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Abstract. We discuss BFV deformation quantization (Bordemann et al. in A homological
approach to singular reduction in deformation quantization, singularity theory, pp. 443–
461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus
action. In particular, we show that the Koszul complex on the moment map of an effec-
tive linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of
Arms and Gotay (Adv Math 79(1):43–103, 1990) for linear Hamiltonian torus actions. It
follows that reduced spaces of such actions admit continuous star products.
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1. Introduction

The purpose of this note is to elaborate on the domain of applicability of the
following theorem in the special situation of linear Hamiltonian torus actions. In
particular, we will show that in this special case condition (2) below is essentially
always fulfilled and condition (1) has a simple geometric meaning. These results
might be of independent interest.

THEOREM 1.1 [6]. Let G be a compact, connected Lie group acting in a Hamil-
tonian fashion on a symplectic manifold (M,ω). Let J : M→ g∗ be an equivariant
moment map for this action satisfying the following requirements

(1) for every f ∈C∞(M) such that the restriction of f to the zero fibre Z := J−1(0)

vanishes there exist a smooth F :M→g such that f =〈J, F〉,
(2) the Koszul complex on J over the ring C∞(M) is acyclic.
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Then there exists a continuous formal deformation quantization of the (possibly sin-
gular) reduced space M0= Z/G.

Throughout the paper g stands for the Lie algebra of the Lie group G. We
denote the dual pairing between g and its dual space g∗ by 〈 , 〉.

Let us recall what is meant by the Koszul complex on the map J . The space
of Koszul chains is defined to be the free C∞(M)-module K• = K• (C∞(M), J ) :=
∧•g⊗ C∞(M). Here the tensor product is taken over the ground field K which
will be the field of real numbers R or the field of complex numbers C. The Kos-
zul differential ∂ : K•→ K•−1 is given by contraction with J . By choosing a basis
e1, . . . , e� for g with dual basis e1, . . . , e� we may write ∂=∑�

i=1 Ji ι(ei ). Here the
components Ji := Jei :=〈J, ei 〉 are given by pairing the result of the map J with the
basis vector ei and ι(ei ) means contraction with ei . It is natural to augment the
Koszul complex with the restriction map res :K0=C∞(M)→C∞(Z). By definition
of C∞(Z) the restriction map is onto. The first terms of the augmented Koszul
complex are

0←−C∞(Z)
res←−K0=C∞(M)

∂1←− K1=g⊗C∞(M)
∂2←−· · · .

Condition (1) of the theorem is nothing but the exactness of the augmented
Koszul complex in degree 0. We will refer to it by saying that the generating
hypothesis holds. Condition (2) means that the complex is exact in all higher
degrees. In that case J is called a complete intersection. A potential property of
J , which is closely related to condition (1), is the following.

DEFINITION 1.2. We say that the moment map J changes sign at ζ ∈ Z= J−1(0)

if for every ξ ∈g either one of the following assertions hold

• there exist an open neighborhood U of ζ in M such that Jξ |U =0,
• for every open neighborhood U of ζ in M there exist m1,m2 ∈U such that

Jξ (m1)>0 and Jξ (m2)<0.

Note that if 0 is not in the image of J , then J does not change sign by definition.
It is known [2, Propositions 6.6 and 6.7] that a moment map which satisfies the
generating hypothesis necessarily changes sign at every point of the zero fibre. In
the special case of a Hamiltonian torus action also the converse holds [2, Theorem
6.8]. We will see in Proposition 2.2 that in the case of a linear torus action the
sign change can be easily checked and is related to properties of the image of the
moment map.

The proof of Proposition 2.2 and of Proposition 2.1, which says that any
moment map of a linear Hamiltonian torus action is a complete intersection, will
occupy Sections 2 and 4. Actually the arguments used are more or less elementary,
the basic thread being to treat the quadratic equations by linear means. Despite
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their simplicity the results are important because they provide a complete and uni-
form picture and lots of examples of quantizable singular spaces. The moral is that
one is now in a position to attack the remaining cases, including the class of polar-
ized torus actions [11], the most basic example being the harmonic oscillator. For
the bulk of those torus actions the constraint surface will not be first class, and the
method of homological phase space reduction (cf. Section 5) does not apply with-
out modification. In the physics literature there exist several proposals how to rec-
tify the situation (see, e.g., [12]) and the Hamiltonian torus actions might provide
a good testing ground for those ideas. We would like to stress that, in contrast to
the abelian case, in the case of linear Hamiltonian actions of nonabelian groups
one cannot expect such an uniform answer. This is because there are prominent
examples where the reducedness question (which is related to condition (1) above)
is notoriously difficult, see for instance [14]. On the other hand, there are many
nonabelian examples which are not complete intersections, e.g., angular momen-
tum in dimension ≥3.

We assume that the reader is acquainted with the basic notions of symplec-
tic geometry and deformation quantization [3], a good reference is the book [18].
Some of the arguments also use basic commutative algebra. We provide details for
the convenience of the reader.

2. Linear Hamiltonian torus actions

Let G :=T
� be the �-dimensional torus, i.e., the �-fold cartesian product of circles.

Recall [11] that any linear Hamiltonian G-action can be written as an action on
the flat Kähler space (Cn,−2ω0) as follows. In order to avoid annoying prefac-
tors we take the liberty to rescale the standard Kähler form ω0= i /2

∑
i dzi ∧dzi .

Using the basis e1, . . . , e� of g we are able to record the data of the action into
the matrix of weights A= (ai j )∈Z

�×n . Writing g∈G as

g=
(

e2π i ξ1
, e2π i ξ2

, . . . , e2π i ξ�
)

for (ξ1, ξ2, . . . , ξ �) ∈ R
� ∼= g, g acts on z = (z1, z2, . . . , zn) according to z j �→

e−2π i
∑

i ai j ξ
i
z j for j = 1,2, . . . ,n. There is a unique homogeneous quadratic

moment map J :Cn→R
�∼=g∗ for this G-action

Ji (z, z)=
n∑

j=1

ai j z j z j , i =1, . . . �. (2.1)

A moment map for a Hamiltonian action of a torus G is unique up to a constant
in g∗.

Using Gaussian elimination we find that upon an integer change of the basis of
g and permutations of the coordinates of C

n the weight matrix A can be brought
into upper triangular form
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

♦ 0 0 · · · ∗ · · ·
0 ♦ 0 · · · ∗ · · ·
0 0 ♦ · · · · · ·
· · · · · ·
0 0 · · · ♦ ∗ · · ·
0 0 · · · 0 · · ·
· · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=:
(

Ã
0

)

, (2.2)

where ♦ indicates nonzero and ∗ arbitrary integer entries. In the above represen-
tation the lower righthand block of zeros does not occur ⇔ RankQ A=� ⇔ there
does not exist a compact one-parameter subgroup acting trivially ⇔ there does
not exist a one-parameter subgroup acting trivially ⇔ the G-action is effective.
Otherwise we may divide out the (�−RankQ A)-dimensional torus acting trivially
and consider the resulting effective action of a (RankQ A)-dimensional torus with
weight matrix Ã.

In order to prove that the Koszul complex on the homogeneous quadratic
moment map of equation (2.1) for A of full rank � is acyclic one can argue as fol-
lows. Using Gaussian elimination one can show that the homogeneous ideal gen-
erated by J1, . . . , J�, z�+1z�+1, . . . , znzn in K[z, z] coincides with the ideal generated
by z1z1, . . . , znzn . It is therefore of maximal height n. Hence, by Theorem 17.4 (iii)
of [16] J1, . . . , J�, z�+1z�+1, . . . , znzn is a regular sequence in K[z, z]. By the same
theorem we conclude that the subsequence J1, . . . , J� is also a regular in K[z, z].
The claim now follows easily (for more details cf. Section 4). With a little bit more
technique one can also show the acyclicity for inhomogeneous J , the proof will be
postponed to Section 4.

PROPOSITION 2.1. For any effective linear Hamiltonian torus action with (not
necessarily homogeneous quadratic) moment map J the Koszul complex on J is acy-
clic.

The next result provides several characterizations of linear Hamiltonian torus
actions which fulfill the generating hypothesis.

PROPOSITION 2.2. For a linear Hamiltonian torus action with moment map J =
(J1, . . . , J�) : Cn → R

�, Ji (z, z) =∑n
j=1 ai j z j z j and corresponding nonzero weight

matrix A= (ai j )∈Z
�×n of rank r ≤� the following statements are equivalent

(i) J changes sign at every ζ ∈ Z = J−1(0),
(ii) the image of J is a vector subspace of R

� of dimension r ,
(iii) 0 is in the relative interior of the convex hull conv(A) ⊂ R

� of the set of
column vectors of A.

More generally, µ is in the relative interior of the image of J if and only if the
shifted moment map Jµ := J −µ changes sign at every ζ ∈ J−1

µ (0)= J−1(µ).
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Proof. We use the standard euclidean scalar product R
�×R

�→R, (v,w) �→v ·w
in order to identify R

� with its dual space.
(i) ⇒ (ii): Observe that the map C

n→R
n+, (z1, . . . , zn) �→ (|z1|2, . . . , |zn|2) is onto.

Let us also denote by A :Rn→R
� the linear map defined by the weight matrix. The

image of J is obviously the same as A(Rn+), and we claim that the latter is im(A)

as a consequence of (i). We have to show that for any v∈ im(A) there is an x ∈R
n+

with Ax=v. Otherwise there would be, according to [19, Farkas Lemma II], a w∈
R

� such that wt A≥0 and w ·v<0. This implies that J (z, z) ·w=∑
i, j wi ai j |z j |2≥0.

The condition (i) forces that to be a strict equality, i.e.,
∑

i, j wi ai j |z j |2=0 for all
z. It follows that w has to be in im(A)⊥, which contradicts w ·v <0.

(ii) ⇒ (iii): First of all we show that ker(A)∩R
n+ �= {0}. Let us assume the con-

trary. Because of (ii) A(Rn+) is a vector space. In particular, for every v ∈ A(Rn+)

it follows that −v ∈ A(Rn+), i.e., there exist x, x ′ ∈R
n+ such that Ax = v and Ax ′ =

−v. Adding both equations we conclude that v=0. Therefore, we have A(Rn+)=0,
which implies that A is the zero matrix, which proves the claim. Hence, we may
assume that there exists a nonzero solution z = (z1, . . . , zn) ∈C

n of the equation
∑

j ai j |z j |2= 0. Therefore, zero is a convex linear combination 0=∑
j ai jλ j with

λ j = |z j |2/‖z‖2. It follows that the affine hull aff(A) of the column vectors of A
and im(A) coincide. Now we have to check that zero is not in any proper face of
the polytope conv(A). The latter would mean that there is a nonzero vector v in
aff(A) such that v · x≥0 for all x ∈conv(A). On the other hand, because of condi-
tion (ii), every w∈ im(A) can be written as w=αx for some α>0 and x ∈conv(A).
We conclude that v ·w≥0 for all w∈ im(A), which implies A=0.

(iii) ⇒ (i): Let v= (v1, . . . , v�)∈R
� be some vector. We have to check that J (z) ·

v=∑
i, j vi ai j |z j |2 changes sign. In fact if v ∈ im(A)⊥ this is true trivially. Let us

therefore assume that v ∈ im(A). By assumption it cannot happen, that vt Aλ≥ 0
(or ≤ 0) for all λ= (λ1, . . . , λn)∈ [0,1]n with

∑
i λi =1. Hence the vector vt A∈R

n

must have components with strictly positive and components with strictly negative
entry. The claim now follows easily.

In order to prove the last assertion assume that µ in the image of J . µ is in a
proper face of the polyhedral cone A(Rn+)= J (Cn) ⇔ there is a vector v∈ im(A)⊂
R

� such that v · (Aλ−µ)≥0 for all λ∈R
n+ ⇔

(Jµ ·v)(z, z)=
∑

i, j

vi (ai j |z j |2−µi )≥0 (2.3)

for all z ∈ C
n . This proves implication ⇐. It remains to check that if inequal-

ity (2.3) holds in a neighborhood of ζ ∈ J−1(µ) then it must be true globally. If
zero was a regular value of Jµ · v then the function Jµ · v would change sign in
every neighborhood of ζ . Therefore zero must be a singular value and the lin-
ear terms in the Taylor expansion of Jµ · v around ζ vanish. Hence we obtain
Jµ · v=∑

i, j vi ai j |z j − ζ j |2≥ 0. If that inequality holds in a neighborhood of ζ it
is clearly fulfilled for all z∈C

n .
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If we sharpen the condition (iii) in the above proposition slightly then, due an
observation of Bosio and Meersseman [8], we obtain a smooth intersection X A :=
Z ∩ S

2n−1 of the zero fibre Z = J−1(0) with the unit sphere and hence Z itself
becomes a cone on the manifold X A. In fact, one has to require that the location
of 0 in conv(A) is generic in the sense that if 0∈conv(B) for some �×m submatrix
B of A then we must have that m >�. Following [8] we will call matrices A∈R

�×n

with that property admissible.

3. Examples

We would like to indicate that there are plenty of nonorbifold quotients M0= Z/G
among the torus actions covered by the three equivalent conditions of Proposi-
tion 2.2. To this end observe that by the slice theorem the link of an orbifold sin-
gularity has to be isomorphic to the quotient of a sphere by a finite group action.
Applied to our situation, this means that in case the reduced space is an orbifold
the link of the lowest dimensional stratum has to be a rational homology sphere.
Now that link is given by the quotient YA := X A/G, so we just have to test whether
this space is not a rational homology sphere to find nonorbifold quotient spaces
among the torus actions we consider.

In order to understand the topology of X A it is convenient to make use of the
following trick. Two admissible matrices A0, A1 are called homotopy equivalent if
they can be joined by a smooth curve At , 0≤ t ≤1, of admissible matrices. It fol-
lows from Ehresmann fibration theorem that X A0 and X A1 are diffeomorphic (a
more detailed argument can be found in [8]).

For low dimensions �=1,2,3 it is a good idea to draw pictures of the polytopes
conv(A). If a column vector appears n-fold in the matrix A we will assign to the
corresponding vector in the picture the multiplicity n. The operation of multiplying
all multiplicties with the same m≥1 can be interpreted as replacing the one-parti-
cle system corresponding to A by the m-particle system with the “total” moment
map corresponding to m A= (A|A|...).

�=1 : If A= (a1, . . . ,an) is a weight matrix of an S
1-action then A is admissible

if and only if none of the entries is zero and A has strictly positive as well as
strictly negative entries. We conclude that X A is diffeomorphic to S

2n+−1×S
2n−−1,

where n+ and n− are the number of positive and negative entries of A, respectively.
We observe that for dimensional reasons the isotropy groups of points x ∈ X A of

an S
1-action with admissible weight matrix A are necessarily finite. It now follows

from the next result that the reduced space cannot be an orbifold for the big part
of weight matrices A with �= 1 rows. In the proof we use some basic facts from
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rational homotopy theory, for which we refer to the book of Felix, Oprea and
Tanré [10].

PROPOSITION 3.1. Let k+ and k− be odd integers with k+, k− ≥ 3 and set X =
S

k+ ×S
k− . If S

1 acts on X with finite isotropy groups, then the quotient space X/S
1

is not a rational homology sphere.

Proof. Set G = S
1; our hypothesis is that the G action on X is almost free, in

the language of [10, Chapter 7]. Setting XG= EG×G X , the Borel construction [10,
§1.13], this hypothesis implies that there is a rational homotopy equivalence XG�
X/G; see [10, Theorem 7.6(2)]. It thus suffices to prove that XG is not a rational
homology sphere.

As explained in [10, 7.3.2, p. 280], a rational (Sullivan) model for XG is of the
form

Q[x,u+,u−] with |x |=2, |u+|= k+, and |u−|= k−
d(x)=0, and d(u+),d(u−)∈ (x)Q[x,u+,u−]

Since k+, k− ≥ 3 holds, degree considerations yield that d(u+), d(u−) are at least
quadratic in the variables x , u+, and u−. Thus Q[x,u+,u−] is a minimal model
for XG ; see [10, Chapter 2].

It remains to note that the minimal model of a space is unique, up to isomor-
phism of models, and that Q[x,u+,u−] is not a minimal model of any sphere; see
[10, Example 2.43]. Note that x is a nontrivial cocycle in degree 2.

�=2 : It is not difficult to show that any admissible matrix A with �= 2 rows is
homotopy equivalent to a matrix corresponding to a (2k+1)-gon, k≥1, with mul-
tiplicities, centered around zero

For example, the admissible weight matrix
(−1 1 2 0 −2
−3 −3 −1 2 −1

)

is homotopy equivalent to an admissible matrix corresponding to a triangle with
multiplicities n1=n2=2 and n3=1.
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A theorem of Lopez de Medrano [9] says that if A is such an admissible
2×n-matrix then X A is diffeomorphic to

• S
2n1−1×S

2n2−1×S
2n3−1 for k=1, i.e., for a triangle,

• 2k+1
#

i=1
(S2di−1×S

2n−2di−2) for k≥2, where # denotes the connected sum and di =
ni +· · ·+ni+k−1 taken modulo 2k+1.

We conjecture that for fixed k for all, except possibly finitely many, admissible A
the quotient X A/T

2 is not a rational homology sphere.

Cross-polytope T
�-action: The most simple torus action with a nonadmissible

weight matrix which fulfills the requirements of Proposition 2.2 is the one corre-
sponding to the 2-dimensional cross-polytope, that is, the one with weight matrix

defining a G=T
2 action on C

4. The equations defining X A2 are |z1|2= |z2|2= λ,
|z3|2=|z4|2=1−λ, λ∈[0,1]. The boundary strata at λ=0,1 are diffeomorphic to
T

2 and are the orbit type strata of the subgroups S
1× id and id×S

1, respectively.
An element (u1,u2)= (e2π i ξ1

, e2π i ξ2
)∈T

2 acts on C
4 by

(z1, z2, z3, z4) �→ (u1z1,u−1
1 z2,u2z3,u−1

2 z4).

The strata of YA2= X A2/T
2 are therefore the top stratum S

1×S
1× (0,1) and the

two circles which are the orbit type strata of the subgroups S
1 × id and id×S

1,
respectively. It is easy to see that YA2 is homeomorphic to a 3-sphere with an
embedded Hopf link. It is also straightforward to show that YA2 is homeomor-
phic to the following orbit space of a finite group: take the canonical action of
Z j1 ×Z j2 on S

3⊂C×C for any numbers j1, j2≥2. The quotient Ym A2 of the cor-
responding m-particle system is given by replacing the S

1 in the construction of
YA2 by S

2m−1×S
2m−1/S

1. Here S
1 acts on S

2m−1×S
2m−1⊂C

m×C
m by u.(z1, z2)=

(uz1,u−1z2). We conjecture that Ym A2 is not a rational homology sphere for
m≥2.

The discussion generalizes almost verbatim to the situation where the weight
matrix is A�, � ≥ 2, the matrix whose column vectors are the vertices {±ei }i=1,...,�

of the �-dimensional cross-polytope. In this manner we define an action of T
� on

C
2�. In the argument we have to replace the interval by the (�− 1)-dimensional

simplex 	�−1. The poset underlying the orbit type stratification of YA�
corresponds

to the poset of faces of 	�−1. Again, we may write YA�
as a quotient of S

2�−1⊂C
�

modulo Z j1 ×· · ·×Z j� for j1, . . . , j�≥2.
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4. Proof of Proposition 2.1

In this section we recall, with proofs, some elementary results in commutative alge-
bra.

A homomorphism ϕ : R→ S of commutative rings is said to be flat if S is flat
when viewed as an R-module via ϕ.

LEMMA 4.1. Let K be a commutative ring. Let ϕ : R→ S and ϕ′ : R′ → S′ be
homomorphisms of K -algebras. When ϕ and ϕ′ are flat, so is the induced homomor-
phism ϕ⊗K ϕ′ : R⊗K R′→ S⊗K S′.

Proof. For any module W over R⊗K R′ the natural map

S⊗R W→ (S⊗K R′)⊗(R⊗K R′) W, s⊗w �→ s⊗1⊗w

is an isomorphism with inverse given by s⊗ r ′ ⊗w �→ s⊗ r ′w. Since S is flat over
R, one thus deduces that the homomorphism ϕ⊗K idR′ is flat.

In the same vein, the homomorphism idS⊗K ϕ′ is flat. It remains to note that
ϕ⊗K ϕ′ is the composition (idS⊗K ϕ′)◦ (ϕ⊗K idR′).

Let R be a commutative ring. We say that a sequence r=r1, . . . , rn in R is regu-
lar if ri+1 is a nonzero divisor on the ring R/R(r1, . . . , ri ) for 0 ≤ i ≤ n−1. In the
literature, a regular sequence is also required to satisfy R/Rr �= 0, but this condi-
tion is not important here.

We say that a homomorphism ϕ : R→ S is faithful if for any nonzero R-module
M , the S-module S⊗R M is nonzero.

LEMMA 4.2. Let r=r1, . . . , rn a sequence of elements in a commutative ring R and
ϕ : R→ S a homomorphism of rings that is flat. If the sequence r is regular in R,
then the sequence ϕ(r) in S is regular; the converse holds if ϕ is also faithful.

Proof. For any element r in R, the induced homomorphism

ϕ⊗R (R/Rr) : R/Rr→ S/Sϕ(r)

is flat, and it is faithful when ϕ is faithful. These claims follows from the observa-
tion that the functor −⊗R/Rr (S/Sϕ(r)) of R/Rr -modules coincides with −⊗R S.

It thus suffices to verify the desired result for a single element r in R. Note that
r is nonzero divisor if and only if Ker(R

r−→ R)= 0 holds. Since ϕ is flat, there is
an isomorphism

S⊗R Ker(R
r−−→ R)∼=Ker(S

ϕ(r)−−−−→ S).

It follows that when r is a nonzero divisor, the element ϕ(r) in S is a nonzero divi-
sor, and that the converse holds when ϕ is faithful.
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PROPOSITION 4.3. Let J = J1, . . . , J� be elements in the polynomial ring K[z, z]
over a field K, where each Ji =�n

j=1ai j z j z j +ci , with ai j , ci in K, for all i, j . If the
matrix (ai j ) has rank �, then the sequence J is regular.

Proof. Let K[x] be the polynomial ring on indeterminates x= x1, . . . , x�. Con-
sider the homomorphism of K-algebras

ϕ : K[x]→K[z, z]
defined by ϕ(xi )= zi zi for i =1, . . . , �. We claim that this map is flat.

Indeed, observe that ϕ = ϕ1 ⊗K · · · ⊗K ϕn , where ϕi : K[xi ] → K[zi , zi ] is the
homomorphism of K-algebras defined by ϕ(xi )= zi zi . In view of Lemma 4.1, it
thus suffices to prove that each ϕi is flat. Note that K[zi , zi ] is even free as a K[xi ]-
module, on a basis {1}� {ze

i , (zi )
e}e≥1.

For each 1 ≤ i ≤ �, let Li denote the linear form �n
j=1ai j x j + ci in K[x]. Since

ϕ(Li )= Ji and ϕ is flat, for the desired result it suffices to prove that the sequence
L1, . . . , L� in K[x] is regular, by Lemma 4.2.

Now let σ : K[x]→K[x] be the homomorphism of K-algebras with σ(xi )= Li

for each i . The rank condition on the matrix (ai j ) implies that σ admits an inverse,
and hence it is an automorphism. In particular, the map σ is flat, so it suffices to
verify that the sequence x1, . . . , x� is regular on K[x], again by Lemma 4.2. The
desired result is now evident.

Proof of Proposition 2.1. Let us introduce some notation. We denote by Fa =
K[[z− a, z− a]] the ring of formal power series at a= (a1, . . . ,an)∈C

n over the field
K (which is R or C). Similarly, Oa=K{z− a, z− a} stands for the ring of conver-
gent power series at a∈C

n . The ring of germs at a∈C
n of smooth functions on

C
n will be denoted by Ea. Observe that we have the following chain of inclusions

of K-algebras

K[z, z] (1)

flat
�� Fa Oa

(2)

faithfully flat
�� (3)

faithfully flat
�� Ea. (4.1)

A proof of the fact that arrow (1) is flat can be found, e.g., in [16, Chapter 3, Exer-
cise 7.4]. For a proof of the fact that arrows (2) and (3) are faithfully flat we refer
to [15, Theorem III.4.9, Corollary VI.1.12.]. From Lemma 4.2 and Proposition 4.3
it follows that the image of J1, . . . , J� in Ea is a regular sequence for every a. In
particular, the Koszul complex K•(Ea, J ) is acyclic for every a. Using a partition
of unity argument it follows that K•(C∞(Cn), J ) is acyclic.

5. Quantization

For sake of completeness let us briefly describe how to find the deformation quan-
tization of Theorem 1.1 of the reduced space. For proofs and an explanation of the



ON THE EXISTENCE OF STAR PRODUCTS 111

BFV-machinery used for it we refer to [6,7,13]. First of all, recall that according
to [1,17] the algebra of smooth functions on the possibly singular reduced space
is the Poisson algebra C∞(M)G/C∞(M)G ∩ IZ . Here we denote by IZ the ideal of
smooth functions on M vanishing on Z and we observe that C∞(Z)=C∞(M)/IZ .
Since G is compact and connected we have an isomorphism

C∞(Z)g→C∞(M)G/C∞(M)G ∩ IZ

of Fréchet algebras which is given by extending a G-invariant function on Z to a
G invariant function on M and taking the representative of the latter. In a simi-
lar manner, there is an isomorhism of Fréchet algebras from C∞(Z)g to N (IZ )/IZ ,
where N (IZ )={ f ∈ C∞(M) | { f, IZ }⊂ IZ } is the normalizer of IZ in C∞(M). Now
the generating hypothesis means that IZ is just the ideal 〈J1, . . . , J�〉C∞(M) gener-
ated by the components of the moment map. A crucial observation is that this
implies that Z is first class, i.e., IZ is a Poisson subalgebra of C∞(M), and hence
both aforementioned isomorphisms are isomorphisms of Poisson algebras. We are
looking for a reduced star product ∗0, that is, a continuous associative deforma-
tion of this Poisson algebra in the formal parameter ν.

The first ingredient for the reduced star product is a continuous splitting of the
augmented Koszul complex

0 C∞(Z)��

ext

��C∞(M)
res��

h0

��g⊗C∞(M)
∂1�� �� · · ·��

The existence of a continuous extension map ext follows from the fact that real
analytic sets have the extension property [4,5]. Note that if Z has singularities
one cannot expect to find an extension map which is an algebra morphism. The
existence of continuous contracting homotopies hi : Ki → Ki+1 such that idK0 =
ext res+∂1h0 and idKi = hi−1∂i +∂i+1hi for all i ≥1 can be proved using the divi-
sion theorem of [5]. In addition, we have to require that ext and h0 are G-equi-
variant and h0 ext=0. It is not difficult to modify existing splits in order to realize
these extra conditions. The authors do not know any example of a singular zero
locus Z where one has explicit formulas for the split.

The second ingredient is a strongly invariant star product ∗ on M . This means
by definition that

Jξ ∗ f − f ∗ Jξ =ν{Jξ , f }, for all f ∈C∞(M), ξ ∈g.

It is well-known that such a star product exists for any Hamiltonian action of
a compact group on a symplectic manifold. In the case of a linear Hamiltonian
action on C

n the Wick star product is obviously strongly invariant.
We now introduce a deformed version ∂̃ : K•[[ν]]→ K•−1[[ν]] of the Koszul dif-

ferential. For sake of simplicity we give here merely the formula for torus actions

∂̃ :=
∑

i

RJi ι(e
i ),



112 HANS-CHRISTIAN HERBIG ET AL.

where we denote by R f :C∞(M)[[ν]]→C∞(M)[[ν]], h �→h ∗ f the operator of right
multiplication with the function f . It is easy to see that ∂̃ is a differential such
that ∂̃−∂ is of order ν. Hence the geometric series in

r̃es := res(id−(̃∂1−∂1)h0)
−1

converges ν-adically and the so-called deformed restriction map

r̃es= res+
∑

i≥1

νi resi :C∞(M)[[ν]]→C∞(Z)[[ν]]

is in fact a formal power series of linear continuous maps resi :C∞(M)→C∞(Z).
We are now ready to write down the formula for the reduced star product ∗0.

For invariant smooth functions f and g on Z we define

f ∗0 g := r̃es (ext( f )∗ ext(g)) . (5.1)

One still has to check that f ∗0 g is a formal power series of invariant func-
tions and that the resulting operation makes C∞(Z)g[[ν]] indeed into an associative
K[[ν]]-algebra. For a proof of these statements, which is based on the formalism of
Batalin–Fradkin–Vilkovisky-quantization [12] we refer to [6,13]. Even though this
is not visible in formula (5.1) substantial use is made of the acyclicity of the Kos-
zul complex. It is an open problem whether one can get rid of the assumption that
J is a complete intersection.
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