are
reminiscent of the unbroken R- and Lorentz symmetry of the model. The fermi-
onic part is generated by the supercharges Q

a
α and S

β
b . The ‘dagger’ symbol is to

remember that, in unitary representations, the two charges are indeed conjugate of
each other, and a similar conjugation condition holds for the supercharges.

The representation of [61] gives a dynamical spin-chain, i.e. sites can be cre-
ated/destroyed by the action of the generators. The central charges act as

H|p〉= ε(p)|p〉, C|p〉= c(p)|pZ−〉, C
†|p〉= c̄(p)|pZ+〉, (3.9)

where Z+(−) adds (removes) one ‘site’ (i.e., one of the scalar fields Z in the infi-
nite string that constitutes the vacuum state) to (from) the chain. We denote
as |p〉 the one-magnon state of momentum p. This state is given by |p〉 =
∑

n eipn| · · · Z Zφ(n)Z · · · 〉, φ being one of the four possible orientations of the
‘spin’ in the fundamental representation of psu(2|2)c. The eigenvalue ε(p) is the
energy (dispersion relation) of the magnon excitation. As we will shortly see, c(p)

contains the exponential of the momentum p itself. So does c̄(p), which in unitary
(alias, real-momentum) representations is just the conjugate of c(p).

The length-changing property can be interpreted, at the Hopf algebra level, as
a non-local modification of the (otherwise trivial) coproduct [3,4]. Let us spell out
the case of the central charges. When acting on a two-particle state, one computes

C⊗1|p1〉⊗ |p2〉
=C⊗1

∑

n1<<n2

eip1n1+i p2n2 | · · · Z Zφ1 Z · · · Z
︸ ︷︷ ︸

n2−n1−1

φ2 Z · · · 〉

= (rescaling n2)= c(p1) eip2 |p1〉⊗ |p2〉. (3.10)

This action is non-local, since acting on the first magnon (with momentum p1)
produces a result which also depends on the momentum p2 of the second magnon.

We must now impose compatibility of the S-matrix with the symmetry algebra
carried by the excitations. Imposing such S-matrix invariance condition �(C)S =
S�(C) implies computing

S�(C)= S[C⊗1+1⊗C]= S[eip2Clocal ⊗1+1⊗Clocal], (3.11)

where Clocal is the local part of C, acting as Clocal|p〉 = c(p)|p〉. An analogous
argument works for �(C)S. One can rewrite (3.11) as

�(Clocal)=Clocal ⊗ eip +1⊗Clocal. (3.12)

Formula (3.12) is the manifestation of a non-trivial Hopf-algebra coproduct.6 Sim-
ilarly, to all (super) charges of psu(2|2)c, one assigns an additive quantum number
[[A]] s.t.

6We remark that a (non-local) basis change for spin-chain states can produce eip factors in dif-
ferent places in the coproduct (possibly with a different power), with no deep consequences.
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�(JA)=JA ⊗ ei[[A]]p +1⊗JA, (3.13)

which gives a (Lie) superalgebra homomorphism. Counit and antipode are derived
from the Hopf algebra axioms, and the whole structure defines a consistent Hopf
algebra. The S-matrix invariance should be written as

�op R = R� (3.14)

(quasi-cocommutativity), where the invertible R-matrix is defined as R = P S,

P being the graded permutation. There is a consistency requirement: since �(C)

is central,

�op(C)R = R�(C)=�(C)R =⇒ �op(C)=�(C). (3.15)

This is guaranteed by interpreting as algebraic condition the physical requirement

U ≡ eip1=κC+1 (3.16)

for a constant κ related to the coupling g [61].
A version of the coproduct (3.13) was shown to emerge from the dual world-

sheet string-theory. In [62], the result was reproduced by applying the standard
Bernard–LeClair procedure [58] to the light-cone worldsheet Noether charges
obtained in [63].

A semi-classical argument, based on the same reasoning presented at the end of
Section 3, is as follows. The light-cone worldsheet Noether supercharges have non-
local contributions in the physical fields:

JA =
∞

∫

−∞
dσ J A

0 (σ )ei[[A]] ∫ σ
−∞ dσ ′∂x−(σ ′). (3.17)

If we consider, as before, two well-separated soliton excitations, the semiclassical
action of these charges on such a scattering state is again obtained by splitting the
integrals:

JA |profile =
∞

∫

−∞
dσ J A

0 (σ )|profileei[[A]] ∫ σ
−∞ dσ ′∂x−(σ ′)|profile

=
0

∫

−∞
dσ J A

0 (σ )ei[[A]] ∫ σ
−∞ dσ ′∂x−(σ ′)

+
∞

∫

0

dσ J A
0 (σ )ei[[A]] ∫ 0

−∞ dσ ′∂x−(σ ′)ei[[A]] ∫ σ
0 dσ ′∂x−(σ ′)

∼JA
1 + ei[[A]]p1JA

2 −→�(JA)=JA ⊗1+ ei[[A]]p ⊗JA, (3.18)
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where one has used the definition of the worldsheet momentum for the first
excitation.

From the Hopf-algebra antipode � one derives the so-called ‘antiparticle’ rep-
resentation J̃A and the corresponding charge-conjugation matrix C :

�(JA)=C−1[J̃A]stC, (3.19)

where Mst is the supertranspose of M . These are the ingredients entering the
crossing-symmetry relations originally written down in [2], where the existence of
an underlying Hopf-algebra of the S-matrix was conjectured. The antiparticle rep-
resentation and the constraints on the overall scalar factor of the S-matrix as
found in [2], naturally follow from (3.19) combined with the general formulas

(� ⊗1)R = (1⊗�−1)R = R−1, (3.20)

where the antipode is derived from the coproduct (3.13).
A reformulation in terms of a Zamolodchikov–Faddeev (ZF) algebra has been

given in [64]. There, the basic objects are creation and annihilation operators, with
commutation relations given in terms of the S-matrix. Also, a q-deformation of
this structure and of the one-dimensional Hubbard model is studied in [65,66].

3.2.2. The Yangian of the S-Matrix

The S-matrix in the fundamental representation has been shown to possess
psu(2|2)c Yangian symmetry [5]. In order to be a Lie superalgebra homomor-
phism, the coproduct should respect (3.1). Therefore, the structure of the Yangian
coproduct has to take into account the deformation in (3.13):

�(̂JA)=̂JA ⊗1+U [[A]] ⊗̂JA + 1
2

f A
BCJBU [[C]] ⊗JC . (3.21)

The representation for ̂JA is the so-called evaluation representation, typically
obtained by multiplying level-zero generators by a ‘spectral’ parameter. Here,

̂JA =uJA = ig

(

x+ + 1
x+ − i

2g

)

JA. (3.22)

The variables x± parameterize the fundamental representation (conventions as
in [8]).

A special remark concerns the dual-structure constants f A
BC . They should repro-

duce the general form (3.3), and analogous ones with all indices lowered should be
used to prove the Serre relations (3.2). However, since the Killing form of psu(2|2)c

is zero, one has a problem in defining these structure constants. In [5], the quan-
tities f A

BC are explicitly given as a list of numbers, without necessarily referring
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to an index-lowering procedure.7 The table of coproducts is in this way fully
determined.

Another remark concerns the dependence of the spectral parameter u on the
representation variables x±, or, equivalently, on the eigenvalues of the central
charges of psu(2|2)c. For simple Lie algebras, the spectral parameter is typically
an additional variable attached to the evaluation representation. Together with the
existence of a shift-automorphism u →u + const of the Yangian in evaluation rep-
resentations, this implies that the Yangian-invariant S-matrix is of difference-form
S = S(u1 − u2). The dependence of u on the central charges alters this property,
and one does not have a difference form in the fundamental S-matrix (see [72] and
Section 4.1.1).

The full quantum S-matrix is also invariant under the following exact symmetry,
found in [9] and shortly afterwards confirmed in [10]:

�(̂B′)= ̂B′ ⊗1+1⊗ ̂B′ + i

2g
(Sα

a ⊗Q
a
α +Q

a
α ⊗S

α
a ),

�(̂B′)=−̂B′ + 2i

g
H, (3.23)

̂B′ = 1
4
(x+ + x− −1/x+ −1/x−)diag(1,1,−1,−1).

This coproduct is reminiscent of a level one Yangian symmetry (cf. (3.3)). We will
see in the next section the relevance of this generator for the classical r -matrix.
Commuting this symmetry with the (level zero) generators, one obtains novel exact
Yangian (super)symmetries of S [9]. The latter act on bosons and fermions with
two different spectral parameters, reducing in the classical limit to the supercharges
of [73].

4. The Classical r-Matrix

The form of the Yangian we discussed resembles the standard one while simulta-
neously showing some unexpected features. In order to gain a deeper understand-
ing it is commonly advantageous to study certain limits. One important instance
is the classical limit, i.e. one studies perturbations of the R-matrix around the
identity:

R =1⊗1+�r +O(�2), (4.1)

7An argument in [5] suggests interpreting these quantities as dual structure constants in an
enlarged algebra with invertible Killing form, see also [67,68]. This algebra is obtained by adjoin-
ing the sl(2) automorphism of psu(2|2)c [69,70]. Apart from allowing inversion of the Killing form
and determination of f A

BC , these extra generators would drop out of the final form of the Yan-
gian coproduct (3.21). We also refer to [71] for a derivation of the Yangian coproducts using the
exceptional Lie superalgebra D(2,1;α).
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� being a small parameter. The first-order term r is called the classical r -matrix.8

One can easily prove that, if R satisfies the Yang–Baxter equation (YBE), r satis-
fies the classical YBE (CYBE):

[r12, r13]+ [r12, r23]+ [r13, r23]=0. (4.2)

In known cases, studying (4.2) one can classify the solutions of the YBE itself,
and the possible quantum group structures underlying such solutions (Belavin–
Drinfeld theorem [74,75]). We will not reproduce here the details. Knowing the
r -matrix, there is a standard procedure for constructing an associate Lie bialgebra,
and quantizing it9 in terms of so-called ‘Manin triples’ (see e.g. [15]). The quan-
tum structures for simple Lie algebras are elliptic quantum groups, (trigonometric)
quantum groups and Yangians. Analogous theorems for superalgebras are investi-
gated in [76–78]. An illuminating example is Yang’s r -matrix (C2 is the quadratic
Casimir)

r = C2

u2 −u1
. (4.3)

This is the prototypical rational solution of the CYBE.10 The geometric series
gives

r = C2

u2 −u1
= JA ⊗JA

u2 −u1
=

∑

n ≥0

JAun
1 ⊗JAu−n−1

2 =
∑

n ≥0

JA
n ⊗JA,−n−1, (4.4)

for |u1/u2|< 1). Such rewriting attributes dependence on the u1 (u2) to operators
in the first (second) space (factorization). This gives r the form of tensor prod-
uct of algebra representations. Assigning JA

n = unJA in (4.4) gives loop-algebra
relations

[JA
m,JB

n ]= f AB
C JC

m+n . (4.5)

The loop algebra is precisely the ‘classical’ limit of the Yangian Y (g) (see
Section 3). With this example one realizes how rational solutions of the CYBE,
such as (4.3), starting as not-better specified elements of g ⊗ g for a Lie algebra
g, give rise to Yangians upon quantization (namely, their quantized version takes
values in Y (g)⊗Y (g)). For related aspects concerning the classical r -matrix, see
[45,46].

4.1. psu(2|2)c

In the case of the S-matrix found in [61], the parameter controlling the classi-
cal expansion is naturally the inverse of the coupling constant g (near-BMN limit
[79]):

8r lives in g ⊗ g, for g an algebra, R in U (g) ⊗ U (g),U (g) the universal enveloping algebra
of g.

9Meaning completing the Lie bialgebra to a quantum group (classical r - to quantum R-matrix).
10Since by definition [C2,JA ⊗1+1⊗JA]=0∀A, the CYBE is easily proven for (4.3).
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R =1⊗1+ 1
g

r +O

(

1
g2

)

. (4.6)

The classical r -matrix r is identified with the tree-level string scattering matrix
computed in [62]. In the parameterization of [80] one has

x±(x)= x

√

1− 1

g2(x − 1
x )2

± i x

g(x − 1
x )

→ x . (4.7)

One sends g to ∞ with x fixed. x is interpreted as an unconstrained ‘classical’ var-
iable. This classical limit was studied in [81]. The target is finding the complete
algebra the r -matrix takes values in, whose quantization can reveal the full quan-
tum symmetry of the S-matrix. The fundamental representation tends to a limit-
ing centrally-extended psu(2|2), with generators parameterized by x . The classical
r -matrix r = r(x1, x2) is not of difference form. The Lie superalgebra is not sim-
ple and has zero dual Coxeter number. This prevents applying Belavin–Drinfeld
type of theorems. Nevertheless, r has a simple pole at x1 − x2 = 0 with residue11

the Casimir C2 of gl(2|2):

C2 =
4

∑

i, j=1

(−)[ j]Ei j ⊗ E ji , (4.8)

with Ei j matrices with all zeros but 1 in position (i, j), and [ j] the fermionic grad-
ing of the index j . In the absence of a quadratic Casimir for psu(2|2)c, the clas-
sical r -matrix displays on the pole (it ‘borrows’) the Casimir of a bigger algebra12

for which a non-degenerate form exists and the quadratic Casimir can be con-
structed. This ‘borrowing’ reminds a mathematical prescription due to Khoroshkin
and Tolstoy [27,82]. One expects that, if a universal R-matrix exists and if it has
to be of Khoroshkin–Tolstoy type, an additional Cartan element of type B has to
appear.

Type-B generators play an important role in factorizing r . The present r is more
complicated than Yang’s one, and it is harder to find a suitable geometric-like
series expansion. A first proposal for the fundamental representation was given
[73], with a Yangian tower of B’s coupled to a tower of H’s to achieve factoriza-
tion. This proposal fails to reproduce the bound-state classical r -matrix [83].

A universal formula was advanced in [10]. It has been shown to reproduce also
the classical limit of the bound-state S-matrix [8,84], and it reads

r = T − B̃⊗H−H⊗ B̃

i(u1 −u2)
− B̃⊗H

iu2
+ H⊗ B̃

iu1
− H⊗H

2iu1u2
u1−u2

, (4.9)

11As a consequence of the CYBE, such residue must be a Casimir.
12gl(2|2) is obtained by adjoining to su(2|2) the non-supertraceless element B = diag(1,1,

−1,−1).
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T =2(R α
β ⊗R

β
α −L

a
b ⊗L

b
a +S

α
a ⊗Q

a
α −Q

a
α ⊗S

α
a ),

B̃= 1
4ε(p)

diag(1,1,−1,−1). (4.10)

In this formula, the generators are in their classical limit, the variable u is the
classical limit of (3.22), and ε(p) is the classical energy (cf. Section 4.1). All classi-
cal Yangian generators are obtained as Jn =unJ after factorizing via the geometric
series expansion. Quantization of this formula is an open problem. The classical
analysis seems to suggest that the triple central extension may have to merge into
some sort of deformation of the loop algebra of gl(2|2), where the additional gen-
erator B is sitting. Another open question is how to relate the results described
here to the r, s non-ultralocal structure of the psu(2,2|4) sigma-model [45,46,85].

4.1.1. Difference Form

Formula (4.9) displays an interesting structure where the dependence on the spec-
tral parameter u is (almost purely) of difference form. The non-difference form is
encoded in the representation labels x±(u) appearing in the symmetry generators
and in the last three terms of formula (4.9). Moreover, Drinfeld’s second realiza-
tion for the psu(2|2)c Yangian has been obtained in [86], together with the suitable
evaluation representation. The Yangian Serre relations, which were left as an open
question in [5], are proven to be satisfied in the second realization (see also [87].)
The representation of [86] possesses a shift-automorphism u → u + const, which
normally guarantees the difference form of the S-matrix. All this suggests the fol-
lowing, provided an algebraic interpretation of the last three terms in formula (4.9)
can be found that generalizes to the full quantum case (possibly along the case of
the ideas reported in [10] in terms of twists). Modulo this interpretation, one might
hope to achieve a rewriting of the quantum S-matrix such that the dependence on
u1 and u2 is (almost purely) of difference form, the rest being taken care of by
suitable combinations of algebra generators.13 One would expect this as the result
of evaluating a hypothetical Yangian universal R-matrix in this particular represen-
tation. This expectation seems to be consistent with recent studies of the excep-
tional Lie superalgebra D(2,1;α) [61,71,87],14 and with the explicit form of the
bound-state S-matrix (see next section).

5. The Bound State S-Matrix

The previous discussion highlights the importance of investigating the structure of
the S-matrix for generic representations of psu(2|2)c. One motivation is obtaining

13In the fundamental representation, such a rewriting has been shown to be possible in [88].
The resulting form is reminiscent of what a Khoroshkin–Tolstoy type of formula [or some natural
quantization of the classical r -matrix (4.9)] would look like in this representation.

14psu(2|2)c can be obtained by suitable contraction of D(2,1;α). See also [89].
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the universal R-matrix and understanding the role of the ̂B
′ symmetry. There is

also a more stringent need related to finite-size corrections to the energies accord-
ing to the TBA approach [90]. According to this philosophy, it becomes cru-
cial to have a concrete realization of the (mirror) bound-state S-matrices. Usually,
these can be bootstrapped once the S-matrix of fundamental constituents is known
[13,14]. However, the present case is more complicated. The fundamental S-matrix
does not reduce to a projector on the bound-state pole, related to the fact that
the tensor product of two short representations (generically irreducible) becomes
reducible but indecomposable on the pole. The only way to construct the S-matrix
for bound states seems to be a direct derivation from the Lie superalgebra invari-
ance in each bound-state representation. This becomes rapidly cumbersome [91].
Moreover, this does not uniquely fix the S-matrix when the bound-state number
increases, and one needs to resort to YBE, or, as shown in [84], to Yangian invari-
ance. The Yangian eventually provides an efficient solution to this problem, and it
allows to uniquely determine the S-matrix for arbitrary bound-state numbers [8].

The bound-state representations are atypical (short) completely symmetric
representations of dimension 4�, � = 1,2, . . .. They all extend to evaluation repre-
sentations of the Yangian, with appropriate evaluation parameter u [84]. A conve-
nient realization is given in terms of differential operators acting on the space of
degree M polynomials (superfields) in two bosonic (wa,a =1,2) and two fermionic
(θα, α=1,2) variables. All details can be found in [8]. The essence of the construc-
tion consists in finding a closed subset of states |xi 〉 for which the S-matrix can
be computed exactly in terms of a definite matrix M . One then generates all other
states |yA〉 by acting with (Yangian) coproducts on this closed subsector and using
quasi-cocommutativity:

R|yA〉= R�(J)i
A|xi 〉=�op(J)i

A R|xi 〉=�op(J)i
A M j

i |x j 〉. (5.1)

On the other hand, R|yA〉 = RB
A |yA〉 = RB

A�(J)i
B |xi 〉. The task is to find as many

states as needed to invert the above relation, namely RB
A =�op(J)i

A M j
i [�(J)−1]B

j .
The construction automatically provides a factorizing twist [92] for the R-matrix

in the bound-state representations (hence also for the fundamental representation):

R = F21 × F12
−1. (5.2)

However, we remark that the coproduct twisted with F12 is by construction cocom-
mutative, but, as expected, not at all trivial. Furthermore, apart perhaps from the
overall factor, the bound-state S-matrix depends only on u1 − u2, on combinato-
rial factors involving the integer bound-state components, and on specific combina-
tion of algebra labels ai ,bi , ci ,di . These combinations are the same noticed in [88].
It remains hard to figure out a universal formula reproducing this S-matrix. Nev-
ertheless, it looks like such a universal object would treat the evaluation param-
eters of the Yangian as truly independent variables, the latter appearing only in
difference-form due to the Yangian shift-automorphism. The rest of the labels
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would appear because of the presence in the universal R-matrix of the (super)
charges in the typical ‘positive ⊗ negative’-roots combinations, breaking the dif-
ference-form due to the constraint that links the evaluation parameter to the cen-
tral charges. This is consistent with the findings of [93], where one of the blocks
of the S-matrix has been related to the universal R-matrix of the Yangian of sl(2)

in arbitrary bound-state representations.
The bound-state S-matrix has been utilized in [94] to verify certain conjectures

that appeared in the literature, concerning the eigenvalues of the transfer matrix in
specific short representations [70]. Long representations have been studied in [95].
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