Homogeneous Star Products

LOUIS BOUTET DE MONVEL

UPMC Univ Paris 06, 75005 Paris, France. e-mail: boutet@math.jussieu.fr

Received: 6 December 2008 / Revised: 24 December 2008 / Accepted: 26 December 2008 Published online: 28 January 2009 – © Springer 2009

Abstract. We give short proofs of results concerning homogeneous star products, of which S. Gutt's star product on the dual of a Lie algebra is a particular case.

Mathematics Subject Classification (2000). 19L47, 32A25, 58J20, 58J40.

Keywords. Star-products, Linear Poisson brackets.

This is partly a review article; we give easy definitions and results concerning homogeneous star products of type k > 0. Homogeneous star products of type 1 were studied in [3], under the name "graded star products" (with a somewhat narrow symmetry condition that we will not use here); a typical example is the star product associated to the canonical Poisson bracket on the dual of a Lie algebra, and Section 3 concerning them should be considered as a review with easy proofs of some results of [1,3,4,6,9]. Homogeneous star products of type >2 are easily seen to be equivalent to trivial star products, and homogeneous star products of type 2 are equivalent to Moyal star products (Section 2). We do not study here homogeneous star products of type $k \le 0$, which are not much less complicated than the general non-homogeneous case (neither is the study of homogeneous star products on a conic set not containing the origin).

1. Definitions

We first recall (cf. [2]) that a star product B on a manifold V is a formal series

$$B = \sum_{0}^{\infty} \hbar^{n} B_{n} \tag{1}$$

where \hbar is the formal parameter and, for each integer *n*, B_n is a bidifferential operator with smooth coefficients, i.e. in any system of smooth local coordinates we have $B_n(f,g) = \sum b_{n,\alpha,\beta}(\xi) \ \partial^{\alpha} f \ \partial^{\beta} g$.

This paper is dedicated to the memory of Moshe Flato.

I thank the referee for several judicious remarks improving the text.

It is required that B defines an associative product with unit 1, i.e.

$$(f * g) * h = f * (g * h), \quad 1 * f = f * 1 = f.$$

where we have used the notation, for $f = \sum \hbar^n f_n$, $g = \sum \hbar^n g_n$ formal series with smooth coefficients:

$$f * g = B(f,g) = \sum \hbar^n B_n(f,g) = B(\xi, \partial \otimes \partial)(f,g)$$
⁽²⁾

In operator notation:

$$B(B \otimes 1 - 1 \otimes B) = \frac{1}{2}[B, B] = 0$$
(3)

where [B, B] denotes the Gerstenhaber bracket [8] (see below).

In the sequel we will suppose that V is a vector space.

DEFINITION 1. A star product $B = \sum \hbar^n B_n$ on a vector space V is homogeneous of type k, or k-homogeneous, if for each $n \ge 0$, B_n is homogeneous of degree -kn with respect to dilations $\xi \to \lambda \xi$ on V.

Equivalently: *B* is invariant by the dilations $f(\hbar, \xi) \mapsto H_{\lambda} f = f(\lambda^k \hbar, \lambda \xi)$ $(H_{\lambda}(B) (f, g) = H_{\lambda}(B(H_{\lambda^{-1}}f, H_{\lambda^{-1}}g))$. Equivalently again: it is invariant by the Lie derivation $L_{r\partial_r + k\hbar\partial_h}$ $(r\partial_r = \sum \xi_j \partial_{\xi_j}$ denotes the radial derivation).

The domain of definition of *B* imperatively includes the origin $0 \in V$. Let us recall that a smooth homogeneous function is a homogeneous polynomial (of integral degree). Likewise a homogeneous multidifferential operator $P(f_1, \ldots, f_m) = \sum a_{\alpha_1,\ldots,\alpha_m} \partial^{\alpha_1} f_1 \cdots \partial^{\alpha_m} f_m$ has polynomial coefficients. So we can as well suppose *V* real or complex. In what follows we have also omitted the customary factor $\frac{1}{i}$ which is useless here. One might as well declare that the star product laws *B* or Poisson brackets *c* have complex coefficients, or that we are ultimately restricting to pure imaginary vectors of *V*.

If B is a star product, the commutator law

$$C(f,g) = B(f,g) - B(g,f)$$

is a Lie bracket, and its leading coefficient

$$c(f,g) = B_1(f,g) - B_1(g,f)$$
(4)

is a Poisson bracket on V, homogeneous of degree -k if B is of type k.

2. Homogeneous Star Products of Type $k \ge 2$

DEFINITION 2 (equivalence). A star product B' is equivalent to B (resp. homogeneous-equivalent, if B, B' are k-homogeneous) if there exists an asymptotic operator $p = \sum_{1}^{\infty} \hbar^n p_n$ (resp. k-homogeneous, i.e. p_n is homogeneous of degree -kn), such that $B' = e^p(B)$.

 $B' = e^p(B)$ means $B'(f,g) = e^p(B(e^{-p}f,e^{-p}g))$ (so $e^p(1) = 1$, p(1) = 0).

If $p = \hbar^N p_N + \cdots$ is of order N, and $B' = e^p(B)$, B' - B is of order N and its leading coefficient is

$$[p_N, \epsilon] = \delta(p_N) : (f, g) \mapsto p_N(fg) - p_N(f)g - f p_N(g).$$
(5)

Here $\epsilon \in \mathcal{D}_2$ is the multiplication operator: $\epsilon(f, g) = fg$; [,] is the Gerstenhaber bracket between 0 and 1 cochains (1 and 2-differential operators), and δ is the Hochschild differential. Here we only use [,] or δ for 0 or 1-cochains, as recalled below. For the general case we refer to [8], or to the very conceptual description of [10].

Note that if p is a vector field, we have $[p, \epsilon] = 0$, and the leading term of $e^p B - B$ is $[p_N, B_1]$, the Lie derivative of B_1 .

If $B' = B + \beta$, and [B, B] = 0, the associativity condition is

$$\frac{1}{2}[B',B'] = [B,\beta] + \frac{1}{2}[\beta,\beta] = 0$$
(6)

where [] is the Gerstenhaber bracket of 1-cochains:

$$[B, B'] = B(B' \otimes 1 - 1 \otimes B') + B'(B \otimes 1 - 1 \otimes B)$$

$$\tag{7}$$

If $B' - B = \hbar^N \beta_N + \cdots$ is of order $N \ge 1$, we get for the leading term

$$[\epsilon, \beta_N] = \delta(\beta_N) = 0 \tag{8}$$

where δ is the Hochschild differential. It is well known (cf. [8]) that the δ -cohomology of the Hochschild complex is canonically isomorphic to the space of multivectors: to an *m*-multivector $X_1 \wedge \cdots \wedge X_m$ corresponds the skew symmetric *m*-differential operator

$$(f_1,\ldots,f_m)\mapsto \det(\langle X_i,df_j\rangle).$$

and each *m*-cocycle γ for the δ -cohomology ($\delta(\gamma) = 0$) has the form

$$\gamma = \mathfrak{a}(\gamma) + \delta p = X_1 \wedge \cdots \wedge X_m + \delta p$$

where \mathfrak{a} is the complete antisymetrization.

Thus we have $\beta_N = \beta' + \delta(p_N)$, where β' is a 2-vector field, homogeneous of degree -kN, and we can choose choose p_N of the same degree, replacing it if need be by the homogeneous part of degree -kN in its Taylor expansion. Then $e^{\hbar^N p_N}$ is homogeneous of type k, and it follows from (5), (6) that we have $B' - e^{\hbar^N p_N}(B) = \hbar^N \beta' + \cdots$

Since the derivations ∂_j are homogeneous of degree -1, the degree of a homogeneous 2-vector $c = \sum c_{ij}(x)\partial_i \wedge \partial_j$ is necessarily ≥ -2 : c vanishes if the degree is ≤ -3 , and its coefficients are constant if the degree is -2; they are linear if the degree is -1. So if $k \geq 3$, resp. k=2, β_N will vanish for all $N \geq 1$, resp. $N \geq 2$. Then we can proceed by induction (successive approximations) and see that B and B'are homogeneous-equivalent if $k \geq 3$, or if k=2 and they have the same Poisson bracket: THEOREM 3. If $k \ge 3$, any k-homogeneous star product is commutative, and homogeneous-equivalent to the standard product $(f, g) \mapsto fg$.

A homogeneous star product of type 2 is completely determined by its Poisson bracket c, which has constant coefficients. It is homogeneous-equivalent to the Moyal product (cf. [11]):

$$(f,g) \mapsto \exp\left(\frac{\hbar}{2}c(\partial_{\xi},\partial_{\eta})\right) f(\xi) g(\eta)|_{\eta=\xi}$$

(we have used the standard notation: $\exp \frac{\hbar}{2} c(\partial_{\xi}, \partial_{\eta}) = \sum \frac{\hbar^{n}}{2^{n} n!} (\sum c_{ij} \partial_{\xi_{i}} \partial_{\eta_{j}})^{n}).$

3. Homogeneous Star Products of Type 1

Exactly as above we see that if B, B' are homogeneous star products of type 1 which coincide up to order 2 ($B' - B = \hbar^3 \beta_3 + \cdots$, where β_3 is homogeneous of degree -3), they are homogeneous-equivalent.

Also if *B* is 1-homogeneous, it is homogeneous-equivalent to a star product of the form $B = \epsilon + \frac{1}{2}\hbar c + \hbar^2 b_2 + \cdots$ where *c* is a Poisson bracket homogeneous of degree -1, and the antisymmetric part of b_2 is of the form $\frac{1}{2}\hbar^2\gamma$ with γ a bivector homogeneous of degree -2, i.e. a Poisson bracket with constant coefficients.

LEMMA 4. Notations being as above, γ commutes with c, i.e. $[c, \gamma]_N = 0$ where $[,]_N$ is the Nijenhuis–Schouten bracket of multi-vectors (cf. [12,13]).

Proof. the commutator law is $C(f,g) = B(f,g) - B(g,f) = \hbar c(f,g) + \hbar^2 \gamma(f,g) + O(\hbar^3)$. It satisfies the Jacobi identity, so for the coefficient of \hbar^2 we get:

$$\sum_{\bigcirc} c(\gamma(f_1, f_2), f_3) + \gamma(c(f_1, f_2), f_3) = 0$$

where \sum_{0} means the sum over cyclic permutations of f_1 , f_2 , f_3 . This exactly means that c and γ commute ($[c, \gamma]_N = 0$); equivalently, since γ has constant coefficients and also is a Poisson bracket, that $\hbar c + \hbar^2 \gamma$ is again a Poisson bracket.

Note further that if $B = \epsilon + \hbar c + \cdots$ and $B' = e^p(B)$ is of the same form with $p = \hbar p_1 + \cdots$ 1-homogeneous, we have $[p_1, \epsilon] = 0$, i.e. $p_1(fg) - p_1(f)g - fp_1(g) = 0$, which means that p_1 is a vector field with constant coefficients $p_1 = v \in V$, since it is homogeneous of degree -1. Then $e^{\hbar p_1}(B)$ is of the form $B(\xi + \hbar v, \partial \otimes \partial)$ (deduced from *B* by translation). The leading antisymmetric term of $e^{\hbar p_1}B - B$ is $\frac{\hbar}{2}\gamma$, with $\gamma = c(v, \partial \wedge \partial)$.

It is known (proof recalled below) that any homogeneous Poisson bracket of degree -1 is the Poisson bracket of some homogeneous star product, so we get:

THEOREM 5. A 1-homogeneous star product is completely determined (up to equivalence) by its terms of order ≤ 2 . Equivalence classes of 1-homogeneous star products

are in one to one correspondence with translation orbits of 1-homogeneous Poisson brackets of the form $\hbar c + \hbar^2 \gamma$, under the translation group $\xi \mapsto \xi + \hbar v$.

A similar result was proved [3] (see also in [7]). The uniqueness assertion there (i.e. the homogeneous star product is determined up to equivalence by its Poisson bracket) is not the same as above: this is due to the fact that the authors impose a stronger symmetry condition on their star products $(B_n(g, f) = (-1)^n B_n(f, g))$, which holds for the S. Gutt and M. Kontsevich star products, but which we did not impose here (as in most of the literature).

4. Examples and Remarks

4.1. S. GUTT'S STAR PRODUCT

If c is a Poisson bracket, homogeneous of degree -1 on V, it defines a Lie algebra structure on the dual \mathfrak{g} of V: $[u, v](\xi) = \{u(\xi), v(\xi)\}$ if $u, v \in \mathfrak{g}$ are viewed as linear functions on V.

Let G be a Lie group with Lie algebra \mathfrak{g} : the star algebra of pseudodifferential operators on G (mod smoothing operators) is well defined, so as the sub star algebra of left invariant operators (those that commute with right translations). This is a star algebra, living on the dual V of \mathfrak{g} , in the sense that its product law can be defined by a star product on V. However to define a star product one must choose a total symbol, which can be done in many manners (as for pseudo-differential operators on a general manifold).

A canonical choice consists in choosing exponential coordinates near the origin of G, in which the product is given by the Campbell–Hausdorff formula: this is the choice made by S. Gutt in [9].

The Campbel-Hausdorff series on g is:

$$X \cdot Y = \text{Log}(e^{X}e^{Y}) = X + Y + \sum_{1}^{\infty} CH_{n}(X, Y)$$
(9)

where CH_n is an iterated bracket of order *n*: it is a homogeneous polynomial of degree n + 1 of (X, Y), and also a homogeneous polynomial of degree *n* of the coefficients of the Lie bracket of \mathfrak{g} , or equivalently, of the linear Poisson bracket of *V* $(CH_1 = \frac{1}{2}[X, Y], CH_2 = \frac{1}{12}[X - Y, [X, Y]], \ldots)$.

It is symmetric: since $\text{Log}(e^X e^Y)^{-1} = -(X \cdot Y) = (-Y) \cdot (-X)$, we have

$$CH_n(Y, X) = (-1)^n CH_n(X, Y).$$

We define a dilated product:

$$X \cdot_{\hbar} Y = X + Y + \sum_{n=1}^{\infty} \hbar^n C H_n(X, Y)$$
⁽¹⁰⁾

If f is a polynomial, we denote by \hat{f} its inverse Fourier–Laplace transform: this is the distribution, supported by the origin, such that $f(\xi) = \langle \hat{f}(X), e^{\langle \xi, X \rangle} \rangle$. The star product constructed by S. Gutt, arising from the exponential chart is, for f, g polynomials:

$$B(f,g) = \langle \widehat{f}(X) \otimes \widehat{g}(Y), e^{\xi, X \cdot_{\hbar} Y >} \rangle$$

This can be rewritten

$$B(f,g) = \exp\left(\xi \cdot \sum_{1}^{\infty} \hbar^n C H_n(\partial_\eta, \partial_\zeta)\right) f(\eta) g(\zeta)|_{\eta = \zeta = \xi}$$
(11)

which makes sense for all formal series $f = \sum \hbar^n f_n$, $g = \sum \hbar^n g_n$. It is obviously a homogeneous star product of type 1.

4.2. M. KONTSEVICH'S CONSTRUCTION

The construction of M. Kontsevich assigns to a bivector c on V with smooth coefficients a formal series of bidifferential operators $K(c) = \sum_{0}^{\infty} K_n(c)$, where the bidifferential operator $K_n(c)$ is a homogeneous polynomial of degree n of c and its derivatives, $K_0 = \epsilon$, $K_1(c) = \frac{1}{2}c^{.1}$ It commutes with affine transformations of V, and the (formal) Gerstenhaber bracket [K(c), K(c)] vanishes if the Nijenhuis bracket $[c, c]_N$ vanishes, i.e. $K(hc) = \sum \hbar^n K_n(c)$ is a star product with Poisson bracket c if c is a Poisson bracket.

Since the Kontsevich construction commutes with affine transformations, $K_n(c)$ is homogeneous of degree -kn if c is homogeneous of degree -k, so $K(\hbar c)$ is then a homogeneous star product of type k.

It is immediate to verify that $K_2(f,g)$ is symmetric in (f,g) (cf. [10], §1.4.2 in fact one has $K_n(c)(g, f) = (-1)^n K_n(c)(f,g)$ for all n, i.e. $K(\hbar c)(g, f) = K(-\hbar c)(f,g)$). Since two star-products homogeneous of type 1 whose antisymmetric parts coincide up to order 2 are equivalent, we get back the result of [6] or [4]:

PROPOSITION 6. If c is a linear Poisson bracket, the Kontsevich star product $K(\hbar c)$ is equivalent to the Gutt star product B, constructed out of the Campbell–Hausdorff series.

In [6], G. Dito describes more explicitly an asymptotic operator $P = 1 + \sum \hbar^n P_n$ which performs the transition (cf. also [4]).

4.3. FINAL REMARKS

If $c = \sum_{1}^{\infty} \hbar^{n} c_{n}$ if a formal Poisson bracket, homogeneous of type k, then K(c) is a star product, homogeneous of type k. (The condition on c means that for each n, c_{n} is a bivector homogeneous of degree -n, and $\sum_{p+q=n} [c_{p}, c_{q}]_{N} = 0.$)

¹For commodity we inserted the coefficient $\frac{1}{2}$ although it is not present in [10].

Such a series is empty if k > 2, and is reduced to its first term $\hbar c_1$ if k = 2.

It is of the form $\hbar c + \hbar^2 \gamma$ if k = 1, with c is a Poisson bracket homogeneous of degree -1 an γ a 2-vector with constant coefficient such that $[c, \gamma]_N = 0$.

[If $k \le 0$, a case which we do not study here, the series can have infinitely many terms.]

It follows from Theorem 5 above that any star product homogeneous of type 1 with Poisson bracket *c* is homogeneous-equivalent to a star product $K(\frac{1}{2}(hc + h^2\gamma))$, where γ is a 2-vector with constant coefficients, $[c, \gamma]_N = 0$; two such star products are homogeneous-equivalent if and only if there exists a constant vector *v* such that $\gamma = L_v(c) = [v, c]$, equivalently $c + \hbar\gamma = c(x + \hbar v, \partial \wedge \partial)$.²

If γ is a 2-vector, let us denote by $\tilde{\gamma}(x, y)$ the antisymmetric form it defines on the dual \mathfrak{g} of V. We define a bracket on $\mathfrak{g}_1 = \mathfrak{g}_0 \oplus \mathfrak{g}$ ($\mathfrak{g}_0 = \mathbb{R}$ or \mathbb{C} , the trivial Lie algebra of rank 1) by

 $[(t, x), (s, y)]_1 = (\tilde{\gamma}(x, y), [x, y])$

where [x, y] is the Lie bracket on \mathfrak{g} defined by c.

The condition $[c, \gamma]_N = 0$ means that $[,]_1$ is a Lie bracket on \mathfrak{g}_1 , thus defining a central extension $\mathfrak{g}_0 \to \mathfrak{g}_1 \to \mathfrak{g}$. Then γ is of the form $L_v c$ if and only if this extension splits (is trivial). We can thus slightly reformulate Theorem 5:

PROPOSITION 7. Equivalence classes of homogeneous star products of type 1 with Poisson bracket c are (canonically) in 1–1 correspondence with elements of $Ext^{1}(\mathfrak{g},\mathfrak{g}_{0})$.

Thus if $\text{Ext}^1(\mathfrak{g},\mathfrak{g}_0)$ vanishes, e.g. if \mathfrak{g} is semi simple, all 1-homogeneous star products with Poisson bracket *c* are equivalent (in fact all, homogeneous or not, cf. [5]). At the opposite end, if c = 0, any 1-homogeneous star product is isomorphic to a star product $K(\hbar^2\gamma)$, with γ an arbitrary 2-vector with constant coefficients, i.e. a Moyal star product with \hbar replaced by \hbar^2 :

$$B(f,g) = \exp\left(\frac{\hbar^2}{2}\gamma(\partial_{\xi},\partial_{\eta})\right) f(\xi) g(\eta)|_{\eta=\xi}.$$

References

- Arnal, D., Ben Amar, N., Masmoudi, M.: Cohomology of good graphs and Kontsevich linear star products. Lett. Math. Phys. 48(4), 291–306 (1999)
- Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization I, II. Ann. Phys. 111, 61–131 (1977)
- 3. Ben Amar, N., Chaabouni, M.: Properties of graded star products. Russ. J. Math. Phys. 12(3), 288-300 (2005)

²This would not usually be true without the homogeneity assumption.

- 4. Ben Amar, N., Chaabouni, M.: Hochschild cohomology and equivalence of graded star products. Acta Math. Univ. Comenian (N.S.) **75**(1), 31–41 (2006)
- 5. Chloup-Arnould, V.: Star products on the algebra of polynomials on the dual of a semi-simple Lie algebra. Acad. Roy. Belg. Bull. Cl. Sci. (6) 8, no. 7-12, 263-269 (1997)
- 6. Dito, G.: Kontsevich Star Product on the dual of a Lie Algebra. Lett. Math. Phys 48, 307–322 (1999)
- 7. Gammella, A.: Tangential star products. L.M.P. 51(1), 1-15 (2000)
- 8. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)
- 9. Gutt, S.: An explicit *-product on the cotangent bundle of a Lie group. Lett. Math. Phys. 7(3), 249–258 (1983)
- Kontsevich, M.: Deformation Quantization of Poisson Manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). arXiv: q-alg/9709040
- Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–124 (1949)
- Nijenhuis, A.: Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58. Indag. Math. 17, 390–397, 398–403 (1955)
- Schouten, J. A.: On the differential operators of first order in tensor calculus. Rapport ZA 1953-012. Math. Centrum Amsterdam, 6 (1953)