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1. Introduction

In 1984, Friedan et al. [7] classified the unitarizable highest weight modules over
the Virasoro algebra. This work was extended to the all sectors, Neveu-Schwarz
and Ramond, of the N =1 super Virasoro algebras by the same authors [§]. In
1986, Boucher et al. [1] classified the unitarizable highest weight modules over the
all sectors, Neveu-Schwarz (NS), Ramond (R) and twisted (T), of the N =2 super
Virasoro algebras. In these references, the proofs are not given.

In 1988, Langlands [12] provided a mathematically rigorous proof of the classifi-
cation theorem of [7]. A similar argument is applicable to the N =1 super Virasoro
algebras and was worked out by Sauvageot [13].

It was shown by Schwimmer and Seiberg [14] that NS sector and the R sec-
tor of the N =2 super Virasoro algebras are isomorphic; hence, the N =2 super
Virasoro algebras have essentially two different isomorphism classes: the twisted
sector and the untwisted sector. A relevant superconformal algebra obtained by
the so-called topological twist is introduced by Dijkgraff et al. [S] in 1991. There
are several works around the N =2 superconformal algebras both by physicists and
mathematicians. Here, we only mention that the work by Feigin et al. [6] was the
starting point of further mathematical works.

The classification theorem of the unitarizable highest weight modules over the
NS, R and T sectors of the N =2 super Virasoro algebra were announced in [1],
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and was proved for the T sector by the author [10]. The aim of this article is
to prove the classification theorem of [1] for the untwisted sector. Besides some
technical details, the proof consists of analysis of the determinant formulas as was
done by Langlands [12] for the Virasoro algebra. This paper is organized as fol-
lows:

In Section 2, after recalling some basic objects, we show that the unitarizability
of highest weight modules over the NS sector of the N =2 super Virasoro alge-
bra is equivalent to that of the corresponding modules over the R sector of the
N =2 super Virasoro algebra via the spectral flow. In Section 3, the determinant
formulas together with a technical lemma used in the proof of the main theorem
are recalled. Section 4 is devoted to the proof of the main theorems (Theorems 4.1
and 4.2).

Throughout this article, we use the following conventions: o € {+} is sometimes
identified with o € {£1}. In particular, for L €C, Ao, oA signify £A.

2. Preliminary

In this section, we recall basic objects related to this article such as N =2 super
Virasoro algebras, Verma-type modules and contravariant forms on them.

2.1. N=2 SUPER VIRASORO ALGEBRAS

Here, we define the untwisted sector of the N =2 super Virasoro algebras.

DEFINITION 2.1. The N =2 super Virasoro algebra g, (¢€ {%, 0}) (untwisted sec-
tor) are the Lie superalgebras

ge:=EPCL.oaPcCl. o P (CG{ oCG )@ Ce,
nez meZ kee+Z

with the parity
deg L, =degl, =degc=0, degGE=I,

which satisfies the following commutation relations:
1
(L L= 00 =) Ly + 75 007 = )8 00,

1
[, Lyl=mly iy, [Un, In]=§m5m+n,OC,

(L, GE]= (% —n) Gt .

(L, GT1=+GE

m—+n>

1 1
[G,::, G;:zt] =0, [GZ, G;] = 2Lm-i—n +(m—n)lyyn+ g (m2 - Z) 5m+n,0c~

The cases ¢ = %,O are referred to as the Neveu-Schwarz (NS) sector and the
Ramond (R) sector respectively.
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The Lie superalgebras g. possess triangular decomposition

ge = (9:)+ D (8)0 D (9e) -,

where we set

@)= P CL,® P Cl,eo P (CGaCG).

*neZ.g *meZ- kel—e+Z=
0} e=3,
(9:)0:=CLo®Cly®Cc ®
80 =200 [(CG(J{@(CG(; £=0.

For the definition of the T sector and the topological version, see, e.g., [5,14].

2.2. REAL FORMS

Here, we classify the real forms of g.. Indeed, we classify the conjugate-linear anti-
involution 6 of g.. In addition, we will determine the real forms that admit a non-
trivial unitarizable module. Arguments given in [2] can be easily generalized to our
case; hence, we only state the results.

We denote the decomposition of (g.)o with respect to the Z/27Z-gradation by

(ge)0= (g0 (go)).

The next proposition can be easily proved.

PROPOSITION 2.1. The subalgebra (gg)g is the unique maximal abelian ad-semi-
simple even subalgebra of g..

Let us set

shi= [z

The next results classifies all of the conjugate-linear anti-involution of g..

|z|=1]C(C.

PROPOSITION 2.2. Any conjugate-linear anti-involution of g. is of one of the fol-
lowing types:

1. For some a € R*,
() neZ and AeS',

1
ein,A(Ln) =a" (L—n —nl_p+ gn25n,06) ,

1
Oty p (In) =" (_In + gnr?n,OC) :

+
Qom;,A (c)=c,

+ Akl ondlp o+
GWLA(GH)_A oG,
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(i) A eR%,
Of \(L)=a"L_p, 6 (I)=a"I_,, 6] ,(c)=c,
0F A (G =AF1a"GT,,.
2. For some a €S},
(1) n€Z and A e V/—1R*,

1
QJU,A(Ln) =—a" (Ln +nl, + 87723;1,00) ,

_ 1
ea,n,A(]n) =a" (In + §U5n,00) s

Oy n (@)=,
6y A (G =FAT SFIGE,, .
(i) AeS!,
QJA(Ln)z—oz”Ln, QJA(In)z—a"In, 0,.7(c)=—c,
Oy (GH)=EA*a" G
By Proposition 2.1, it is natural to consider the (g, (gg)g)-modules. The next

proposition shows for which conjugate-linear anti-involutions a non-trivial unitary
(@e, (gs)g)-module exists.

PROPOSITION 2.3. Let V be a non-trivial irreducible (g, (gs)g)-module.

1. If V is unitary for some conjugate-linear anti-involution 0, then 9:9; A Jor some
o, AeR.y.
2. If 'V is unitary for some a, A €R., then V is unitary for 9:9&.

Thus, in the remaining part of the paper, we shall only consider (g., (98)8)-mod-
ule which is unitary for 91+ |- In particular, we denote 6 instead of 91+ | for simplic-

ity.

2.3. SPECTRAL FLOWS

As one can easily see, g, is a Z-graded Lie superalgebra. Here, we recall a ‘gauge
shift’ introduced by [14] which does not preserve Z-graded structure.
Let us fix e € {%, 0}. For ne %Z, we define the morphism

Dy 18 = Bt (—1)2 (n—In))
as follows:

1 1
Lp> L+l + gnzamoc, In > I+ 310,06, Gir> Gy, e
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Then, it follows that @, is an isomorphism of Lie superalgebras, which is not an
isomorphism as Z-graded Lie superalgebras. Thus, we have

PROPOSITION 2.4.

go=g1.
2

2.4. VERMA-TYPE MODULES

In this subsection, we define Verma-type modules over g, and introduce a contra-
variant bilinear form on them.
We set

(9e)> :=(ge)+ D (ge)0-

For each ¢ € {%, 0}, we define Verma-type modules as follows.
First, we define Verma-type modules for the NS sector, i.e., ¢ = % .
For (z.h,q) e C3 = ((g%)g)*, let C;p4:=Cl;,,, be the (g%)o = (g%)g-module

defined by

LO-lz,h,q =h1z’h’q, IO‘IZ,/’l,q =qlzﬁh,q, C-lz,h,q =le,h,q» deg lz,h,q =0.
As usual, one can define (g1)>-module structure via
1)>
(g%)+'lz,h,q ={0}.

The Verma-type module M 1 (z,h,q) is defined as the induced module

g1
o 2
M% (z,h,q) ._Ind(g D Cihg-

=

(STl

Second, we define Verma-type modules for the R sector, i.e., ¢ =0.
For (z,h,q) € C3=((go)))* and o € {£}, let

@Clg;i

o ._ 00
Vz,h,q =Cl1 z2,h,q°

i degl?y) =t1€Z

z2,h,q *

be the (go)>-module defined by

Lo.v:=hv, cw:=zv, (go)+.v:={0} (ve szfh’q),
.0 1 .0
0 ;0
170 = (q n 50) 1
.5 i .' 1 B
G(r)'lg,}z(),q =010 l(zf,,hl,q’ G(g'lg,)tl,q =2 (h - ﬂz) 87"’1;’}10,4'

The Verma-type module My(z, h, g; o) is defined by

Mo(z,h,q;0):= Ind?go)z Ving:
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Remark 2.1. Our definition of the Verma-type modules for the R sector is moti-
vated by the following observation. For (z,h,q) € C?, let C.4:=Cl, ), be the
(go)g-module defined by

Lol pg=hl;png, Tod;ng=qlyng, clipng=zlypy, degl,,,:=1.

Set
Wehg = Ind(g")g(cz,h,q,
(90)0
Wzo,h,q = CGg lz,h,q EB(CG(;U Gg lz,h,q (o e{£)]).

The (go)o-module structure of W, , can be summarized as follows:

1. If h iz, then we have

~wt -
Weng= Wz,h,q ® Wz,h,q'

2. If h= 2—14z, then we have the following Jordan — Hoélder series: (o € {%}),

+ - o +-
Wehg 2Wh g ¥ W e 2 Wy 2CG G104 210).

Several versions of Verma-type modules were considered in literatures (see, e.g.,
[9] for, what they call, chiral Verma modules and [6] for some other Verma-type
modules over the topological N =2 superconformal algebra).

Now, we define a contravariant bilinear form on Verma-type modules as follows.
By the Poincaré — Birkhoff — Witt Theorem, we have

U(ge) =U(8:)0) ®{U(g:)(ge)+ + (8)-U(ge)},
and let

7 :U(ge) — U((ge)o)

be the canonical projection with respect to the above decomposition.
In the case ¢ =0, let

U((90)0) =U((g0)0)’ ® U (g0)o)"
be the decomposition with respect to the Z/27Z gradation, and let

70U ((90)0) = U ((g0)0)°

be the canonical projection with respect to the above decomposition. For o € {+},
let

7o :U((80)0)° = S((80)) =Cl((g0))*]
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be the canonical projection with respect to the decomposition

U ((80)0)" = S((90)0) & S((90))) G * G§ .
A contravariant form on a Verma-type module is defined as follows:

NS sector: we define the contravariant form (-, ), 5, on Mi(z,h,q) by
2

(X (A1, 4.0). Y.(1®1 4 o)) hg =7 OX)Y)(z, h, q),
(X, YeU(g%)).

R sector: we define the contravariant form (-, '>‘Z,h,q on My(z,h,q; o) by

o"_ U'_ o 0 1
(X173 ). Y8170 )7, = (1 07 o) OOY) ) (z, hog+ 50) :
(X, Y eU(go)).-

Note that these forms are Hermitian. The above contravariant forms can be
defined iff the weights are real, i.e., we have the next lemma:

LEMMA 2.1. The above contravariant forms are well defined if and only if z, h,
qgeR.

This lemma can be shown by applying the contravariance to L, ¢ and Iy. Here-
after, we restrict ourselves to the case where the above contravariant form is well
defined.

A Verma-type module My(z, h, q; o) over gy can be regarded as a g;-module by
Proposition 2.4. In the remaining section, we will study their relation.

The following proposition is a simple corollary of Proposition 2.4:

PROPOSITION 2.5. 4s g 1 -module, we have

1 1 1 1
@t%aMo(z,h,q;o)EM% (z,h—zaq—l—ﬂz,q—l—za—gaz),

where o €{%} and the morphism ® 1y is regarded as a map

g1 — go-

Proof. We have only to check that the map M%(z,h — %Uq + ﬁz,q + %a —
%oz) —> My(z, h, q; o) defined by
:0
x (1 ® 1Z,h7%aq+#,q+%07%01) — @1, 018177 ) (xeU(()-),

is an isomorphism. This can be done by direct computations. a
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Moreover, the above isomorphism is an isometry, i.e., we have the next formula:
LEMMA 2.2. For x,y€ U((g%),), we have

(x.v,y.v), h—Log+ Lz, q+lg_%gz=

=(@_1, .41 ), &1, (M4BT} )%,

where we set v:=1 ®lz’h7%0q+faw+%oiéoz.

Proof- We first remark the following commutativity:
D 1 00=00D_;_, (710071607[)0(1)_1 =®_;_om.
2 2

50 —50

Hence, by definition, we have

(0 1, @.00170). 0_y,0).0e1%)) =

= {0’ omo@ 1, N1, ) (z, h,q+ 10) =
20 20 2

A 1
{o0n’oma ) 0] (z, hoq+ —o) =
2 2

= _, (10()) (Z,h,q+%a) -

2 24

| 1
=m7(@(x)y) (z,h——aq+— 3 G

1 1
,q+50—-0z)=
={x.v, y. v)z h——aq+z4z q+20—gaz
O

Therefore, we have only to classify the unitarizable modules for one sector.
Below, we restrict ourselves to the NS sector.

3. Determinant Formulae

In this section, we will recall the determinant formulae of Verma-type modules for
the NS sector and a technical lemma which is used to prove the determinant for-
mulae and which will be used later.

3.1. DETERMINANT FORMULAE

In this subsection, we recall the determinant formulae of Verma-type modules for
the NS sector.
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Verma-type modules admit the weight space decomposition, i.e., we have

MyGh.g)= B M@ h . qnn.

me%ZZo
nez

M% @ h, @mp:={ulLou=h+m)u, lyp.u=(q-+n)u}.

By definition and the contravariance of the bilinear form introduced in Sec-
tion 2.4, different weight subspaces are perpendicular. Thus, it is enough to restrict
the bilinear form to each weight subspace. Set

1
<"'>z,h,q;m,n:= <.">Z’h’q}M1(Z,h,q)m,nXMl(Z,h,t])m,n 5 (mEEZZOsHEZ .
2 2

By the Poincaré-Birkhoff—Witt theorem, each weight subspace is of finite dimension
and hence we may speak of the determinant of the matrix of pairings of a basis.
These determinants are determined up to a scalar depending on the choice of a
basis. We denote the determinant of (-,-); s g:m,n by det(z,h, q)m . We will state
these determinants, below.

Let us first introduce some partition functions.

We define {P(m,n), P(m,n;k)} CZso by

melZonelkel+z

00 k=1 —1 1
A+x"2yd+x""2y7)
IZ Pm.m)x"y" =[] 1 xhy2 ,
mEQZEO k=1

nez
- 1
. m._n __ m_n
Zp(m’”’k)x Y T T M ysen® Zp(m’”)x y.
m,n m,n

The determinant formulae, which has been presented in [1] and has been proved
in [11], can be stated as follows:

THEOREM 3.1. For me $Z-g.n€Z,

P(m—1Lrs,
det(z, h, @)m.n=Cmn H {fr,s(Z,h,q)} (om 2”")X

r€Z>0,S€22>0
1<rs<2m

x H {gk(z, h, q)}F o= Ikln=sen):k)
kel+z

where we set

f(h)-—z1 Yl (1 1)+2 211 12
rs 2, N, q) = 3Z 4732 N q 43Z s

! 1
gz h.q):=2h—2kq + (51— 1) (kz _ Z) ’

and {Cy n} CRoq are constants depending on the choice of a basis.
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Remark 3.1. 1. For (m,n) € %Zzo x 7, it follows that M%(z,h,q)m,n # {0} if and

: 1.2
only if m > 5n~.

2. In particular, for n € Z\{0}, one has

det@h @)1, =Cr, [ &G hoa),
kel+z
O<sgn(n)k<|n|

for some C1 , €R.y.
Fno.n

We remark that the determinant formulas for some Verma-type modules over
the topological N =2 superconformal algebra are obtained by Dorrzapf and Gota-
Rivera [4].

3.2. TECHNICAL LEMMA

Here, we state a technical lemma which is used to estimate the degree of the deter-
minant as a polynomial in /4.
We define the set parametrizing a PBW basis of U((g1)-) as follows. Set
2

N ce{t} iel4z
I:= o/ 2
{“’5)’62 >0 pe(l,2) i€l
and define the order < on Z by
i<i’
(i,e)< ("¢ = or

i=i"and (g,&)e{(—,+), (1,2)}.
For m e %Z>0 and n € Z satisfying m — %nz € Z=p, we set

k€Z>0, (ij,Sj)EI,
Sk jij=m. gljler=+)—tljlej=—}=n,
(I, €)= Ujy1,€541),
j,e)#Gjp1, 840 if ij €L+ 2.

P =1 (k. e6), -+, (i1, €1))

The set Py, , parametrizes a PBW basis of
U(@y-), ={revipoiiLoxi=ms. h.x1=nx}.
Indeed, for (i,e) €Z and I=((ix, &), ..., (i1, €1)) € Pm.n» set

I, i€Z.y, =1,
Xie)'=1L_; i1€Zo, =2,
G®, iel+Zs,

el ‘= X(iy,ep) - - < X(iy,e1)-
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The family {er}iep,,, CU(g1)-)m,» forms a PBW basis. For simplicity, we set vy:=
e1.(1®1;,,4) € M% (z,h,q).
For I=((ix, &x), .., (i1, €1)) € Pi.n, We also set

p(i=k—tljlej=1), oM =tljle;=1).

The next lemma can be proved by direct calculations.

LEMMA 3.1. Let LI,1, € Py For h,z € Rog such that h,z and % are big
enough, one has

L. (vp, vn)zhg =cth? P27 D1 40(1)) 3 cpeRey,
pID+py)  pCI)+p ()
2 2 I #L.

2- <U]11 k] vllz)z,h,q :0( <

4. Unitarity

In this section, we state and prove the classification theorem of the unitarizable
highest weight modules over g .
2

4.1. MAIN RESULTS

For m eR satisfying m>2 and r, s, €R, we set

2 4rs — 1 t
Zm::?’(l__)a hr,s(m):: s qr(m) = (1)
m dm m

The main theorem we are going to prove is as follows:

THEOREM 4.1. [1] The form (-, ), pq on M% (z,h, q) is positive semi-definite only

if one of the following three conditions are satisfied:

1. z>3 and (z, h, q) satisfies g,(z,h,q)>0 for all ne%—i—Z.

2. z>3 and (z,h, q) satisfies g,(z,h,q) =0 and gy ysenn)(z, h,q) <0 for some ne
Y47 and f12(z,h, q)>0.

3. z2=zm, h=hji(m) and q=q;_r(m) for some meZ=> and j, ke % +Z satisfying
O0<j,k,j+k<m—1

Remark 4.1. As we will see below, the first condition in Theorem 4.1 is sufficient.
Moreover, it follows from the result obtained in [3] that the third condition in The-
orem 4.1 is also sufficient.

For keZ and (r,s) €Z-y x 27, we set

rs(Zh,q) = 37 h 2% q+4 3% +s| .

1 1y 1

R 2
h,q) =2h—2kg+{-z—1 kf——=)—-.
8 (@ h.q) q (3z )( I) |



300 KENJI IOHARA

The next theorem is a corollary of the Theorem 4.1.

THEOREM 4.2. The form (-, '>(zr,h,q on My(z,h,q; o) is positive semi-definite only
if one of the following three conditions are satisfied:

1. z>3 and (z,h, q; o) satisfies g,‘f(z,h,q)zOﬁ)r all neZ.
2. z>3 and (z, h, q; o) satisfies g,lf(z, h,q)=0 and gir ( 1U)(z,h, q) <0 for some
2

sgn(n
neZ and f,(z,h,q)=0.
3. z=2zy for some meZs> and

jk 1 Jj—k
h="— _— y =,
m+24zm a m

for some j,keZ such that j—%a,k+%o>0 and j+k<m-—1.
Indeed, by Proposition 2.5 and Lemma 2.2, one sees that a unitarizable g;-module
corresponds to a unitarizable gy module. Hence, the remaining part of the article

is devoted to the proof of Theorem 4.1.
For simplicity, we let [vac):=1®1;; € M% (z, h,q) be a highest weight vector.

LEMMA 4.1. If the form (-, -); 4 is positive semi-definite, then one has h>0 and
7>0. In particular, if ¢ #0, one has 7> 0.

Proof. One has

1
(I_1lvac), I_1|vac)); n.q =(Ivac), [I1, I_1]|vac)); nq = 37 >0,

(L_1|vac), L_i|vac)); nq =(|vac), [L1, L_1]Ivac)); nq=2h>0,
which implies z>0 and 2>0. For ne % +Z=0, one has
(GT, |vac), GT, |vac)); n.o = (Ivac), [G,f, GT,lIvac)) g =
:2h:t2qn+% ( 2—%)Z20,
which implies z >0 if ¢ #0. O

4.2. PROOF I: THE CASE z>3

In this subsection, we prove Theorem 4.1 in the case when z>3. We remark that
if the form (-,-); 4 is positive semi-definite, then one has

1
(P):det(z, h, q@)m.n >0 for any (m,n) e EZZO X 7.
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The next lemma treats the simplest case following the above-guiding principle:

LEMMA 4.2. Suppose that 7>3. If one has g,(z,h,q) >0 for any ne % +7Z, then
the form (-,-); p.q is positive semi-definite.

Proof. We first show that under the assumption of the lemma, one has

frs(z, h,q)>0 for any (r,s) € Z-g x 2Z~y.
Suppose that z > 3, there exists k € % +Z such that

kl 1 <1 ! 1
3° 71=7\3""")

It follows that

Ao fe) T
()]

If z=3, the assumption of the lemma implies ¢ =0. Hence, one has f,.s(z,h,q)=
A—lts2 > 0.

Now, for a fixed ¢ and sufficiently big 4,z and %, Lemma 3.1 implies that
(s )z,h,q 18 positive definite. Hence, by the connectiVity of the domain under con-
sideration, the lemma follows. a

1
frs(@z h,q)— (—Z - 1) gk(z, h,q)=

Now, we consider when the condition (P) is satisfied besides the case of
Lemma 4.2.

By Remark 3.1, one sees that if the condition (P) is satisfied and there exists
ne % +7Z such that g,(z, h,q)=0, then one should have

k<n n>0,
8k(z,h,q)=>0
k>n n<0.

In this case, it follows that the condition g,4sgn(n)(z,5h,¢) >0 is included in the
case treated in Lemma 4.2. Hence, we consider the condition g,4sgn(n) (2, 1, q) <0,

below. We remark that this condition does not violate the condition (P) because
of Theorem 3.1 and the next lemma:

LEMMA 4.3. For (m,n) € %Zzo x 7 and k € % +7Z, one has

P(m — k|, n—sgn(k); k) > P(m — (|k| + 1), n — sgn(k); k + sgn(k)).



302 KENJI IOHARA
Proof. For L€ % +7Z, one has the next relation
P(m.n: 1)+ P(m—|l|.n—sgn(); )= P(m.n),
by definition. Hence, it is equivalent to show
P(m,n; k) < P(m,n; k+sgn(k)).
By definition, the series

Z P(m,n; k+sgn(k))x™y" —Z P(m,n; k)x™y" =
m,n

m,n

_( | 1 )H (I+x""2y) (142" 2y~
n>0

1+ xlkI+Tysen(k) - 1 + xIkTysentk) (1—xn)2

_ (1 —x)ysen® (1 +x""2y) (1 +x"" 2y
= a +x|k\ysgn(k))(1 +x|k|+1ysgn(k)) H (1—x")?

n>0

has non-negative coefficients, from which the lemma follows. O

We notice that for n € Z\{0}, the next formula follows from Theorem 3.1:

det(z, h, Q)%n2+l,n =

Piln2i1— _ .
=Cropafin@hg) ] (g hg)P@risishlamen®ib )
ke§+7
O<sgn(n)k<|n|+1

for some Ci,2,1,€Ro0. Remark that this formula holds for any (z, &, ¢). Hence,
we assume that fj2(z, i, ¢) >0 holds. Under this assumption, one has

h h —1 ! 1 ’ ! 1 2 ’ >0
Jrs(z, b, q) — f12(z, ,q)—z [r (gz— )+s] —[(gz— )+ } >0,

which implies the condition (P) by Theorem 3.1.

Thus, we have shown that, for z >3, the first and the second conditions in Theo-
rem 4.1 are necessary. Moreover, Lemma 4.2 implies that the first condition is also
sufficient.

4.3. PROOF II: THE CASE 0<z<3

Here, in this subsection, we assume that there exists m € R>, such that z=z,, (see
(1) for the definition of z,). By Lemma 4.1, we also assume & > 0.
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The next lemma is a crucial step:
LEMMA 4.4. Suppose that there exists o € {£1} such that

1
gk(z,h,q)#0 ¥V ake§+7z‘,zo.

Then, the form (-,-); nq is not positive semi-definite.

Proof. By definition, one has

2 1
gk (@m, h’Q)z_E (kz— —) —2qk +2h,

4
which implies that gi(z, h,q) <0 for sufficiently big |k|. Hence, by Remark 3.1,
there exists N € Z.( such that det(z, A, ‘1)%N2 oN <0. O

This lemma implies

LEMMA 4.5. Suppose that the form (-,-); pq is positive semi-definite. Then, there
exists k e % +7Z such that

h= L{4k(k+c]m) —1}.
dm

In addition, one has qm €Z.

Proof. By Lemma 4.4, there exists k € % +Z such that gi(zy,h,q)=0. Consid-
ering this as an equation of 4 and solving it, the first statement follows. To show
the second statement, we remark

1
gi(z,h,g)=0 — lz—l—qml— (mh—}-z):O.

Lemma 4.4 implies that this equation of / should have two solutions [ =k4 € % +7Z
which implies that gm =—(ky +k_) €Z. O

By the assumption 4 >0, one may assume that either k,k + gm € % + Zso or
k,k+qm e —% + Z<o is valid. Hence, hereafter, we assume that there exists m €
R>> and j, ke % + Z=¢ such that z=1z,,h=h;(m) and q = q;j_x(m), where
Zm, hjk(m), qj—r(m) are defined in (1).

With this expression, one obtains

LEMMA 4.6. If the form (-,-); .4 is positive semi-definite, then one has 0 < j+k <
m—1.

Proof. By definition, one has

-1 2 k 2
fuatem hyatmyay_stmy = BT HR

2
81@m: hj(m). qj—k(m)=——(+ ) —k).
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Now, we assume that the form (-, ) 4 is positive semi-definite and j+k>m —1.
The latter condition implies fi 2(zm, hjx(m), qj—k(m)) <O.
By Theorem 3.1, one has, for some Cj€R.o,

det(z, h,g)1,0=C1,0f1,2(z, h, Q)g%(z, h, Cl)g_%(z, h,q),

which implies that if both j;é% and k 75% hold, then one has det(z,h,q)1,0<0
which contradicts to the assumption. Hence, we may assume that either jz% or
k:% holds below. It follows from the condition m >2 that (j, k) # (%, %).

By (2), it follows that if j=1 and k>3, one has det(z,h,¢)3 , <0, and that if
3,
j>% and k= %, one has det(z, i, q)% _ <0, which contradict to the assumption.

Hence, it is enough to consider the cases (j, k)= (%, %), (%, %). In these cases, one
has m <3 by assumption. Now, one has

(G—3|vac>,G—3|vac>>z,h,q=2(1—%)<0 for(j,k):( ,
2 2

2

1
2
(G, Ivac), G, [vac)), g =2 (1 - %) <0, for(j. k)= (%, ) ,
2 2
which are contradictions. O

Thus, if m € Z>,, this lemma implies that the third condition in Theorem 4.1 is
necessary. Hence, to terminate the proof of Theorem 4.1, it is sufficient to prove

LEMMA 4.7. Suppose that m € R>y\Z. Then, the (-, ")z, h;;(m).q; (m) IS nOt positive
semi-definite.

Proof. By Lemma 4.6, it is sufficient to prove this lemma for j, ke % +Z such
that 0 < j, k, j+k<m—1. We write (z,h,q) in place of (z;, hjx(m),q;—r(m)) for
simplicity.

Notice that for n € Z.o, one has My (z,h,q)1,., =CG*
2 27

...¢t.gt
“n-b G7%G7%|vac),

which together with Remark 3.1 implies that

3

|vac) k=
wi= k

G+(k_1) +GT,GY | |vac)
2 2

D= BI|—

> 9

satisfies (w, w); pq >0. For N eZ., if we set

1 G+ G+

WN =17 =+ Zan—1y "G

+
— 1)

one can show the next formula by the induction on N:

AN fm—j—k—1
(wN,wN>z,h,q=(Z) ( JN )(waw>z,h,q-
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Hence, the assumption m ¢ Z implies that there exists N € Z.¢ such that
(WN, WN )z hq <0. O

Therefore, we have completed the proof of Theorem 4.1.
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