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1. Introduction

Discovered in the context of the quantum inverse scattering method for solving
quantum integrable systems, quantum groups appeared in the literature through
different ways (see [8] for references). On one hand, starting from the funda-
mental independent discovery of Drinfeld [20] and Jimbo [25,26] the quantum
affine algebras Uq(ĝ) were initially formulated using a q-deformed version of the
commutation relations between the elements of the Chevalley presentation of ĝ.
Later on [21], Drinfeld proposed a new realization of Uq(ĝ ) in terms of ele-
ments {x±

i,k, ϕi,m,ψi,n|i =1, . . . , l; k ∈Z,m ∈−Z+,n ∈Z+} with l =rank(g) generated
through operator-valued functions x±

i (u), ϕi (u),ψi (u) of the formal variable u, the
so-called currents. In some sense, the Drinfeld’s realization is a quantum analogue
of the loop realization of affine Lie algebras. Although Drinfeld stated the iso-
morphism between the two realizations, the proof only appeared later on [7,27].
In particular, in [7] (see also [10]) Lusztig’s theory of braid group action [31] on
the quantum enveloping algebras was used from which an explicit homomorphism
from Drinfeld’s new realization [21] to the initial one [20,25,26] was obtained. On
the other hand, an alternative realization of quantum affine algebras Uq(ĝ ) by
means of solutions of the quantum Yang – Baxter equation [22,28–30]—called the
R-matrix—and the “RLL” algebraic relations of the quantum inverse scattering
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method was proposed by Reshetikhin and Semenov-Tian-Shansky in [36], extend-
ing the previous results of Faddeev et al. [23] for finite dimensional simple Lie
algebra g.

In view of these realizations, in [18] Ding and Frenkel exhibited an explicit
isomorphism between the “RLL” formulation and Drinfeld’s second realization.
Namely, L-operators were shown to admit a unique (Gauss) decomposition in
terms of Drinfeld’s currents x±

i (u), ϕi (u),ψi (u). So, all these different realizations
may be summarized by the following picture which provides an unifying algebraic
scheme for quantum affine algebras:

“RLL” algebra [23]
Yang–Baxter equation

� �[18]
Current algebra [21]

Drinfeld’s presentation {x±
i,k , ϕi,m ,ψi,n}

Uq (ĝ )

�
�

���
�

��
[18,36]

�
�

��
[7]

�
�

��
[27]

Drinfeld – Jimbo
[20,25,26]

Beyond the interest of the algebraic structures involved, the explicit relation
between the two different realizations (“RLL” and Drinfeld’s one) of Uq(ĝ) has
found many interesting applications in the study of quantum integrable systems
and representation theory.

For quantum integrable systems with boundaries, Cherednik [9] and later on
[37] introduced another example of quadratic algebra associated with the so-called
reflection equations. In this case, given an R-matrix associated with Uq(ĝ) one
is looking for a K -operator (sometimes called a Sklyanin’s operator) satisfying
“RKRK” algebraic relations. Motivated by the study of related integrable systems,
several examples of K -operators acting on finite dimensional representations have
been constructed. However, a formulation of K -operators in terms of current alge-
bras i.e. a “boundary”—in reference to boundary integrable models—version of
Ding–Frenkel [18] analysis has never been explicitly presented, nor a “boundary”
analogue of Drinfeld’s presentation even in the simplest case Uq(̂sl2).

In this paper, we argue that the q-Onsager algebra T (a type of tridiagonal
algebra) which independently appeared in the context of orthogonal polynomial
association schemes [39] and hidden symmetries of boundary integrable mod-
els [2] admits analogously two alternative realizations. One realization is given
in terms of a K -operator satisfying “RKRK” defining relations for the Uq(̂sl2)
R-matrix, and the other realization in terms of a new type of current algebra asso-
ciated with the generating set {W−k,Wk+1,Gk+1, G̃k+1|k ∈ Z+} introduced in [5].
A new algebraic scheme follows, which extends to the family of reflection equation
algebras the standard scheme relating the Faddeev–Reshetikhin–Takhtajan, Jimbo
and Drinfeld (first and second) realizations of quantum affine algebras (see above
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picture). Although it is not considered here, the extension of our work to other
classical Lie algebra—technically more complicated—is an interesting and open
problem.

The paper is organized as follows. In Section 2, a new current algebra—denoted
Oq(̂sl2) below—with generators W±(u),G±(u) and formal variable u is introduced.
It is shown to be isomorphic to the “RKRK” algebra. A coaction map, the ana-
logue of the coproduct for Hopf’s algebras, is also explicitly derived. In Section 3,
the new currents are found to be generating functions in the symmetric variable
U = (qu2 +q−1u−2)/(q +q−1) which coefficients coincide with the elements of the
infinite dimensional algebra—denoted Aq below—introduced in [5]. In the last sec-
tion, based on the commuting properties of the K -operator with the two gener-
ators of the q-Onsager algebra we establish the isomorphism between T and the
“RKRK” algebra. A new algebraic scheme unifying these realizations is then pro-
posed.

NOTATION. In this paper, R, C, Z denote the field of real, complex numbers and
integers, respectively. We denote R

∗ =R\{0}, C
∗ =C\{0}, Z

∗ =Z\{0} and Z+ for non-
negative integers. We introduce the q-commutator [X,Y ]q = q XY − q−1Y X where q
is the deformation parameter, assumed not to be a root of unity.

2. A New Current Algebra

Let V be a finite dimensional space. Let the operator-valued function R : C
∗ �→

End(V ⊗ V) be the intertwining operator (quantum R-matrix) between the tensor
product of two fundamental representations V = C

2 associated with the algebra
Uq(̂sl2). The element R(u) depends on the deformation parameter q and is defined
by [6]

R(u)=

⎛

⎜

⎜

⎝

uq −u−1q−1 0 0 0
0 u −u−1 q −q−1 0
0 q −q−1 u −u−1 0
0 0 0 uq −u−1q−1

⎞

⎟

⎟

⎠

, (2.1)

where u is called the spectral parameter. Then R(u) satisfies the quantum
Yang–Baxter equation in the space V1 ⊗ V2 ⊗ V3. Using the standard notation
Ri j (u)∈End(Vi ⊗V j ), it reads

R12(u/v)R13(u)R23(v)= R23(v)R13(u)R12(u/v) ∀u, v. (2.2)

Let us now consider an extension related with the reflection equation or bound-
ary quantum Yang–Baxter equation—which was first introduced in the context of
boundary quantum inverse scattering theory (see [9,37] for details). For simplic-
ity and without loosing generality we consider the simplest case, i.e. the Uq(̂sl2)R-
matrix defined above.
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DEFINITION 2.1. (“RKRK” Reflection equation algebra) Define R(u) to be (2.1),
Bq(̂sl2) is an associative algebra with unit 1 and generators K11(u) ≡ A(u),
K12(u)≡ B(u), K21(u)≡ C(u), K22(u)≡ D(u) considered as the elements of the
2×2 square matrix K (u) which obeys the defining relations ∀u, v

R12(u/v) (K (u)⊗ I) R12(uv) (I⊗ K (v))=
= (I⊗ K (v)) R12(uv) (K (u)⊗ I) R12(u/v). (2.3)

It is known that given a solution K (u) of the reflection equation (2.3), one can
construct by induction other solutions using suitable combinations of Lax opera-
tors L(u). This is sometimes named as the “dressing” procedure. In particular, for
the simplest case one has:

PROPOSITION 2.1. (see [37]) Given R(u) defined by (2.1), let L(u) be a solution
of the quantum Yang–Baxter algebra with defining relations ∀u, v

R(u/v)(L(u)⊗ I)(I⊗ L(v)) = (I⊗ L(v))(L(u)⊗ I)R(u/v). (2.4)

Let K (u) be a solution of (2.3). Then, the matrix L(u)K (u)L−1(u−1) is a solution
of the reflection equation (2.3).

For instance, using the generating set {S±, s3} of the quantum algebra Uq(sl2)
with defining relations [s3, S±]=±S± and [S+, S−]= (q2s3 −q−2s3)/(q −q−1) , it is
known that the Lax operator

L(u)=
(

uq
1
2 qs3 −u−1q− 1

2 q−s3 (q −q−1)S−
(q −q−1)S+ uq

1
2 q−s3 −u−1q− 1

2 qs3

)

(2.5)

satisfies the quantum Yang–Baxter algebra (2.4). In quantum integrable lattice
models with boundaries, the “dressing” procedure is often used. Starting from an
elementary solution with c-number entries (associated with one boundary of the
system) and dressing the K -operator with a product of N L-operators acting on
different quantum spaces, one reconstructs a whole spin chain with N sites includ-
ing inhomogeneities, if necessary [37].

In order to exhibit the new current algebra starting from the “RKRK” reflection
equation algebra, based on previous works on boundary quantum integrable sys-
tems on the lattice [2,5] it seems rather natural to write the elements A(u), B(u),
C(u), D(u) in terms of new currents as follows. It may be important to stress that
Proposition 2.1 plays an essential role (see [2,5]) in suggesting such a decomposi-
tion.
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LEMMA 2.1. Suppose q �= 1, u �= q−1 and k± ∈ C
∗. Any solution of the reflection

equation algebra Bq(̂sl2) admits the following decomposition in terms of new ele-
ments W±(u), G±(u):

A(u)=uqW+(u)−u−1q−1W−(u), (2.6)

D(u)=uqW−(u)−u−1q−1W+(u), (2.7)

B(u)= 1
k−(q +q−1)

G+(u)+ k+(q +q−1)

(q −q−1)
, (2.8)

C(u)= 1
k+(q +q−1)

G−(u)+ k−(q +q−1)

(q −q−1)
. (2.9)

Given the elements A(u), B(u),C(u) of this form, this decomposition is unique.

Proof. The reflection equation being satisfied for arbitrary u, v∈C
∗ and generic

q, in view of (2.1) the elements A(u), B(u), C(u), D(u) are a priori formal power
series in u. With no restrictions, let us choose A(u), B(u), C(u) to be (2.6), (2.8),
(2.9), respectively. We have to show that D(u) is uniquely defined by (2.7). To
prove it, assume the set {A, B,C, D} given by (2.6)–(2.9) satisfies the reflection
equation algebra with (2.1). In terms of these elements, explicitly (2.3) reads

(i) a−c+
(

BC ′ − B ′C
)+a−a+[A, A′]=0,

(i ′) a−c+
(

C B ′ −C ′ B
)+a−a+[D, D′]=0,

(i i) b−b+[A, D′]+ c−c+[D, D′]+ c−a+
(

C B ′ −C ′ B
)=0,

(i i ′) b−b+[D, A′]+ c−c+[A, A′]+ c−a+
(

BC ′ − B ′C
)=0,

(i i i) c−b+
(

D A′ − D′ A
)+b−c+

(

AA′ − D′ D
)+ b−a+[B,C ′]=0,

(i i i ′) c−b+
(

AD′ − A′ D
)+b−c+

(

DD′ − A′ A
)+ b−a+[C, B ′]=0,

(iv) b−b+ AC ′ + c−c+ DC ′ + c−a+C A′ − a−a+C ′ A − a−c+ D′C =0,
(v) b−b+ B ′ A + c−c+ B ′D + c−a+ A′B − a−a+ AB ′ − a−c+ B D′ =0,
(vi) b−b+C ′ D + c−c+C ′ A + c−a+ D′C − a−a+ DC ′ − a−c+C A′ =0,
(vi i) b−b+ DB ′ + c−c+ AB ′ + c−a+ B D′ − a−a+ B ′ D − a−c+ A′B =0,
(vi i i) b−a+ B D′ + c−b+ DB ′ + b−c+ AB ′ − a−b+ D′ B =0,
(i x) b−a+ A′ B + c−b+ B ′ A + b−c+ B ′ D − a−b+ B A′ =0,
(x) b−a+ D′C + c−b+C ′ D + b−c+C ′ A − a−b+C D′ =0,
(xi) b−a+C A′ + c−b+ AC ′ + b−c+ DC ′ − a−b+ A′C =0,
(xii) a−b+[B, B ′]=0,
(xii i) a−b+[C,C ′]=0,

where a(u)= uq − u−1q−1, b(u)= u − u−1, c± = q − q−1 and we used the short-
hand notations a− = a(u/v), a+ = a(uv) and similarly for b. Also A = A(u), A′ =
A(v) and similarly for B,C and D. Now, consider another set, say {A, B,C, D},
D(u)= D(u)+ f (u) where f (u) is an unknown function of u and the elements of
the reflection equation algebra. If {A, B,C, D} is also a solution of the reflection
equation algebra, then f (u) ≡ f (A, B,C, D;u)—the equations (i)− (xii i) being
the complete set of defining relations. Replacing D(u) in (iv)−(xi), we obtain
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B(u) f (v)= f (u)B(v)= C(u) f (v)= f (u)C(v)= 0 ∀u, v. On the other hand, from
(i)−(i i i ′) one gets [A(u), f (v)]=0. Acting with the l.h.s of (i x) on f (w) and using
previous equations it follows [D(u), f (w)]=0 ∀u,w. All these equations imply that
f (u)≡0 ∀u.

The next step is to prove the equivalence between the (sixteen in total) indepen-
dent equations coming from the reflection equation algebra (2.3) with (2.1) and a
closed system of commutation relations among the currents. The relations below
are among the main results of the paper.

DEFINITION 2.2. (Current algebra) Oq(̂sl2) is an associative algebra with unit 1,
current generators W±(u), G±(u) and parameter ρ ∈ C

∗. Define the formal vari-
ables U = (qu2 + q−1u−2)/(q + q−1) and V = (qv2 + q−1v−2)/(q + q−1) ∀u, v. The
defining relations are:

[W±(u),W±(v)]=0, (2.10)

[W+(u),W−(v)]+ [W−(u),W+(v)]=0, (2.11)

(U − V ) [W±(u),W∓(v)]=
= (q −q−1)

ρ(q +q−1)
(G±(u)G∓(v)−G±(v)G∓(u))+

+ 1
(q +q−1)

(G±(u)−G∓(u)+G∓(v)−G±(v)), (2.12)

W±(u)W±(v)−W∓(u)W∓(v)+ 1
ρ(q2 −q−2)

[G±(u),G∓(v)]+

+1−U V

U − V
(W±(u)W∓(v)−W±(v)W∓(u))=0, (2.13)

U [G∓(v),W±(u)]q − V [G∓(u),W±(v)]q −
−(q −q−1) (W∓(u)G∓(v)−W∓(v)G∓(u))+
+ρ (UW±(u)− V W±(v)−W∓(u)+W∓(v))=0, (2.14)

U [W∓(u),G∓(v)]q − V [W∓(v),G∓(u)]q −
−(q −q−1) (W±(u)G∓(v)−W±(v)G∓(u))+
+ρ (UW∓(u)− V W∓(v)−W±(u)+W±(v))=0, (2.15)

[Gε(u),W±(v)]+ [W±(u),Gε(v)]=0, ∀ε=±, (2.16)

[G±(u),G±(v)]=0, (2.17)

[G+(u),G−(v)]+ [G−(u),G+(v)]=0. (2.18)

Remark 1. There exists an automorphism � defined by:

�(W±(u))=W∓(u), �(G±(u))=G∓(u). (2.19)
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Contrary to all known examples of Drinfeld currents associated with quantum
affine Lie algebras or superalgebras, it is important to notice that the variables
u, v only arise through the symmetric (qx2 ↔q−1x−2,∀x ∈u, v) combinations U,V ,
respectively. In view of the connections with algebraic structures that appear in
boundary quantum integrable models [2,3], such a fact is not surprising although
not obvious from (2.3). We now turn to the derivation of all equations above.

THEOREM 1. The map � : Bq(̂sl2) �→ Oq(̂sl2) defined by (2.6)–(2.9) is an algebra
isomorphism.

Proof. First, according to Lemma 2.1 we have to show that the map � defined
by (2.6)–(2.9) is an algebra homomorphism from Bq(̂sl2) to Oq(̂sl2). Set ρ ≡
k+k−(q +q−1)2 and define

X1 ≡ [W+(u),W+(v)] , X2 ≡ [W−(u),W−(v)] ,
X3 ≡ [W+(u),W−(v)]+ [W−(u),W+(v)] ,
X4 ≡ [G+(u),G−(v)]+ [G−(u),G+(v)] ,

X5 ≡ (q +q−1)(U − V ) [W+(u),W−(v)]− (q −q−1)

ρ
(G+(u)G−(v)−G+(v)G−(u))−

− (G+(u)−G−(u)+G−(v)−G+(v)) ,

where the variables U ≡ (qu2 + q−1u−2)/(q + q−1) and similarly for V are intro-
duced. In terms of the combinations Xi , it is straightforward to show that the
equations (i), (i ′), (i i), (i i ′) above can be simply written, respectively, as

(i) ⇔ a(uv)uvq2 X1 +a(uv)u−1v−1q−2 X2 −a(uv)u−1vX3 − X5 =0,

(i ′) ⇔ a(uv)uvq2 X2 +a(uv)u−1v−1q−2 X1 −a(uv)uv−1 X3 +
+q −q−1

ρ
X4 + X5 =0,

(i i) ⇔
(

b(u/v)b(uv)uv−1 − (q −q−1)2u−1v−1q−2
)

X1 +
+

(

b(u/v)b(uv)u−1v− (q −q−1)2uvq2
)

X2 −
−

(

b(u/v)b(uv)u−1v−1q−2 − (q −q−1)2uv−1
)

X3 −

−a(uv)
(q −q−1)

ρ
X4 −a(uv)X5 =0,

(i i ′) ⇔
(

b(u/v)b(uv)u−1v− (q −q−1)2uvq2
)

X1 +
+

(

b(u/v)b(uv)uv−1 − (q −q−1)2u−1v−1q−2
)

X2 −
−

(

b(u/v)b(uv)uvq2 − (q −q−1)2u−1v
)

X3 −
−a(uv)X5 =0.
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Simplifying these expressions, in particular it follows

a(uv)(i)− (i i ′) ⇔ v2q2 X1 +v−2q−2 X2 − X3 =0,

a(uv)(i ′)− (i i) ⇔ v2q2 X2 +v−2q−2 X1 − X3 =0.

Considering both equations for v arbitrary, it implies X1 = X2. Then it is impor-
tant to notice that the combinations Xi |u↔v = −Xi for i = 1,2,3. As now X3 =
(v2q2 + v−2q−2)X1 and u is arbitrary, it immediately follows X3 ≡ X1 ≡ X2 ≡ 0.
Plugged into (i i), (i i ′) we obtain X4 ≡ X5 ≡0. In terms of the currents, these equal-
ities lead to the commutation relations (2.10), (2.11), (2.12), (2.18).

As a consequence of these relations, after some straightforward calculations one
finds that the equations (i i i), (i i i ′) drastically simplify into the relations (2.13).

Let us now consider the equations (iv), (vi), (x), (xi) above. Proceeding simi-
larly, let us introduce

Y1 ≡ (q +q−1)
(

U [C(v),W+(u)]q − V [C(u),W+(v)]q +
+ (q −q−1) (W−(v)C(u)−W−(u)C(v))

)

,

Y2 ≡ (q +q−1)
(

U [W−(u),C(v)]q − V [W−(v),C(u)]q +
+ (q −q−1) (W+(v)C(u)−W+(u)C(v))

)

,

Y3 ≡ [C(u),W+(v)]+ [W+(u),C(v)] ,
Y4 ≡ [C(u),W−(v)]+ [W−(u),C(v)] .

In terms of these combinations, the equations (iv), (vi), (x), (xi) become, respec-
tively,

(iv) ⇔ u
(

qY1 +q(v2 +v−2)Y3 + (q −q−1)Y4)
)+

+u−1(q−1Y2 −q−1(v2 +v−2)Y4 + (q −q−1)Y3)
)=0,

(vi) ⇔ u
(

qY2 −q(v2 +v−2)Y4 +q2(q −q−1)Y3)
)+

+u−1(q−1Y1 +q−1(v2 +v−2)Y3 +q−2(q −q−1)Y4)
)=0,

(x) ⇔ v
(

Y2 −q(q +q−1)UY4 + (q2 −q−2)Y3)
)+

+v−1(Y1 +q−1(q +q−1)UY3 + (q2 −q−2)Y4)
)=0,

(xi) ⇔ v
(

Y1 +q(q +q−1)UY3)
)+v−1(Y2 −q−1(q +q−1)UY4)

)=0.

The variables u, v and deformation parameter q being arbitrary, compatibil-
ity of these equations implies Y1 ≡ Y2 ≡ Y3 ≡ Y4 ≡ 0. Replacing the explicit
expression of C(u) into Yi , one ends up with the commutation relations (2.14),
(2.15), (2.16) for the current G−(u). Similar analysis for the remaining equa-
tions (v), (vi i), (vi i i), (i x) imply (2.14), (2.15), (2.16) for G+(u). Finally, from
(xii), (xii i) we immediately obtain (2.17).
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Surjectivity of the map being shown, the injectivity of the homomorphism fol-
lows from the fact that � is invertible for u generic. This completes the proof.

Quantum affine algebras are known to be Hopf algebras, thanks to the exis-
tence of a coproduct, counit and antipode actions. Although the explicit Hopf
algebra isomorphism between Drinfeld’s new realization (currents) and Drinfeld-
Jimbo construction is still an open problem, several results are already known (see
for instance [18]). For the new current algebra (2.10)–(2.18), it is also important to
exhibit analogous properties. Actually, solely using the results of [37] a coaction
map [8] can be easily identified.

PROPOSITION 2.2. For any k±,w∈C
∗, there exists an algebra homomorphism δw :

Oq(̂sl2) �→Uq(sl2)× Oq(̂sl2) such that

δw(W±(u))=
(

(q −q−1)2S±S∓ −q(q±2s3 −q∓2s3)
)⊗W∓(u)−

−(w2 +w−2)I⊗W±(u)+

+ (q −q−1)

k+k−(q +q−1)

(

k+w±1q±1/2S+q±s3 ⊗G+(u) +

+ k−w∓1q∓1/2S−q±s3 ⊗G−(u)
)

+

+(q +q−1)
(

(k+w±1q±1/2S+q±s3 + k−w∓1q∓1/2S−q±s3)⊗ I +

+ q±2s3 ⊗UW±(u)
)

,

δw(G±(u))= k∓
k±
(q −q−1)2S2∓ ⊗G∓(u)− (w2q±2s3 +w−2q∓2s3)⊗G±(u)+

+I⊗ (q +q−1)UG±(u)+
+(q +q−1)2(q−q−1)

(

k∓w±1q∓1/2S∓qs3 ⊗ (UW+(u)−W−(u)) +

+ k∓w∓1q±1/2S∓q−s3 ⊗ (UW−(u)−W+(u))
)

+

+k+k−(q +q−1)2

(q −q−1)
×

×
(

(q +q−1)U+k∓
k±
(q−q−1)2S2∓−(w2q±2s3 +w−2q∓2s3 +1)

)

⊗I.

Proof. According to [37] (see Proposition 2.1) and the Lax operator (2.5),
L(uw)K (u)L(uw−1) is a solution ∀w of (2.3). Expanding this expression using
(2.6)–(2.9), the new entries of L(uw)K (u)L(uw−1) are found to take the form
(2.6)–(2.9) replacing W±(u)→ δw(W±(u)), G±(u)→ δw(G±(u)). For more details,
we refer the reader to [5] where similar calculations have been performed.
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3. Another Presentation

In [5], an infinite dimensional algebra denoted below Aq was proposed in order to
solve boundary integrable systems with hidden symmetries related with a coideal
subalgebra of Uq(̂sl2). However, its defining relations were essentially conjectured
based on the commutation relations and properties of certain operators acting on
irreducible finite dimensional tensor product of evaluation representations. The aim
of this Section is to construct an analogue of Drinfeld’s presentation for the cur-
rent algebra (2.10)–(2.18). As a consequence, it provides a rigorous derivation of
the relations conjectured in [5].

DEFINITION 3.1. [5] Aq is an associative algebra with parameter ρ ∈C
∗, unit 1

and generators {W−k,Wk+1,Gk+1, G̃k+1|k ∈Z+} satisfying the following relations:

[W0,Wk+1]= [W−k,W1]= 1
(q +q−1)

(G̃k+1 −Gk+1
)

, (3.1)

[W0,Gk+1]q =[G̃k+1,W0]q =ρW−k−1 −ρWk+1, (3.2)

[Gk+1,W1]q =[W1, G̃k+1]q =ρWk+2 −ρW−k, (3.3)

[W−k,W−l ]=0, [Wk+1,Wl+1]=0, (3.4)

[W−k,Wl+1]+ [Wk+1,W−l ]=0, (3.5)

[W−k,Gl+1]+ [Gk+1,W−l ]=0, (3.6)

[W−k, G̃l+1]+ [G̃k+1,W−l ]=0, (3.7)

[Wk+1,Gl+1]+ [Gk+1,Wl+1]=0, (3.8)

[Wk+1, G̃l+1]+ [G̃k+1,Wl+1]=0, (3.9)

[Gk+1,Gl+1]=0, [G̃k+1, G̃l+1]=0, (3.10)

[G̃k+1,Gl+1]+ [Gk+1, G̃l+1]=0. (3.11)

A natural ordering of Aq arises from the study of the commutation relations
above. Indeed, starting from monomials of lowest k =0,1, . . . and using (3.1) possi-
ble definitions of G1, G̃1 are such that d[G1]=d[G̃1]≤2, where d denotes the degree
of the monomials in the elements W0,W1. By induction, from (3.2), (3.3) with
(3.1) one immediately gets:

COROLLARY 3.1. The elements of Aq are monomials in W0,W1 of degree:

d[W−k]=d[Wk+1]≤2k +1 and d[Gk+1]=d[G̃k+1]≤2k +2, k ∈Z+.
(3.12)

Note that writing explicitly all higher elements of Aq in terms of W0,W1 is
essentially related with the construction of a Poincare–Birkoff–Witt basis for the
algebra considered in the next Section, a problem that will be considered elsewhere.
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Remark 2. According to the ordering (3.12), the elements G1, G̃1 ∈Aq are uniquely
determined:

G1 = [W1,W0]q +α and G̃1 = [W0,W1]q +α ∀α ∈C. (3.13)

For the derivation of the second theorem, several other equalities will be
required which can all be deduced from the relations above and (3.13). Indeed, let
us show the following.

PROPOSITION 3.1. If (3.1)–(3.11) are satisfied, then the following relations hold:

[W−k−1,Wl+1]− [W−k,Wl+2]= q −q−1

ρ(q +q−1)

(Gk+1G̃l+1 −Gl+1G̃k+1
)

, (3.14)

−W−kW0 +Wk+1W1 −W−k−1W1 +W0Wk+2 − 1
ρ(q2 −q−2)

[Gk+1, G̃1
]=0,

(3.15)

W−k−1W−l −Wk+2Wl+1 −W−kW−l−1 +Wk+1Wl+2 +
+W−kWl+1 −W−lWk+1 −W−k−1Wl+2 +W−l−1Wk+2 +
+ 1
ρ(q2 −q−2)

([

Gk+2, G̃l+1

]

−
[

Gk+1, G̃l+2

])

=0, (3.16)

[Gl+1,Wk+2]q − [Gk+1,Wl+2]q − (q −q−1)
(W−kGl+1 −W−lGk+1

)=0, (3.17)

[W−k−1,Gl+1]q − [W−l−1,Gk+1]q − (q −q−1)
(Wk+1Gl+1 −Wl+1Gk+1

)=0,

(3.18)
[

G̃l+1,W−k−1

]

q
−

[

G̃k+1,W−l−1

]

q
− (q −q−1)

(

Wk+1G̃l+1 −Wl+1G̃k+1

)

=0,

(3.19)
[

Wk+2, G̃l+1

]

q
−

[

Wl+2, G̃k+1

]

q
− (q −q−1)

(

W−k G̃l+1 −W−l G̃k+1

)

=0. (3.20)

Proof. To show (3.14), let us consider the first commutator. Expand it using
(3.2). Combining W0 and Wl+1 using (3.1), one finds:

[W−k−1,Wl+1]= q

ρ(q +q−1)

(

G̃l+1Gk+1 − G̃k+1Gl+1

)

+

+ q−1

ρ(q +q−1)

(

Gl+1G̃k+1 −Gk+1G̃l+1

)

+ [W−l−1,Wk+1] .

Then, using (3.5) and (3.11) one obtains (3.14).
Consider now (3.15). Introduce (3.13) in the last commutator, and expand

using (3.2) and (3.3). Collecting terms and simplifying, one obtains (3.15). Equa-
tion (3.16), although technically slightly more complicated, is derived along the
same line.
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To show (3.17)–(3.20), the same procedure will be used so we only explain
(3.17). Consider the two commutators and expand using (3.3). Then, using (3.8)
and (3.11), one verifies that (3.17) is indeed satisfied.

By analogy with Drinfeld’s construction, we are now looking for an infinite
dimensional set of elements of an algebra in terms of which the currents W±(u),
G±(u) can be expanded. According to the structure of the Equations (2.10)–(2.18)
defining the current algebra—in particular the dependence in the formal variable
U,V —we obtain the second main result of the paper.

THEOREM 2. Define the formal variable U = (qu2 + q−1u−2)/(q + q−1). Let 	 :
Oq(̂sl2) �→Aq be the map defined by

W+(u)=
∑

k∈Z+
W−kU−k−1, W−(u)=

∑

k∈Z+
Wk+1U−k−1, (3.21)

G+(u)=
∑

k∈Z+
Gk+1U−k−1, G−(u)=

∑

k∈Z+
G̃k+1U−k−1. (3.22)

Then, 	 is an algebra isomorphism between Oq(̂sl2) and Aq .

Proof. Plugging (3.21), (3.22) into (2.10)–(2.18), expanding and identifying terms
of same order in U−k V −l one finds all defining relations (3.1)–(3.11), together with
the set of higher relations (3.14)–(3.20). From Proposition 3.1, it follows that the
sixteen independent algebraic relations (3.1)–(3.11) are sufficient i.e. the map is sur-
jective. The currents being analytic in the variable U ∈ C, according to Cauchy’s
theorem any element of Aq is uniquely determined from the currents using con-
tour integrals. The injectivity of the map follows, which completes the proof.

It is important to stress that in [5], commutation relations among the
so-called transfer matrix were used to derive some of the relations (3.1)–(3.11).
However, the derivation described above uses solely the reflection equation alge-
bra. Consequently, this theorem establishes a rigorous proof of the relations con-
jectured in [5]. In addition, for the case of the reflection equation algebra with the
Uq(̂sl2)R-matrix it shows that the presentation {W−k,Wk+1,Gk+1, G̃k+1|k ∈ Z+} is
the “boundary” analogue of Drinfeld’s one.

4. Intertwiner of the q-Onsager (Tridiagonal) Algebra and the Reflection
Equation

The purpose of this Section is to exhibit an intertwiner K (u) of the q-Onsager
algebra, to show its uniqueness and that it coincides exactly with the solution K (u)
of the reflection equation (2.3). The final aim is actually to establish the isomor-
phism between the new current algebra and the q-Onsager algebra. Although the
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reader may be familiar with the ideas of [25,26], it will be useful to first recall
some well-known results. Indeed, the procedure we follow to construct the intert-
winer is analogous to the one described in [25,26]. In the context of quantum inte-
grable systems, note that for finite dimensional representations intertwiners have
already been obtained along the same line in [15–17,32,33].

a. The R-matrix as an intertwiner of Uq(̂sl2) [25,26].

In [25,26], Jimbo pointed out that intertwiners R of quantum loop algebras lead
to trigonometric solutions of the quantum Yang – Baxter equation (2.4). Any ten-
sor product of two evaluation representations with generic evaluation parameters u
and v being indecomposable, by Schur’s lemma the solution R is unique up to an
overall scalar factor. In particular, considering the quantum affine algebra Uq(̂sl2)
the construction of the solution R(u) given by (2.1) goes as follow.

First, we need to recall the realization of the quantum affine algebra Uq(̂sl2) in
the Chevalley presenation {Hj , E j , Fj }, j ∈{0,1} (see e.g [8]):

DEFINITION 4.1. Define the extended Cartan matrix {ai j } (aii = 2, ai j = −2
for i �= j). The quantum affine algebra Uq(̂sl2) is generated by the elements
{Hj , E j , Fj }, j ∈{0,1} which satisfy the defining relations

[Hi , Hj ]=0, [Hi , E j ]=ai j E j , [Hi , Fj ]=−ai j Fj , [Ei , Fj ]= δi j
q Hi −q−Hi

q −q−1

together with the q-Serre relations

[Ei , [Ei , [Ei , E j ]q ]q−1]=0 and [Fi , [Fi , [Fi , Fj ]q ]q−1]=0. (4.1)

The sum K = H0 + H1 is the central element of the algebra. The Hopf algebra
structure is ensured by the existence of a comultiplication 
 :Uq(̂sl2) �→Uq(̂sl2)⊗
Uq(̂sl2), antipode S :Uq(̂sl2) �→Uq(̂sl2) and a counit E :Uq(̂sl2) �→C with


(Ei )= Ei ⊗q−Hi /2 +q Hi /2 ⊗ Ei ,


(Fi )= Fi ⊗q−Hi /2 +q Hi /2 ⊗ Fi , (4.2)


(Hi )= Hi ⊗ I+ I⊗ Hi ,

S(Ei )=−Ei q
−Hi , S(Fi )=−q Hi Fi , S(Hi )=−Hi , S(I)=1

and

E(Ei )=E(Fi )=E(Hi )=0, E(I)=1.

Note that the opposite coproduct 
′ can be similarly defined with 
′ ≡ σ ◦

where the permutation map σ(x ⊗ y)= y ⊗ x for all x, y ∈Uq(̂sl2) is used.
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Then, by definition the intertwiner R(u/v) :Vu ⊗Vv �→Vv⊗Vu between two fun-
damental Uq(̂sl2)-evaluation representations obeys

R(u/v)(πu ×πv) [
(x)]= (πu ×πv)
[


′(x)
]

R(u/v) ∀x ∈Uq(̂sl2), (4.3)

where the (evaluation) endomorphism πu : Uq(̂sl2) �→ End(Vu) is chosen such that
(V ≡C

2)

πu[E1]=uq1/2σ+, πu[E0]=uq1/2σ−,
πu[F1]=u−1q−1/2σ−, πu[F0]=u−1q−1/2σ+, (4.4)

πu[q H1 ]=qσ3 , πu[q H0 ]=q−σ3

in terms of the Pauli matrices σ±, σ3:

σ+ =
(

0 1
0 0

)

, σ− =
(

0 0
1 0

)

, σ3 =
(

1 0
0 −1

)

.

As one can easily check, the matrix R(u) given by (2.1) indeed satisfies the
required conditions (4.3). The tensor product Vu ⊗Vv being indecomposable with
respect to Uq(̂sl2) evaluation representations for generic evaluation parameters
u, v, the intertwiner R(u) is unique (up to an overall scalar factor). As a conse-
quence, it automatically satisfies the Yang – Baxter equation (2.4) which may be
depicted by the following commutative diagram setting w=1:

Vu ⊗Vv ⊗Vw R(u/v)⊗ id−−−−−−→ Vv ⊗Vu ⊗Vw id ⊗ R(u/w)−−−−−−→ Vv ⊗Vw⊗Vu
⏐

⏐

�
id⊗R(v/w) R(v/w)⊗id

⏐

⏐

�

Vu ⊗Vw⊗Vv R(u/w)⊗ id−−−−−−→ Vw⊗Vu ⊗Vv id ⊗ R(u/v)−−−−−−→ Vw⊗Vv ⊗Vu

(4.5)

b. The K -matrix as an intertwiner of T.

Tridiagonal algebras have been introduced and studied in [24,38,39], where they
first appeared in the context of P- and Q-polynomial association schemes. A tridi-
agonal algebra is an associative algebra with unit which consists of two generators
A and A∗ called the standard generators. In general, the defining relations depend
on five scalars ρ,ρ∗, γ, γ ∗ and β. In the following, we will focus on the reduced
parameter sequence γ =0, γ ∗ =0, β=q2 +q−2 and ρ=ρ∗ which exhibits all inter-
esting properties that can be extended to more general parameter sequences. We
call the corresponding algebra the q-Onsager algebra denoted T, in view of its
closed relationship with the Onsager algebra [34] and the Dolan-Grady relations
[19]. In particular, the isomorphism between the Onsager and Dolan-Grady alge-
braic structures has been studied in [1,13,14,35] and shown explicitly in [11,12].

DEFINITION 4.2. (see also [39]) The q-Onsager algebra T is the associative alge-
bra with unit and standard generators A,A∗ subject to the following relations

[A, [A, [A,A∗]q ]q−1]=ρ[A,A∗], [A∗, [A∗, [A∗,A]q ]q−1]=ρ[A∗,A]. (4.6)
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Remark 3. For ρ=0 the relations (4.6) reduce to the q-Serre relations of Uq(̂sl2).
For q =1, ρ=16 they coincide with the Dolan-Grady relations [19].

By analogy with the construction described above for the R-matrix and along
the lines described in [15,16], an intertwiner for T can be easily constructed.
Before, we need to introduce the concept of comodule algebra using the analogue
of the Hopf’s algebra coproduct action called the coaction map.

DEFINITION 4.3. [8] Given a Hopf algebra H with comultiplication 
 and
counit E , I is called a left H-comodule if there exists a left coaction map δ :I →
H⊗I such that

(
× id)◦ δ= (id × δ)◦ δ, (E × id)◦ δ∼= id. (4.7)

Right H-comodules are defined similarly.

PROPOSITION 4.1. (see also [2]) Let k± ∈ C
∗ and set ρ ≡ k+k−(q + q−1)2. The

q-Onsager algebra T is a left Uq(̂sl2)-comodule algebra with coaction map δ : T →
Uq(̂sl2)⊗T such that

δ(A)= (k+E1q H1/2 + k−F1q H1/2)⊗1+q H1 ⊗A,
(4.8)

δ(A∗)= (k−E0q H0/2 + k+F0q H0/2)⊗1+q H0 ⊗A∗.

Proof. The verification of the comodule algebra axioms (4.7) is immediate using
(4.2). One also has to check that δ is an algebra homomorphism i.e δ(A), δ(A∗)
satisfy (4.6). This calculation is rather long but straightforward, so we omit the
details (see also [3,4]).

Having identified such a coaction map, we are now in position to consider an in-
tertwiner relating representations of T, a key ingredient in relating the q-Onsager
algebra and the reflection equation algebra.

PROPOSITION 4.2. Let πu : Uq(̂sl2) �→ End(Vu) be the evaluation endomorphism
for V ≡ C

2. Let W denote a vector space over C on which the elements of T act.
There exists an intertwinner

K (u) :Vu ⊗ W �→Vu−1 ⊗ W

such that

K (u)(πu × id) [δ(a)]= (πu−1 × id) [δ(a)] K (u), ∀a ∈T. (4.9)

It is unique (up to an overall scalar factor), and it satisfies the reflection equa-
tion (2.3).
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Proof. First, let us identify one solution of (4.9). By definition, Vu is a two-
dimensional vector space. Then K (u) is a 2 × 2 matrix, which entries are formal
power series in the variable u in view of (4.4) and (4.8). Define

K (u)=
(

A(u) B(u)
C(u) D(u)

)

.

Replacing K (u) in (4.9), we find that the entries must satisfy the following system
of equations

[A, A(u)]=q−1u−1 (k− B(u)− k+C(u)) ,

[A, D(u)]=−qu (k− B(u)− k+C(u)) ,
(4.10)

[A, B(u)]q = k+
(

u A(u)−u−1 D(u)
)

,

[A,C(u)]q−1 =−k−
(

u A(u)−u−1 D(u)
)

and similar relations for A∗, provided one substitutes q → q−1,u → u−1 in (4.10).
Then, using (3.13) in (3.2) for k = 0 it is easy to notice that the defining rela-
tions (4.6) are nothing but (3.4) for k =0, l =1, provided we consider the following
homomorphism

A �→W0, A∗ �→W1. (4.11)

Now, identify the entries of K (u) with (2.6)–(2.9). Expanding and using the defin-
ing relations (3.1)–(3.3) of the algebra Aq , it is easy to check (4.10) as well as all
other relations for A∗. So, at least one solution K (u) exists and it is written in
terms of elements of Aq . For generic u, the tensor product End(Vu)⊗ W is not
decomposable with respect to T representations. By Schur’s lemma, this means that
given W , the solution to the intertwining relation (4.9) is unique (up to an over-
all scalar factor). It remains to show that K (u) satisfying (4.9) is automatically
a solution of the reflection equation algebra (2.3). To this end, let us recall that
K (u) :Vu ⊗W �→Vu−1 ⊗W and R(u/v) :Vu ⊗Vv �→Vv⊗Vu . Then, the proof that this
solution K (u) satisfies the reflection equation (2.3) follows from the commutativity
of the following diagram (up to an overall scalar factor):

Vu ⊗Vv ⊗ W
id ⊗ K (v)−−−−−→ Vu ⊗Vv−1 ⊗ W

R(uv)⊗ id−−−−−→ Vv−1 ⊗Vu ⊗ W
⏐

⏐

�
R(u/v)⊗id id⊗K (u)

⏐

⏐

�

Vv ⊗Vu ⊗ W Vv−1 ⊗Vu−1 ⊗ W
⏐

⏐

�
id⊗K (u) R(u/v)⊗id

⏐

⏐

�

Vv ⊗Vu−1 ⊗ W
R(uv)⊗ id−−−−−→ Vu−1 ⊗Vv ⊗ W

id ⊗ K (v)−−−−−→ Vu−1 ⊗Vv−1 ⊗ W
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Figure 1. An algebraic scheme for Oq (̂sl2).

Combining previous results, we obtain the third main result of the paper:

THEOREM 3. The q-Onsager algebra T and the current algebra Oq(̂sl2) are iso-
morphic.

Proof. According to Proposition 4.2, K (u) with (2.6)–(2.9) is the unique
intertwiner of T satisfying (4.9). Also, it satisfies the reflection equation algebra
(2.3). So, K (u) establishes the isomorphism between T and the reflection equa-
tion algebra (2.3) for the Uq(̂sl2) R-matrix. Theorem 1 then establishes the isomor-
phism between the reflection equation algebra (2.3) and Oq(̂sl2), which supports
the claim.

Although the isomorphism between T and Oq(̂sl2)∼=Aq is now established, an
interesting problem remains to construct an explicit homomorphism from Aq to
T, i.e. to write all higher elements of Aq solely in terms of W0,W1. This problem
will be considered elsewhere.

To conclude, the q-Onsager algebra T admits two different realizations: one (see
Proposition 4.2) in terms of the reflection equation algebra for the Uq(̂sl2)R-matrix
and another one in terms (see Theorems 1, 2, 3) of the current algebra Oq(̂sl2)∼=
Aq . Previous results are resumed in Figure 1.
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