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Abstract. We review the derivation of the S-matrix for planar N = 4 supersymmetric
Yang–Mills theory and type IIB superstring theory on an Ad S5 × S5 background. After
deriving the S-matrix for the su(2) and su(3) sectors at the one-loop level based on coor-
dinate Bethe ansatz, we show how su(2|2) symmetry leads to the exact asymptotic S-matrix
up to an overall scalar function. We then briefly review the spectrum of bound states by
relating these states to simple poles of the S-matrix. Finally, we review the derivation of
the asymptotic Bethe equations, which can be used to determine the asymptotic multipar-
ticle spectrum.
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1. Introduction

S-matrices are quantum mechanical probability amplitudes between incoming and
outgoing on-shell particle states. Exact factorized S-matrices have played a key
role in the development of integrable models [1]. Indeed, starting from an exact
S-matrix, it is in principle possible to compute the asymptotic spectrum, finite-
size effects (Lüscher corrections, thermodynamic Bethe ansatz), form factors, and
correlation functions non-perturbatively.

As reviewed in many articles in this volume, planar four-dimensional N =4
supersymmetric Yang–Mills (SYM) theory and its holographic dual, type IIB
superstring theory on Ad S5 × S5, are believed to be quantum integrable. The
world-sheet and spin-chain S-matrix have been derived based on an su(2|2)2
symmetry in [2–9] and will be reviewed here. This S-matrix has been confirmed by
various checks. One of these checks is that the all-loop asymptotic Bethe ansatz
equations (BAEs) [10] can be derived from the exact factorized S-matrix using
either nested Bethe ansatz or algebraic Bethe ansatz methods [3,4,11,12]. As a
warm up, we first review the computation of the one-loop S-matrix in the su(2)
and su(3) sectors, based on a direct coordinate Bethe ansatz, using integrable spin-
chain Hamiltonians whose eigenvalues are the anomalous dimensions of scalar
operators in planar N =4 SYM. Using the S-matrices, we show how the bound-
state spectrum can be constructed. Finally, we show how imposing periodicity on
the asymptotic multiparticle wavefunction leads to the asymptotic Bethe equations,
which can be used to determine the asymptotic multiparticle spectrum.

The outline of this chapter is as follows: In Section 2 we review the derivation
of the exact N = 4 SYM S-matrix, first by coordinate Bethe ansatz for one-loop
order, and then by utilizing su(2|2) symmetry for all-loop order. We also discuss
the spectrum of bound states. In Section 3 we review the derivation of the asymp-
totic Bethe equations, first for the su(2) and su(3) sectors, and then for the full
theory.

2. Exact S-Matrix

2.1. COORDINATE BETHE ANSATZ

For the planar N =4 SYM theory, we are interested in SYM composite operators,

Tr [O1O2 · · ·OL ] , Oi ∈{Dn�, Dn�, Dn F}, (2.1)

where all operators are at the same spacetime point. It is useful to associate the
composite operators with state vectors of a quantum spin chain. The BPS opera-
tor Tr[Z L ], where Z is one of the scalars �, is the vacuum state |0〉. This choice of
vacuum breaks the global psu(2,2|4) symmetry down to su(2|2)⊗ su(2|2). Other
composite operators which are obtained by replacing some Z ’s with certain other
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SYM fields (“impurities”) are mapped to excited states over the vacuum:

|
1↓
Z · · · Z

x1↓
χ Z · · · Z

x2↓
χ ′ Z · · · Z

xM↓
χ ′′ Z · · ·

L↓
Z〉≡Tr

[
Z x1−1χ Z x2−x1−1χ ′ · · ·χ ′′ · · ·

]
, (2.2)

where

χ,χ ′, χ ′′, . . .∈{�aȧ,�ȧα, �̄aα̇, Dαα̇Z}, a, ȧ =1,2, α, α̇=3,4. (2.3)

All other orientations for the operators Oi should be regarded as multiple excita-
tions χ coincident at a single site.1 Due to the cyclic property of the trace, the state
(2.2) should be invariant under a uniform translation xk → xk +1. These excitation
states belong to a bifundamental representation of a centrally extended su(2|2)L ⊗
su(2|2)R , which should also be a symmetry of the S-matrix. The same structure
can be discovered on the string world-sheet action in the light-cone gauge [13,14].

For the S-matrix, we focus on a particular class of states, namely asymptotic
states, where the distances between the impurities χ,χ ′, . . ., are very large:

1	 x1 	 x2 	· · ·	 xM 	 L →∞. (2.4)

The S-matrices are defined as amplitudes between two such asymptotic states.
To illustrate this, we derive the two-particle S-matrix directly from the spin

chain using coordinate Bethe ansatz. For simplicity, we will first consider compos-
ite operators in the su(2) sector where the impurities are a complex scalar field X .

The one-loop anomalous dimensions of the su(2) sector are given by the
Hamiltonian of the spin-1/2 ferromagnetic su(2)-invariant (“XXX”) Heisenberg
quantum spin-chain model [15]

�= λ

8π2
H, H =

L∑
l=1

(
1−Pl,l+1

)
, (2.5)

where λ= g2
Y M N is the ’t Hooft coupling, and P is the permutation operator on

C 2 ⊗ C 2. We also need to impose a periodic boundary condition by identifying
L +1≡1.

It is obvious that the vacuum state |0〉 is an eigenstate of H with zero energy.
Since [H, Sz]=0, the energy eigenstates can be classified according to the number
of impurities (“magnons”). One-particle excited states with momentum p are given
by2

|ψ(p)〉=
L∑

x=1

ei px |
1↓
Z · · ·

x↓
X · · ·

L↓
Z〉. (2.6)

1For example, D� is a superposition of � and DZ . More precisely, the excitations are Z �→ DZ
and Z �→�; combining these, one obtains Z �→ DZ �→ D�, or equivalently Z �→� �→ D�.

2The invariance of states by a shift of one site (noted earlier) implies that the total momen-
tum should vanish. Therefore, a one-particle state with nonvanishing momentum is not allowed in
a strict sense. The one- or two-particle states which we consider here can be thought of as part of
an infinitely long chain where these particles are asymptotically separated from other particles.
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One can easily check that (2.6) is an eigenstate of H with eigenvalue E = ε(p),
where

ε(p)=4 sin2(p/2). (2.7)

Two-particle eigenstate can be written as

|ψ(p1, p2)〉= AX X (12)|X (p1)X (p2)〉+ AX X (21)|X (p2)X (p1)〉, (2.8)

|X (pi )X (p j )〉=
∑

x1<x2

ei(pi x1+p j x2)|
1↓
Z · · ·

x1↓
X · · ·

x2↓
X · · ·

L↓
Z〉. (2.9)

Now we impose that these states satisfy

H |ψ〉= E(p1, p2)|ψ〉 (2.10)

and find that

E = ε(p1)+ ε(p2), (2.11)

where ε(p) is given by (2.7). This leads to the X − X scattering amplitude given by

AX X (21)= S(p2, p1)AX X (12), (2.12)

S(p2, p1)= u2 −u1 + i

u2 −u1 − i
, (2.13)

where u j =u(p j ) and

u(p)= 1
2

cot(p/2). (2.14)

We now consider the more complicated case where there are two different types
of complex scalar fields, namely, X and Y . This is the so-called su(3) sector, which
is closed only at one loop. The (su(3)-invariant) Hamiltonian is again given by
(2.5), except now P is the permutation operator on C 3 ⊗ C 3. The two-particle
eigenstates with one particle of each type are of the form

|ψ〉= AXY (12)|X (p1)Y (p2)〉+ AXY (21)|X (p2)Y (p1)〉
+AY X (12)|Y (p1)X (p2)〉+ AY X (21)|Y (p2)X (p1)〉, (2.15)

|φ1(pi )φ2(p j )〉=
∑

x1<x2

ei(pi x1+p j x2) |
1↓
Z · · ·

x1↓
φ1 · · ·

x2↓
φ2 · · ·

L↓
Z〉. (2.16)

Applying the Hamiltonian on |ψ〉 and imposing the condition (2.10), one finds
that the amplitudes should be related by (see e.g. [16])

(
AXY (21)
AY X (21)

)
=
(

R(p2, p1) T (p2, p1)

T (p2, p1) R(p2, p1)

)(
AXY (12)
AY X (12)

)
, (2.17)
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where the transmission and reflection amplitudes are given by

T (p2, p1)= u2 −u1

u2 −u1 − i
, R(p2, p1)= i

u2 −u1 − i
, (2.18)

respectively. Combining Equations (2.13) and (2.17), one can construct an su(2)-
invariant S-matrix which connects two amplitudes related by momentum exchange
as follows:

⎛
⎜⎜⎝

AX X (21)
AXY (21)
AY X (21)
AY Y (21)

⎞
⎟⎟⎠=S ·

⎛
⎜⎜⎝

AX X (12)
AY X (12)
AXY (12)
AY Y (12)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

S
T R
R T

S

⎞
⎟⎟⎠

⎛
⎜⎜⎝

AX X (12)
AY X (12)
AXY (12)
AY Y (12)

⎞
⎟⎟⎠ . (2.19)

At higher loops, the su(2) sector remains closed, but the Hamiltonian becomes
longer ranged. Integrability persists, but only in a perturbative sense [17]. Cor-
respondingly, one must introduce a perturbative asymptotic Bethe ansatz, and in
particular, an asymptotic S-matrix [2,18]. That is, in contrast to the one-loop case
(XXX model) where the S-matrix is “local,” for higher loops the S-matrix is only
asymptotic: it applies only to in-going and out-going particles which are widely
separated.

2.2. YANG–BAXTER EQUATION AND ZF ALGEBRA

It is not practical to extend the above approach to all loops and to all sectors
of planar N = 4 SYM. Fortunately, there is an alternative approach – based
on symmetry – to derive an exact asymptotic S-matrix which is valid for any
value of ‘t Hooft coupling constant. To this end, it is convenient to introduce
Zamolodchikov–Faddeev (ZF) operators [1,19] to define particle states. Using the
ZF operators, one can reformulate the derivation of the S-matrix into an algebraic
problem. In Equation (2.16), we have introduced an asymptotic two-particle state
as a superposition of plane waves. Now we express these states in terms of creation
(ZF) operators acting on the vacuum state as follows:

|φ1(pi )φ2(p j )〉≡ A†
φ1
(pi )A

†
φ2
(p j )|0〉. (2.20)

As can be noticed in (2.1), the ZF operators corresponding to the elementary
fields of N =4 SYM can be denoted by A†

i i̇
, where the index i = (a, α)=1,2,3,4

and similarly for i̇ . A very remarkable feature of the AdS/CFT S-matrix is that it
is factorized into a tensor product of two identical S-matrices, one acting on the
index i and the other on i̇ :

S= S ⊗ Ṡ. (2.21)

A natural way to describe the factorized S-matrix is to introduce “quark” ZF
operators A†

i and identify A†
i i̇

with the tensor product of the quark ZF opera-
tors by
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A†
i i̇
(p)= A†

i (p)⊗ A†
i̇
(p). (2.22)

By the factorization property, it is enough now to consider only A†
i sector for our

discussion.
The bulk S-matrix elements Si ′ j ′

i j (p1, p2) define the ZF algebra relation

A†
i (p1) A†

j (p2)= Si ′ j ′
i j (p1, p2) A†

j ′(p2) A†
i ′(p1), (2.23)

where summation over repeated indices is always understood. It is convenient to
arrange these matrix elements into a 16×16 matrix S as follows:

S = Si ′ j ′
i j ei i ′ ⊗ e j j ′, (2.24)

where ei j is the usual elementary 4×4 matrix whose (i, j) matrix element is 1, and
all others are zero.

As is well known [1], starting from A†
i (p1) A†

j (p2) A†
k(p3), one can arrive at lin-

ear combinations of A†
k′′(p3) A†

j ′′(p2) A†
i ′′(p1) by applying the relation (2.23) three

times, in two different ways. The consistency condition is the Yang–Baxter equa-
tion,

S12(p1, p2) S13(p1, p3) S23(p2, p3) = S23(p2, p3) S13(p1, p3) S12(p1, p2). (2.25)

We use the standard convention S12 = S ⊗ I, S23 = I ⊗ S, and S13 = P12 S23 P12,
where P12 = P ⊗ I, P = ei j ⊗ e j i is the permutation matrix, and I is the four-
dimensional identity matrix. The ZF algebra (2.23) also implies the bulk unitarity
equation

S12(p1, p2) S21(p2, p1)= I, (2.26)

where S21 =P12 S12 P12.
Solving the Yang–Baxter equation can be complicated. Fortunately, as we shall

see below, su(2|2) symmetry suffices to determine the AdS/CFT S-matrix (in the
fundamental representation) – there is no need to solve the Yang–Baxter equation,
as it is automatically satisfied.

2.3. CENTRALLY EXTENDED su(2|2)

The centrally extended su(2|2) algebra consists of the rotation generators L
b

a ,R
β
α ,

the supersymmetry generators Q
a
α ,Q

†α
a , and the central elements C,C†,H.3 Latin

3The central charge H is identified as the world-sheet Hamiltonian. The additional central
charges C and C

†, which are necessary for having momentum-dependent representations with the
appropriate energy, also appear in the off-shell symmetry algebra of the gauge-fixed sigma model
[14].
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indices a,b, . . . take values {1,2}, while Greek indices α,β, . . . take values {3,4}.
These generators have the following nontrivial commutation relations [3,4,9]:

[
L

b
a ,Jc

]
= δb

c Ja − 1
2
δb

aJc,
[
R

β
α ,Jγ

]= δβγ Jα − 1
2
δβαJγ ,

[
L

b
a ,J

c
]
=−δc

aJ
b + 1

2
δb

aJ
c,

[
R

β
α ,J

γ
]=−δγα J

β + 1
2
δβαJ

γ ,

(2.27){
Q

a
α ,Q

b
β

}
= εαβεab

C,
{
Q

†α
a ,Q

†β
b

}
= εαβεabC

†,

{
Q

a
α ,Q

†β
b

}
= δa

b R
β
α + δβαL

a
b + 1

2
δa

bδ
β
αH,

where Ji (J
i ) denotes any lower (upper) index of a generator, respectively.

The action of the bosonic generators on the ZF operators is given by

[
L

b
a , A†

c(p)
]
= (δb

c δ
d
a − 1

2
δb

aδ
d
c )A

†
d(p),

[
L

b
a , A†

γ (p)
]
=0,

(2.28)[
R

β
α , A†

γ (p)
]
= (δβγ δδα − 1

2
δβα δ

δ
γ )A

†
δ(p),

[
R

β
α , A†

c(p)
]
=0.

The operator relations for supersymmetry generators4

Q
a
α A†

b(p)= e−i p/2
[
a(p)δa

b A†
α(p)+ A†

b(p)Q
a
α

]
,

Q
a
α A†

β(p)= e−i p/2
[
b(p)εαβε

ab A†
b(p)− A†

β(p)Q
a
α

]
,

(2.29)
Q

†α
a A†

b(p)= ei p/2
[
c(p)εabε

αβ A†
β(p)+ A†

b(p)Q
†α
a

]
,

Q
†α
a A†

β(p)= ei p/2
[
d(p)δαβ A†

a(p)− A†
β(p)Q

†α
a

]
,

and the central charges

C A†
i (p)= e−i p

[
a(p)b(p)A†

i (p)+ A†
i (p)C

]
,

C
† A†

i (p)= ei p
[
c(p)d(p)A†

i (p)+ A†
i (p)C

†
]
, (2.30)

H A†
i (p)= [a(p)d(p)+b(p)c(p)] A†

i (p)+ A†
i (p)H,

can be used to act with the generators on multiparticle states. The ZF operators
form a representation of the symmetry algebra provided ad − bc = 1. The repre-
sentation is also unitary provided d = a∗, c = b∗. Acting with C on both sides of
Equation (2.23) applied to the vacuum state, one can deduce the further constraint

e−i p1a(p1)b(p1)+ e−i(p1+p2)a(p2)b(p2)

= e−i p2 a(p2)b(p2)+ e−i(p1+p2)a(p1)b(p1), (2.31)

4Such momentum-dependent braiding relations, which are typical for nonlocal (fractional-spin)
integrals of motion, have long been used to determine S-matrices in certain integrable models, see,
e.g. [21–23].
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which leads to the relation a(p)b(p)= ig(ei p −1), where g is a constant. It follows
that the parameters can be chosen as follows [3,9,20]:

a =√
gη, b =√

g
i

η

(
x+

x− −1
)
, c =−√

g
η

x+ , d =√
g

x+

iη

(
1− x−

x+

)
, (2.32)

where

x+ + 1
x+ − x− − 1

x− = i

g
,

x+

x− = ei p, η= ei p/4
√

i(x− − x+). (2.33)

Hence, for a one-particle state,

H=−ig

(
x+ − 1

x+ − x− + 1
x−

)
=
√

1+16g2 sin2 p

2
. (2.34)

The anomalous dimension H − 1 matches with the weak-coupling result given by
(2.5) and (2.7), provided we make the identification g =√

λ/(4π). That is, the sym-
metry determines the exact dispersion relation, except for the dependence on the
coupling constant. See also, [24].

The S-matrix can be determined (up to a phase) by demanding that it commute
with the symmetry generators. That is, starting from J A†

i (p1) A†
j (p2)|0〉 where J is

a symmetry generator, and assuming that J annihilates the vacuum state, one can
arrive at linear combinations of A†

j ′(p2) A†
i ′(p1)|0〉 in two different ways, by apply-

ing the ZF relation (2.23) and the symmetry relations (2.28), (2.29) in different
orders. The consistency condition is a system of linear equations for the S-matrix
elements. The result for the nonzero matrix elements Si ′ j ′

i j (p1, p2) is [3,9]

Sa a
a a = A, Sα αα α = D,

Sa b
a b = 1

2
(A − B), Sb a

a b = 1
2
(A + B),

Sα βα β = 1
2
(D − E), Sβ αα β = 1

2
(D + E), (2.35)

Sα βa b =−1
2
εabε

αβ C, Sa b
α β =−1

2
εabεαβ F,

Sa α
a α = G, Sα a

a α = H, Sa α
α a = K , Sα a

α a = L ,

where a,b ∈{1,2} with a �=b;α,β ∈{3,4} with α �=β; and

A = S0
x−

2 − x+
1

x+
2 − x−

1

η1η2

η̃1η̃2
,

B =−S0

[
x−

2 − x+
1

x+
2 − x−

1

+2
(x−

1 − x+
1 )(x

−
2 − x+

2 )(x
−
2 + x+

1 )

(x−
1 − x+

2 )(x
−
1 x−

2 − x+
1 x+

2 )

]
η1η2

η̃1η̃2
,

C = S0
2i x−

1 x−
2 (x

+
1 − x+

2 )η1η2

x+
1 x+

2 (x
−
1 − x+

2 )(1− x−
1 x−

2 )
, D =−S0,

E = S0

[
1−2

(x−
1 − x+

1 )(x
−
2 − x+

2 )(x
−
1 + x+

2 )

(x−
1 − x+

2 )(x
−
1 x−

2 − x+
1 x+

2 )

]
, (2.36)
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F = S0
2i(x−

1 − x+
1 )(x

−
2 − x+

2 )(x
+
1 − x+

2 )

(x−
1 − x+

2 )(1− x−
1 x−

2 )η̃1η̃2
,

G = S0
(x−

2 − x−
1 )

(x+
2 − x−

1 )

η1

η̃1
, H = S0

(x+
2 − x−

2 )

(x−
1 − x+

2 )

η1

η̃2
,

K = S0
(x+

1 − x−
1 )

(x−
1 − x+

2 )

η2

η̃1
, L = S0

(x+
1 − x+

2 )

(x−
1 − x+

2 )

η2

η̃2
,

where x±
i = x±(pi ) and

η1 =η(p1)ei p2/2, η2 =η(p2), η̃1 =η(p1), η̃2 =η(p2)ei p1/2, (2.37)

where η(p) is given in (2.33). This S-matrix satisfies the standard Yang–Baxter
equation (2.25). It also satisfies the unitarity equation (2.26), provided that the
scalar factor obeys

S0(p1, p2) S0(p2, p1)=1. (2.38)

In order to determine S0, one should impose on the full S-matrix (2.21) cross-
ing symmetry and other physical requirements, which will be explained in the next
chapter of this volume [25]. The final result is given by

S0(p1, p2)
2 = x−

1 − x+
2

x+
1 − x−

2

1− 1
x+

1 x−
2

1− 1
x−

1 x+
2

σ(p1, p2)
2, (2.39)

where the dressing factor σ(p1, p2) is called the BES/BHL phase factor [7,8].
We remark that the above S-matrix is in fact in the “string frame” (or “basis”)

[9]. Starting from the spin chain one obtains the S-matrix instead in the “spin-
chain frame,” where (2.37) is replaced by

η1 =η(p1), η2 =η(p2), η̃1 =η(p1), η̃2 =η(p2). (2.40)

The S-matrix in the spin-chain frame satisfies a “twisted” version of the Yang–
Baxter equation, rather than (2.25).

We also remark that the su(2|2) S-matrix is closely related [4,11] to Shastry’s
R-matrix [26,27] for the Hubbard model.

2.4. BOUND STATES

So far we have considered two-particle asymptotic scattering states. The two par-
ticles carrying real momenta can be widely separated. Another interesting case
occurs when the two particles are closely localized and behave as a single particle.
This kind of localized state is the bound state [28,29].

As a first example, let us consider again the su(2) sector at one loop. In terms of

x = x1 + x2

2
, r = x2 − x1, p1,2 = p

2
± k, (2.41)
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we can reexpress the two-particle state (2.8) as

|ψ〉=
∑
x, r

ei px
(

AX X (12)e−ikr + AX X (21)eikr
) r

|Z · · ·
︷ ︸︸ ︷
X Z · · · Z X · · · Z〉 . (2.42)

Notice that r > 0 by definition. To have a localized wave, the amplitude should
decay exponentially as the distance r increases. This can be satisfied if we take
k = iq(q > 0) and AX X (12)= 0. From Equation (2.12) this leads to a condition
that S(p2, p1) should have a pole. In other words, a simple pole of the S-matrix
corresponds to a bound state. In terms of u-variables, this condition is satisfied
by u2,1 = u ± i/2 as one can see from (2.13). This is an example of a so-called
string solution, of size 2. Following a similar procedure, one can find that the
higher bound-state poles of the S-matrices can be obtained when the particles
carry momenta

u(n)j =u + i
2 j −n −1

2
, j =1, . . . ,n. (2.43)

This is a string of size n. The energy of this particle can be obtained from (2.7)

εn(u)= n

u2 +n2/4
. (2.44)

Now consider the more complicated case of the su(3) sector, for which the two-
particle eigenstates are given by (2.15) and (2.16). By the same argument as above,
the localized state is possible when u2 −u1 = i . This leads to AXY (12)= AY X (12)=0
from (2.17) and AXY (21)= AY X (21) because the residues of T and R in (2.18) are
the same. Therefore, the localized state can be written as

|ψ〉∼
∑
x, r

ei px eikr

⎡
⎣

r

|Z · · ·
︷ ︸︸ ︷
X Z · · · ZY · · · Z〉+

r

|Z · · ·
︷ ︸︸ ︷
Y Z · · · Z X · · · Z〉

⎤
⎦ , (2.45)

where X and Y appear symmetrically.
The bound states for generic value of ‘t Hooft coupling constant can be con-

structed in a similar way. Combining two factors of the amplitude A (2.36) with
(2.39), the S-matrix of the su(2) sector (in the spin-chain frame) is given by

S(p1, p2)= x+
1 − x−

2

x−
1 − x+

2

1− 1
x+

1 x−
2

1− 1
x−

1 x+
2

σ(p1, p2)
2. (2.46)

This amplitude has two simple poles at x−
1 = x+

2 and x−
1 = 1/x+

2 . Let us con-
sider first the former case for general higher-order bound states where simple poles
appear

x−
1 = x+

2 , x−
2 = x+

3 , . . . , x−
n−1 = x+

n . (2.47)
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With these bound-state conditions, one can easily show that the momentum (p)
and energy (H) are given by

X+

X− = ei p, X+ + 1
X+ − X− − 1

X− = in

g
(2.48)

H=−ig

(
X+ − 1

X+ − X− + 1
X−

)
=
√

n2 +16g2 sin2 p

2
, (2.49)

and satisfy the BPS (shortening) condition in (2.48) if we identify

X− ≡ x−
n , and X+ ≡ x+

1 . (2.50)

The other pole at x−
1 = 1/x+

2 cannot satisfy this condition and leads to non-BPS
states.

The situation for the full su(2|2)S-matrix is more complicated even though the
locations of poles are the same as in the su(2) sector. The M-particle bound states
belong to an atypical totally symmetric representation of the centrally extended
su(2|2) algebra. This representation has dimension 2M |2M and can be realized on
the graded vector space where the basis is given by

• M + 1 bosonic states: symmetric in ai : |ea1···aM 〉, where ai = 1,2 are bosonic
indices.

• M − 1 bosonic states: symmetric in ai : |ea1···aM−2α1α2〉, where αi = 3,4 are
fermionic indices.

• 2M fermionic states: symmetric in ai : |ea1···aM−1α〉, where α=3,4.

An efficient realization of this representation is to introduce [20] a vector space of
analytic functions of two bosonic variables wa and two fermionic variables θα. For
example, the 8-dimensional states for M =2 can be given by

|e1〉= w1w1√
2
, |e2〉=w1w2, |e3〉= w2w2√

2
, |e4〉= θ3θ4,

(2.51)
|e5〉=w1θ3, |e6〉=w1θ4, |e7〉=w2θ3, |e8〉=w2θ4.

The su(2|2) generators can be represented by differential operators on this vector
space as follows:

L
b

a =wa
∂

∂wb
− 1

2
δb

awc
∂

∂wc
, R

β
α = θα ∂

∂θβ
− 1

2
δβα θγ

∂

∂θγ
,

Q
a
α =a θα

∂

∂wa
+b εabεαβwb

∂

∂θβ
, Q

†α
a =dwa

∂

∂θα
+ c εabε

αβθβ
∂

∂wb
,

(2.52)
C=ab

(
wa

∂

∂wa
+ θα ∂

∂θα

)
, C

† = cd

(
wa

∂

∂wa
+ θα ∂

∂θα

)
,

H= (ad +bc)

(
wa

∂

∂wa
+ θα ∂

∂θα

)
.

From this, it is straightforward to evaluate how the generators act on the bound
states.
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In contrast with the case of the fundamental representation reviewed in the pre-
vious subsection, the su(2|2) symmetry is not enough to determine the bound-state
S-matrix completely. A very important observation is that the fundamental bulk
S-matrix (2.35) has a remarkable Yangian symmetry Y (su(2|2)) [30,31] which can
be used to completely determine the two-particle [20,32] and general l-particle
bound state bulk S-matrices [33]. It is fortunate that such a general way of gen-
erating higher-dimensional S-matrices has been found, since the fusion procedure
does not seem to work for AdS/CFT S-matrices [20].

3. Asymptotic Bethe Equations

For a system of N free particles on a ring of length L, the quantized momenta,
and therefore the exact spectrum, are trivially determined. For particles which are
not free but instead have integrable interactions, the problem of determining the
spectrum is much more difficult, but nevertheless is still tractable. Indeed, if one
knows the (asymptotic) S-matrix which satisfies the Yang–Baxter equations, then
in principle it is possible to derive a set of (asymptotic) Bethe equations which
determine the (asymptotic) quantized momenta, and therefore, the (asymptotic)
multiparticle spectrum. These (asymptotic) Bethe equations are obtained by impos-
ing periodicity on the (asymptotic) multiparticle wavefunction. In the AdS/CFT
case, this task is technically difficult due to the matrix structure of the S-matrix
and the complicated functional dependence of its matrix elements. Before address-
ing this problem, it is helpful to consider some simpler examples.

3.1. THE S-MATRIX IS A PHASE

As a first warm-up exercise, let us consider the simple case of a two-body (asymp-
totic) S-matrix which is a phase rather than a matrix.5 An example is the magnon–
magnon S-matrix in the su(2) sector at one loop, which is given by (2.13), (2.14).
The ZF operator A†(p) does not have an internal index, and satisfies (cf., (2.23))

A†(p1) A†(p2)= S(p1, p2) A†(p2) A†(p1). (3.1)

Integrability of the model implies that the multiparticle wavefunction is of the
Bethe type. That is, the (asymptotic) eigenstates can be expressed as

|ψ〉=
∑

1≤xQ1	···	xQN ≤L

�(Q)(x1, . . . , xN )|
1↓
Z · · ·

xQ1↓
X · · ·

xQN↓
X · · ·

L↓
Z〉, (3.2)

5In this case, the Yang–Baxter equations are trivially satisfied by the S-matrix.
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where the (asymptotic) N -particle wavefunction in the sector Q = (Q1, . . . ,QN )

such that xQ1 	· · ·	 xQN is given by

�(Q)(x1, . . . , xN )=
∑

P

AP ei pP ·xQ . (3.3)

The sum is over all permutations of P = (P1, . . . , PN ), and pP · xQ =∑N
k=1 pPk xQk .

Also, the coordinate-independent amplitudes AP are related to each other accord-
ing to

AP ∼ A†(pP1) · · · A†(pPN ). (3.4)

For example, for N =2, the wavefunction in the sector x1 	 x2 is given by

�(12)(x1, x2)= A12ei(p1x1+p2x2)+ A21ei(p2x1+p1x2), x1 	 x2. (3.5)

Since

A21 ∼ A†(p2)A
†(p1)= S(p2, p1) A†(p1)A

†(p2)∼ S(p2, p1) A12, (3.6)

we recover the previous results (2.8), (2.9), (2.12) upon identifying

AX X (12)= A12, AX X (21)= A21. (3.7)

We consider a system of N widely-separated particles on a ring of length L.
Periodicity of the wavefunction �(x1, . . . , xN ) in (say) the first coordinate,

�(1, x2, . . . , xN )=�(L +1, x2, . . . , xN ), (3.8)

implies a relationship between the wavefunctions in the sectors x1 	· · ·	 xN and
x2 	· · ·	 xN 	 x1:

�(1···N )(1, x2, . . . , xN )=�(2···N1)(L +1, x2, . . . , xN ). (3.9)

According to (3.3), the wavefunctions in these two sectors are given by

�(1···N )(1, x2, . . . , xN )= A1···N ei(p1+p2x2+···+pN xN )+· · · ,
(3.10)

�(2···N1)(L +1, x2, . . . , xN )= A2···N1ei(p1 L+p1+p2x2+···+pN xN )+· · · ,
where we have displayed only the terms which depend on the particular combina-
tion p2x2 +· · ·+ pN xN . In view of the periodicity condition (3.9), the coefficients
A1···N and A2···N1 in (3.10) must be related as follows:

A1···N = A2···N1ei p1 L . (3.11)

There is another relation between the coefficients A1···N and A2···N1 which follows
from (3.4). Indeed, it is easy to see that

A1···N ∼ A†(p1)A
†(p2) · · · A†(pN )

=
N∏

j=2

S(p1, p j )A
†(p2) · · · A†(pN )A

†(p1)∼
N∏

j=2

S(p1, p j )A
2···N1, (3.12)
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where we have used (3.1) to move A†(p1) to the right successively past all the other
ZF operators. The two relations (3.11) and (3.12) imply that

N∏
j=2

S(p1, p j )= ei p1 L . (3.13)

Examining the terms in the ellipsis in (3.10) similarly leads to the (asymptotic)
Bethe equations for all the momenta,

N∏
j=1
j �=k

S(pk, p j )= ei pk L , k =1, . . . , N . (3.14)

For a “local” S-matrix such as the one for the spin-1/2 ferromagnetic Heisenberg
chain, these equations are exact for finite L; at least in principle one can solve
these equations for the momenta and therefore compute the exact finite-L spec-
trum,

P=
N∑

k=1

pk, E =
N∑

k=1

ε(pk), (3.15)

where ε(p) is the one-particle dispersion relation (see, e.g. (2.7)). For an asymp-
totic S-matrix such as the one for AdS/CFT, the asymptotic Bethe equations can
be used to determine the spectrum only asymptotically.6

3.2. THE S-MATRIX IS A 4×4 MATRIX

As a second warm-up exercise, we consider a solution of the Yang–Baxter equa-
tions which is a 4×4 matrix. For simplicity, we further restrict the S-matrix to be
su(2)-invariant. Hence, we take

S j ′k′
jk (p1, p2)= 1

u1 −u2 − i

[
(u1 −u2)δ

j ′
j δ

k′
k + iδk′

j δ
j ′
k

]
, (3.16)

where again u j = u(p j ) and u(p) is given by (2.14). This is in fact the magnon–
magnon S-matrix in the su(3) sector which we discussed earlier (2.19). The ZF
operator now has an internal index which can take the values 1 and 2, and sat-
isfies (2.23). As we shall see, the analysis is similar to the one in Section 3.1. The
new feature is the internal symmetry, which is handled neatly by introducing the
transfer matrix (3.25).

The (asymptotic) eigenstates can now be expressed as

|ψ〉=
∑

1≤xQ1	···	xQN ≤L

2∑
i1,...,iN =1

�
(Q)
i1···iN

(x1, . . . , xN )|
1↓
Z · · ·

xQ1↓
φi1 · · ·

xQN↓
φiN · · ·

L↓
Z〉, (3.17)

6Nevertheless, it is possible to obtain at least a part of the exact spectrum by other means [34].
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where the (asymptotic) N -particle wavefunction in the sector Q = (Q1, . . . ,QN ) is
given by7

�
(Q)
i1···iN

(x1, . . . , xN )=
∑

P

AP|Q
i1···iN

ei pP ·xQ (3.18)

and

AP|Q
i1···iN

∼ A†
iQ1
(pP1) · · · A†

iQN
(pPN ), (3.19)

cf. (3.2)–(3.4). For N =2 in the sector x1 	 x2, upon identifying

Aφiφ j (12)= A12|12
i j , Aφiφ j (21)= A21|12

i j (3.20)

where φ1 = X, φ2 =Y , we recover the previous results (2.15)–(2.19).8

Proceeding as before, we see that the periodicity of the wavefunction in the first
coordinate,

�i1···iN (1, x2, . . . , xN )=�i1···iN (L +1, x2, . . . , xN ) (3.21)

implies a relationship between the wavefunctions in the sectors x1 	· · ·	 xN and
x2 	· · ·	 xN 	 x1:

�
(1···N )
i1···iN

(1, x2, . . . , xN )=�(2···N1)
i1···iN

(L +1, x2, . . . , xN ). (3.22)

This leads to the following relationship between coefficients:

A1···N |1···N
i1···iN

= A2···N1|2···N1
i1···iN

ei p1 L . (3.23)

We now proceed to generate from (3.19) another relation between these two coeffi-
cients. Using (2.23) to move A†

i1
(p1) to the right successively past all the other ZF

operators, we obtain

A1···N |1···N
i1···iN

∼ A†
i1
(p1)A

†
i2
(p2) · · · A†

iN
(pN )

= S
a2i ′2
i1i2

(p1, p2)S
a3i ′3
a2i3

(p1, p3) · · · S
i ′1i ′N
aN−1iN

(p1, pN )A
†
i ′2
(p2) · · · A†

i ′N
(pN )A

†
i ′1
(p1)

∼ S
a2i ′2
i1i2

(p1, p2)S
a3i ′3
a2i3

(p1, p3) · · · S
i ′1i ′N
aN−1iN

(p1, pN )A
2···N1|2···N1
i ′1···i ′N . (3.24)

7The original papers include [35–38]. Here, we follow the appendix in [39].
8For example,

AXY (21)= A21|12
12 ∼ A†

1(p2)A
†
2(p1)= S12

12 A†
2(p1)A

†
1(p2)+ S21

12 A†
1(p1)A

†
2(p2)

∼ S12
12 A12|12

21 + S21
12 A12|12

12 = T AY X (12)+ R AXY (12),

which is in agreement with (2.17). Here, the arguments (p2, p1) of all the S-matrix elements have
been suppressed for brevity.
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It is very convenient to introduce the so-called (inhomogeneous) transfer matrix

t
i ′1···i ′N
i1···iN

(p; p1, . . . , pN )≡ S
a1i ′1
aN i1

(p, p1)S
a2i ′2
a1i2

(p, p2) · · · S
aN i ′N
aN−1iN

(p, pN ). (3.25)

Its value at p = p1 is proportional to the coefficient of A2···N1|2···N1
i ′1···i ′N in (3.24),

t
i ′1···i ′N
i1···iN

(p1; p1, . . . , pN )=−S
a2i ′2
i1i2

(p1, p2)S
a3i ′3
a2i3

(p1, p3) · · · S
i ′1i ′N
aN−1iN

(p1, pN ), (3.26)

since Si ′ j ′
i j (p, p)=−δ j ′

i δ
i ′
j , as one can see from (3.16).

We demand that A2···N1|2···N1
i ′1···i ′N be an eigenvector of the transfer matrix,9

t
i ′1···i ′N
i1···iN

(p; p1, . . . , pN ) A2···N1|2···N1
i ′1···i ′N =�(p; p1, . . . , pN )A

2···N1|2···N1
i1···iN

, (3.27)

where �(p; p1, . . . , pN ) is the corresponding eigenvalue. It follows from Equa-
tions (3.23), (3.24), (3.26), (3.27) that

�(p1; p1, . . . , pN )=−ei p1 L ; (3.28)

and more generally

�(pk; p1, . . . , pN )=−ei pk L , k =1, . . . , N . (3.29)

To summarize so far: imposing periodic boundary conditions on the multipar-
ticle wavefunction has led to the important relations (3.29). However, in order
to obtain more explicit equations for the momenta, we need the eigenvalues
�(p; p1, . . . , pN ) of the transfer matrix (3.25). For the case of the S-matrix (3.16),
the result is well known [40–42],

�(p; p1, . . . , pN )= 1∏N
l=1(u −ul − i)

{
N∏

l=1

(u −ul + i)
m∏

l=1

(
u −λl − i

2

u −λl + i
2

)

+
N∏

l=1

(u −ul)

m∏
l=1

(
u −λl + 3i

2

u −λl + i
2

)}
, (3.30)

where the “auxiliary” Bethe roots λ1, . . . , λm satisfy the Bethe ansatz equations

N∏
l=1

λk −ul + i
2

λk −ul − i
2

=
m∏

j=1
j �=k

λk −λ j + i

λk −λ j − i
, k =1, . . . ,m. (3.31)

9This is necessary in order to be able to satisfy (3.23). We note that the transfer matrix has
the commutativity property

[
t (p; p1, . . . , pN ), t (p

′; p1, . . . , pN )
]=0

by virtue of the fact that the S-matrix satisfies the Yang–Baxter equation. (See, e.g. [40]-[42].) Hence,
the corresponding eigenvectors do not depend on the value of p.
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Finally, substituting the result (3.30) into (3.29), we obtain

N∏
l=1

uk −ul + i

uk −ul − i

m∏
l=1

uk −λl − i
2

uk −λl + i
2

=−ei pk L , k =1, . . . , N . (3.32)

The coupled set of equations (3.31) and (3.32) are the sought-after (asymptotic)
Bethe equations for a system of N particles on a ring of length L with the two-
particle (asymptotic) S-matrix (3.16).

3.3. AdS/CFT

We are finally ready to address the AdS/CFT case, albeit only sketchily. The argu-
ments of Section 3.2 leading to (3.29) carry through essentially unchanged.10 The
difficult step is determining the eigenvalues of the transfer matrix. Whereas for
the 4 × 4 S-matrix (3.16) the result (3.30) is easily obtained by algebraic Bethe
ansatz, for the larger AdS/CFT S-matrix (2.35), (2.36) a more general procedure
(namely, nested algebraic Bethe ansatz) is required [11]. Alternatively, the result can
be obtained by nested coordinate Bethe ansatz [3,12] or by analytic Bethe ansatz
[4]. In this way, one can derive the Ad S5/C FT4 asymptotic Bethe equations which
were first conjectured in [10]. In terms of the compact notation introduced in [43],
these equations are given by

U0 =1, U j (x j,k)

7∏
j ′=1

K j ′∏
k′=1

( j ′,k′) �=( j,k)

u j,k −u j ′,k′ + i
2 M j, j ′

u j,k −u j ′,k′ − i
2 M j, j ′

=1, j =1, . . . ,7, (3.33)

where u j,k = g(x j,k + 1/x j,k),u j,k ± i/2 = g(x±
j,k + 1/x±

j,k), and M j, j ′ is the Cartan
matrix specified by Figure 1. Explicitly,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 −2 1

1 −1
−1 2 −1

−1 1
1 −2 1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.34)

where matrix elements which are zero are left empty. Also,

U0 =
K4∏

k=1

x+
4,k

x−
4,k

, U2 =U6 =1,

(3.35)

U1(x)=U−1
3 (x)=U−1

5 (x)=U7(x)=
K4∏

k=1

Saux(x4,k, x)

10It is convenient to work in a graded formalism, where certain minus signs appear [11].
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Figure 1. Dynkin diagram of su(2,2|4).

and

U4(x)=Us(x)

(
x−

x+

)L K1∏
k=1

S−1
aux(x, x1,k)

K3∏
k=1

Saux(x, x3,k)

×
K5∏

k=1

Saux(x, x5,k)

K7∏
k=1

S−1
aux(x, x7,k). (3.36)

Moreover,

Saux(x1, x2)= 1−1/x+
1 x2

1−1/x−
1 x2

, Us(x)=
K4∏

k=1

σ(x, x4,k)
2, (3.37)

where σ is the dressing phase [8,25]. The anomalous dimensions of a state is
given by

�=2ig
K4∑

k=1

(
1

x+
4,k

− 1

x−
4,k

)
. (3.38)

For further important details such as the restrictions on the excitation numbers
K1, . . . , K7, the so-called dynamical transformations relating roots of type 1 and
type 3 (and similarly, roots of type 5 and type 7), and the weak-coupling limit,
the reader should consult [10,43].

Similarly, starting from the Ad S4/C FT3S-matrix [44], one can derive the corre-
sponding asymptotic Bethe equations which were first conjectured in [45].

4. Concluding Remarks

The all-loop Ad S5/C FT4 S-matrix has further important applications. In par-
ticular, it is used for computing wrapping corrections via the Lüscher formula
(reviewed in [34]) and finite-size effects via thermodynamic Bethe ansatz (reviewed
in [46]). A certain Drinfeld twist of this S-matrix, together with c-number diago-
nal twists of the boundary conditions, lead [47] to the deformed Bethe equations
of Beisert and Roiban [43,48].

The su(2|2) S-matrix of Ad S5/C FT4 also plays an important role in determin-
ing the S-matrix of Ad S4/C FT3 [44] (see also [49]). Indeed, the scattering matrices
for the two types of particles (“solitons” and “antisolitons”) again have the same
su(2|2) matrix structure; the main difference with respect to the Ad S5/C FT4 case
is in the scalar factors, which satisfy new crossing relations. As already noted, this
S-matrix leads to the all-loop BAEs conjectured in [45].
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