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Abstract. We will introduce an associative (or quantum) version of Poisson structure ten-
sors. This object is defined as an operator satisfying a “generalized” Rota–Baxter iden-
tity of weight zero. Such operators are called generalized Rota–Baxter operators. We will
show that generalized Rota–Baxter operators are characterized by a cocycle condition so
that Poisson structures are so. By analogy with twisted Poisson structures, we propose a
new operator “twisted Rota–Baxter operators,” which is a natural generalization of gene-
ralized Rota–Baxter operators. It is known that classical Rota–Baxter operators are closely
related with dendriform algebras. We will show that twisted Rota–Baxter operators induce
NS-algebra, which is a twisted version of dendriform algebra. The twisted Poisson condi-
tion is considered as a Maurer–Cartan equation up to homotopy. We will show the twisted
Rota–Baxter condition also is so. And we will study a Poisson-geometric reason, how the
twisted Rota–Baxter condition arises.
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1. Introduction

Let V be a smooth manifold. A bivector field π on V defines a Poisson bracket
on the smooth functions if and only if π is a solution of the classical Yang–Baxter
type, or Maurer–Cartan equation,

1
2
[π,π ]=0, (1)

where the bracket [·, ·] is a Schouten bracket on V . π is a solution of (1) if and
only if π satisfies the operator identity (2) below. For any smooth one-forms η, θ ,

[π(η),π(θ)]=π([π(η), θ ]+ [η,π(θ)]) (2)
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where π is identified with a bundle map from the cotangent bundle to the tangent
bundle. Severa and Weinstein [19] gave an extended framework of Poisson geome-
try. A twisted Poisson structure is to be a solution π : T ∗V → T V of the following
equation:

[π(η),π(θ)]=π([π(η), θ ]+ [η,π(θ)])+πφ(π(η),π(θ)), (3)

where φ is a closed three-form on V . It is known that if π is a twisted Pois-
son structure then the bracket {η, θ} :=[π(η), θ ]+[η,π(θ)]+φ(π(η),π(θ)) is a Lie
bracket on the space of 1-forms. In particular if φ = 0 then (3) coincides with
(2). Hence (non-twisted) Poisson structures are special examples of twisted Pois-
son structures. In this paper we construct a kind of quantum analogy of (twisted-)
Poisson geometry. We describe here the main idea of this article.

Carinena and coauthors [5] introduced a new operator identity which is an asso-
ciative version of classical Nijenhuis identity, motivated by the study of Wigner
problem. The main result of [5] is as follows. Let (A,∗) be an associative algebra
equipped with an operator N :A→A. They showed that if N satisfies (AN) below
then x ∗1 y := N (x) ∗ y + x ∗ N (y)− N (x ∗ y) provides an associative multiplication
on A and the pair (∗,∗1) becomes a quantum bi-Hamiltonian system in the sense
of [5].

N (x)∗ N (y)= N (N (x)∗ y + x ∗ N (y))− N N (x ∗ y). (AN)

The classical Nijenhuis condition is the Lie version of (AN),

[N (x), N (y)]= N ([N (x), y]+ [x, N (y)])− N N ([x, y]), (CN)

where ∗ in (AN) is replaced with a Lie bracket. Hence the operator in (AN) is cal-
led an associative Nijenhuis operator.

We apply their idea to other operator identities, i.e., given an operator identity
in the category of Lie algebras, by the replacement of Lie brackets with associative
multiplications, we define an operator identity in the category of associative alge-
bras. We call such a formal functor a “quantum analogy”. By using quantum ana-
logy, we get a new operator identity, that is an “associative version” of the classical
one. We remark that quantum analogy is not unique, for instance, the derivation
rule in the category of associative algebra is a quantum analogue of the rule in the
one of Lie algebras:

d(x ∗ y)=dx ∗ y + x ∗dy,

d[x, y]= [dx, y]+ [x,dy].
On the other hand, d(x ∗ y) = dx ∗ y − dy ∗ x is also a quantum analogue,
because −[dy, x]=[x,dy]. However, the latter is not interesting as an analogy. The
associative Nijenhuis condition is considered as a meaningful example of quan-
tum analogues. In general, it is difficult to construct meaningful examples. We
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can find another interesting example in Aguiar’s works [1–3]. Motivated by the
study of infinitimal bi-algebras, he introduced an associative Yang–Baxter equation
(AYBE):

r13 ∗ r12 − r12 ∗ r23 + r23 ∗ r13 =0, (AYBE)

which is an associative version of classical Yang–Baxter equation (CYBE). Here
ri j are three-power tensors and ∗ is an associative multiplication. The condition
AYBE means that if r is a solution of AYBE then the Hochschild coboundary
∂r : A → A ⊗ A is a coassociative comultiplication. This result is an analogy of
a basic property of Lie bialgebras. Hence AYBEs can be seen as an integrability
condition. However, we have not yet found an interesting geometrical application.

We introduce a quantum analogue of the Poisson condition (2). The Poisson
bundle map π : T ∗V → T V is defined between the cotangent bundle and the tan-
gent bundle. Thus a quantum analogue of π : T ∗V → T V is inappropriate for an
endomorphism on A. The condition (2) is defined by using a (non-symmetric)
representation T V

rep→ T ∗V . So, in order to construct an associative version of (2),
we use the category of associative representations. Let M be an A-bimodule, and
let π : M →A a linear map. A quantum analogue of the Poisson condition is defi-
ned as the identity,

π(m)∗π(n)=π(π(m) ·n +m ·π(n)), (4)

where · means the bimodule action. We give several nontrivial examples of such
operators in the next section. Especially, when M =A and ·=∗, (4) is reduced to
a Rota–Baxter condition:

β(x)∗β(y)=β(β(x)∗ y + x ∗β(y)), (RB)

where we changed π for β. The β : A → A is called a Rota–Baxter operator of
“weight zero”, or simply, Rota–Baxter operator. In general, Rota–Baxter opera-
tors are defined by the weighted formula, β(x) ∗ β(y)= β(β(x) ∗ y + x ∗ β(y))−
qβ(x ∗ y), where q is a scalar (weight). The Rota–Baxter operators of q = 0 are
special examples. When an operator π : M → A satisfies (4), we call π a genera-
lized Rota–Baxter operator, or shortly, GRB-operator. Remark that this generali-
zation is only applied to weight zero Rota–Baxter operators. So, in the following,
we assume the weight of Rota–Baxter operator is zero. In order to distinguish
the usual Rota–Baxter operators from the generalized ones, we denote the usual
Rota–Baxter operator by β. Mainly, the usual Rota–Baxter operators have been
studied in combinatorial theory [4,6,9–11,17,18]. We do not discuss combinatorial
problems, because they are beyond our scope.

On the other hand, it is known that Rota–Baxter operators β are closely rela-
ted to Loday’s dendriform algebras in [16]. Let E be a module equipped with two
binary multiplications � and ≺. E is called a dendriform algebra, if the following
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three axioms are satisfied.

(x ≺ y)≺ z = x ≺ (y � z + y ≺ z),

(x � y)≺ z = x � (y ≺ z),

x � (y � z)= (x � y + x ≺ y)� z,

where x, y, z ∈ E . He showed that the operad of dendriform algebras is the Koszul
dual of the one of associative dialgebras and that a dendriform algebra characte-
rizes an associative multiplication, i.e., the sum of two multiplications, xy := x �
y + x ≺ y, is associative. In [2], it was explained how one may associate a dendri-
form algebra to any associative algebra equipped with a Rota–Baxter operator, i.e.,
it was shown that if β :A→A is a Rota–Baxter operator then the pair of multi-
plications x � y :=β(x)y and x ≺ y := xβ(y) is a dendriform structure on A.

In this letter we aim to make a quantum analogue of Poisson geometry by the
generalized Rota–Baxter operators and the theory of dendriform algebras. Since
(2) is equivalent with the square zero equation (1) and GRB-condition is an ana-
logy of (2), we hope to get a square zero equation with respect to GRB-condition.
The bracket of (1) is a Gerstenhaber-type bracket defined by the derived bracket
of Kosmann-Schwarzbach [13]. So, by using the derived bracket associated with
a canonical Gerstenhaber bracket, we obtain the following square zero equation
which is equivalent with GRB-identity (Proposition 2.14 below).

1
2
[π̂ , π̂ ]µ̂=0,

where π̂ is a natural extension of π (Proposition 2.8). Through Section 2, we will
study fundamental properties of generalized Rota–Baxter operators. The generali-
zed Rota–Baxter operators inherit the basic properties from classical ones β :A→
A. For instance, an arbitrary GRB-operator π : M →A also induces a dendriform
structure on M by the natural manner. However, we will see several differences bet-
ween generalized Rota–Baxter operators and classical ones. For instance, we can
say that an arbitrary dendriform structure is induced by a GRB-operator. In other
words, the notions of “Rota–Baxter” and “dendriform” are unified by the generali-
zation. In Section 3, we define a quantum analogue of the twisted Poisson condi-
tion (3). We call a linear map π : M → A a twisted Rota–Baxter operator, if it is
satisfying the condition,

π(m)∗π(n)=π(π(m) ·n +m ·π(n))+πφ(π(m), π(n)), (TRB)

where φ is a Hochschild 2-cocycle in C2(A,M). A generalized Rota–Baxter ope-
rator is a special twisted Rota–Baxter operator in which φ=0. Given an arbitrary
1-cochain f , one can define the Hamiltonian vector field X f by usgin the cano-
nical Gerstenhaber bracket. We will see that the Hamiltonian flow exp(X f ) is also
well-defined in our construction [see Section 3, (25)]. For an arbitrary 2-cochain �,
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its canonical transformation is defined to be exp(X f )(�) by analogy with Poisson
geometry. By a standard argument of extension,

0−→ M −→A⊕ M −→A−→0,

A⊕ M has an associative structure µ̂+ φ̂, where µ̂ is an extension of an associative
structure of A and φ̂ is an extension of a 2-cocycle φ ∈ C2(A,M). For a given
1-cochain π , we will compute an explicit formula of exp(Xπ )(µ̂+ φ̂), and from the
result we obtain a geometrical characterization of twisted Rota–Baxter operators
(Proposition 3.10, Corollary 3.11).

2. Rota–Baxter Operators and Dendriform Algebras

Notations and Standing assumptions. Throughout this article, A is an associative
algebra over a commutative ring k and M is an A-bimodule. The algebras are
not necessarily unital. Elements of M and A will be denoted by m,n, l . . . and
a,b, c, . . ., respectively. And all actions will be denoted by dot “·”. In the following,
we omit the multiplication ∗ on A, ab :=a ∗b.

2.1. QUANTUM ANALOGUE OF POISSON CONDITION

Let A be an associative algebra, and let M an A-bimodule, and let π : M →A a
linear map. We consider an operator identity,

π(m)∗π(n)=π(π(m) ·n +m ·π(n)), (5)

where m,n ∈ M .

DEFINITION 2.1. We call π : M →A a generalized Rota–Baxter operator, or sim-
ply, GRB-operator, if it satisfies (5).

A Rota–Baxter operator is a special example of GRB-operators in which M =A
and the bimodule structure is canonical.

Assume that M ′ is an A-bimodule. One can easily check that if f : M ′ → M is an
A-bimodule morphism and π : M →A is GRB then the composition π ◦ f : M ′ →A
is also GRB. A classical Rota–Baxter operator is known as an abstraction of the
integral operator:

β( f )(x) :=
x∫

0

dt f (t), f ∈C0([0,1]). (6)
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EXAMPLE 2.2. Given an invertible Hochschild 1-cocycle, or invertible derivation
d :A→ M , the inverse

∫ :=d−1 is a GRB-operator. For any m,n ∈ M , we have
∫
(m)

∫
(n)=

∫
d

(∫
(m)

∫
(n)

)
=

∫ (
m ·

∫
(n)+

∫
(m) ·n

)
.

EXAMPLE 2.3. Let W 〈x, y〉 be the Weyl algebra of two generators. Here the
commutation relation is [x, y] :=1. For the normal basis xi y j , we define∫

xi y j dy := 1
j +1

xi y j+1.

This integral operator is a classical Rota–Baxter operator.

Proof. When j �=0, we have∫
[x, xi y j ]dy =

∫
xi [x, y j ]dy =

∫
j xi y j−1dy = xi y j .

For any a = xi y j , b = xk yl , we have∫ [
x,

∫
ady

∫
bdy

]
dy =

∫ (∫
adyb +a

∫
bdy

)
dy,

where an identity [x, ∫ (·)dy]= id is used. Since
∫

ady
∫

bdy is a polynomial of the
form Ci j xi y j and j �=0, we have

∫ [x, ∫ ady
∫

bdy]dy =∫
ady

∫
bdy. �

EXAMPLE 2.4. As the dual of the Rota–Baxter operator (6), the derivation ope-
rator,

ω(x)
d

dx
:C1([0,1])→C0([0,1]),

becomes a generalized Rota–Baxter operator, where ω(x) is a continuous function.
This example is followed from Proposition 2.12 below.

EXAMPLE 2.5. As the dual of the integral operator in Example 2.3, the deriva-
tion operator,

adx : W 〈x, y〉→ W 〈x, y〉, a �→ [x,a]
becomes GRB. This example is also followed from Proposition 2.12 below.

We recall (AYBE) in Introduction:
∑

i j

ai a j ⊗b j ⊗bi =
∑

i j

ai ⊗bi a j ⊗b j −
∑

i j

a j ⊗ai ⊗bi b j , (7)

where r =∑
ai ⊗bi ∈A⊗A. We show that a skew symmetric solution of AYBE is

a GRB-operator. In the following, we omit
∑

i j .
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EXAMPLE 2.6. Let r :=∑
i ai ⊗bi =ai ⊗bi be a solution of AYBE. We put M :=

A∗ :=Homk(A, k). The A-bimodule structure on A∗ is the usual one: (a · f )(b) :=
f (ba) and ( f ·a)(b) := f (ab) for any a,b ∈A and f ∈A∗. We define a linear map
r̃ :A∗ →A by

r̃( f ) :=ai f (bi ), f (bi )∈ k.

If r is skew symmetric then the r̃ is GRB.

Proof. For any f, g ∈A∗, we have r̃( f )r̃(g)=ai a j g(b j ) f (bi ) and

r̃(r̃( f ) · g)=ai (r̃( f ) · g)(bi )=ai g(b
i r̃( f ))=

=ai g(b
i a j f (b j ))=ai g(b

i a j ) f (b j ).

Assume that r is skew symmetric. Then we have ai f (bi )=−bi f (ai ) for any f ∈A∗.
By using the assumption, we have

r̃( f · r̃(g))=−r̃( f · g(ai )b
i )=−g(ai )r̃( f ·bi )=

=−g(ai )a j ( f ·bi )(b j )=−a j g(ai ) f (bi b j ).

We define a multilinear operation by (a ⊗b⊗c)(g ⊗ f ) :=ag(b) f (c), for any g ⊗ f ∈
A∗ ⊗A∗ and a ⊗b ⊗ c ∈A⊗A⊗A. Applying g ⊗ f to (7), the left-hand side is

(ai a j ⊗b j ⊗bi )(g ⊗ f )=ai a j g(b
j ) f (bi )= r̃( f )r̃(g)

and the right-hand side is

(ai ⊗bi a j ⊗b j )(g ⊗ f )− (a j ⊗ai ⊗bi b j )(g ⊗ f )=
=ai g(b

i a j ) f (b j )−a j g(ai ) f (bi b j )= r̃(r̃( f ) · g)+ r̃( f · r̃(g)).

From AYBE, we obtain the generalized Rota–Baxter condition of r̃ . �
We study a useful representation of GRB-operators. Set an algebra A ⊕0 M

equipped with an associative multiplication:

(a,m)∗ (b,n) := (ab,a ·n +m ·b),

where (a,m), (b,n)∈A⊕ M . Namely, A⊕0 M is the algebra of semidirect product.
Let π : M →A be a linear map. We denote the graph of π by Lπ ,

Lπ := {(π(m),m) | m ∈ M}.
In Poisson geometry, it is well-known that π is a Poisson structure on V if and
only if the graph of the bundle map π : T ∗V → T V is a Lie algebroid which is
called a Dirac structure [7]. Namely, the Poisson condition is characterized by
certain algebraic properties of the graph. As an analogy, we have Lemma 2.7
below. We refer also to Freeman’s early work [12]. He showed the lemma below
in the classical cases.
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LEMMA 2.7. π is a generalized Rota–Baxter operator if and only if Lπ is a
subalgebra of A⊕0 M .

Proof. For any (π(m),m), (π(n),n)∈ Lπ , we have

(π(m),m)∗ (π(n),n)= (π(m)π(n), π(m) ·n +m ·π(n)).
π is a generalized Rota–Baxter if and only if (π(m)π(n), π(m) · n + m ·π(n)) is in
Lπ . �

The above lemma says that a generalized Rota–Baxter operator is a good sub-
structure of the trivial extension, A⊕0 M . It is natural to ask what is a good sub-
structure of an arbitrary extension. We will give a solution in Section 3.

Lπ and M are isomorphic as modules by the identification (π(m),m)∼=m. Thus
if π is a GRB-operator, i.e., Lπ is an associative subalgebra of A⊕0 M then M is
also an associative algebra.

Given an arbitrary linear map π : M →A, we define a lift of π , π̂ , as an endo-
morphism on A⊕ M by π̂(a,m) := (π(m),0).

PROPOSITION 2.8. π : M → A is a generalized Rota–Baxter operator if and only
if the lift π̂(=:β) is a classical Rota–Baxter operator on A⊕0 M .

Proof. For any (a,m), (b,n)∈A⊕0 M , we have

π̂(a,m)∗ π̂(b,n)= (π(m),0)∗ (π(n),0)= (π(m)π(n),0).
On the other hand, we have

π̂(π̂(a,m)∗ (b,n)+ (a,m)∗ π̂(b,n))=
= π̂((π(m),0)∗ (b,n)+ (a,m)∗ (π(n),0))=
= π̂((π(m)b, π(m) ·n)+ (aπ(n),m ·π(n)))=
= (π(π(m) ·n +m ·π(n)),0).

The proof of the proposition is completed. �
This proposition will be used in Section 2.3.
We recall dendriform algebras [16]. Let E be a module equipped with two binary

operations ≺ and �. E is called a dendriform algebra, if the three axioms (8), (9)
and (10) are satisfied. For any x, y, z ∈ E ,

(x ≺ y)≺ z = x ≺ (y � z + y ≺ z), (8)

(x � y)≺ z = x � (y ≺ z), (9)

x � (y � z)= (x � y + x ≺ y)� z, (10)

In Lemma 2.7 we saw that a GRB-operator π : M →A induces an associative mul-
tiplication on M via the isomorphism M ∼= Lπ . This induced associative structure
comes from the dendriform algebra associated with π .
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PROPOSITION 2.9. [16] Given a dendriform algebra, the sum of two multiplications
xy := x � y + x ≺ y is an associative multiplication.

In [2] it was shown that if β : A → A is a classical Rota–Baxter operator then
a � b :=β(a)b and a ≺ b := aβ(b) define a dendriform algebra structure on A. For
our generalized Rota–Baxter operators the same proposition holds.

PROPOSITION 2.10. Let π : M →A be a generalized Rota–Baxter operator. Then
M becomes a dendriform algebra by the multiplications m � n := π(m) · n and
m ≺n :=m ·π(n).

Proof. If π is GRB then we have

m � (n � l)= (π(m)π(n)) · l =
=π(π(m) ·n +m ·π(n)) · l =
= (m �n +m ≺n)� l,

where l ∈ M . All other axioms are proved similarly. �
As an application of Proposition 2.10, we will give Proposition 2.12 below.

When π : M →A is GRB, M has the associative multiplication via Propositions 2.9,
2.10. We denote the associative algebra by Mass.

LEMMA 2.11. Under the assumptions above, the module A becomes a Mass-
bimodule by the actions,

a ·π m :=aπ(m)−π(a ·m),

m ·π a :=π(m)a −π(m ·a),

where ·π means the Mass-action on A.

Proof. In Corollary 2.15 below, we will show that the multiplication

(a,m)∗π (b,n) := (a ·π n +m ·π b,mn)

is associative on A ⊕ M , where mn := m � n + m ≺ n. The associativity gives the
bimodule condition of the action ·π . �

The proposition below implies a duality between integral operators and deriva-
tion operators.

PROPOSITION 2.12. Let π : M →A be a generalized Rota–Baxter operator, and let
� :A→ M a derivation operator. If �π(M)= z · M , then � :A→ Mass is a generalized
Rota–Baxter operator, where z is a central element in Z(A).



100 KYOUSUKE UCHINO

proof. We have

�(a) ·π b +a ·π �(b)=π(�(a))b −π(�(a) ·b)+aπ(�(b))−π(a ·�(b))=
=π(�(a))b +aπ(�(b))−π(�(a) ·b +a ·�(b))=
=π(�(a))b +aπ(�(b))−π�(ab).

Here the derivation condition of � is used. Applying � on the both side, we have

�(�(a) ·π b +a ·π �(b))
=�(π(�(a))b +aπ(�(b))−π�(ab))=
=�(π(�(a))b +aπ(�(b)))− z ·�(ab)=
= z�(a) ·b +π(�(a)) ·�(b)+�(a) ·π(�(b))+ za ·�(b)− z ·�(ab)=
=π(�(a)) ·�(b)+�(a) ·π(�(b))=
=�(a)��(b)+�(a)≺�(b)=�(a)�(b).

Here �π = z is used. �
We remember Examples 2.4 and 2.5. In the both examples, the assumption of

the proposition above holds. Hence the derivation operators of the two examples
become generalized Rota–Baxter operators.

Remark 1. Under the assumptions of Proposition 2.12, one can show that π� :
A→A is an associative Nijenhuis operator satisfying (AN) in Introduction. This
implies a relationship between generalized Rota–Baxter operators and associative
Nijenhuis operators. We will study the relation in [20].

2.2. ROTA–BAXTER OPERATORS VIA DENDRIFORM ALGEBRAS

We consider the converse of Proposition 2.10. Given a dendriform algebra E , E
is an associative algebra by Proposition 2.9. We denote the associated associative
algebra by Eass. One can easily check that E is an Eass-bimodule by e · x := e � x
and x · e := x ≺ e, where e ∈ Eass and x ∈ E . Under this setting, the identity map
1 : E → Eass is a generalized Rota–Baxter operator and the corresponding dendri-
form algebra is the original one. Hence all dendriform algebras are induced by
generalized Rota–Baxter operators. However, this correspondence between genera-
lized Rota–Baxter operators and dendriform algebras is not bijective. We will dis-
cuss the correspondence as follow.

Let Dend be the category of dendriform algebras. The objects of Dend are den-
driform algebras and the morphisms are the obvious ones. In addition we consider
the category of GRB-operators, which are denoted by GRB. The objects of GRB
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are GRB-operators π : M → A and the morphisms are commutative diagrams of
linear maps:

M
ψ1−−−−→ M ′

π

⏐⏐
 γ

⏐⏐

A ψ0−−−−→ A′

(11)

such that ψ1(a · m)= ψ0(a) · ψ1(m) and ψ1(m · a)= ψ1(m) · ψ0(a), where γ is a
GRB-operator and ψ0 is not necessarily an algebra homomorphism. Proposition
2.10 defines a functor G : GRB → Dend. Conversely, for a given dendriform alge-
bra E , the GRB-operator of identity map 1 : E → Eass is the result of a functor
F : Dend → GRB. The composition G F is clearly identity, and one can check an
adjoint relation of the pair (F,G):

HomGRB(F(E), π)∼=HomDend(E,G(π)), (12)

where π means an object π : M → A. This isomorphism sends an arbitrary mor-
phism (ψ : E → M) ∈ HomDend(E,G(π)) to the following morphism in
HomGRB(F(E), π).

E
ψ−−−−→ M

1

⏐⏐
 π

⏐⏐

Eass

π◦ψ−−−−→ A.

(13)

2.3. STRUCTURE EQUATION

In this subsection we give the GRB version of the Poisson condition [π,π ]=0. In
the following, we assume that the base ring k has 1/2.

We denote the associative structure of A by µ :A⊗A→A. We define µ̂ as the
associative multiplication of A⊕0 M by µ̂(a,b)=ab, µ̂(a,n)=a ·n, µ̂(m,b)=m ·b
and µ̂(m,n)=0. We set the space:

G(A⊕0 M) :=
⊕
n≥1

Hom((A⊕0 M)⊗n,A⊕0 M).

The space G(A⊕0 M) has a bracket product [·, ·] which is called a Gerstenhaber-
bracket, or shortly G-bracket (See Appendix for the definition of G-brackets). It
is well-known that S ∈Hom((A⊕0 M)⊗2,A⊕0 M) is a solution of [S, S]=0 if and
only if S is an associative multiplication on A⊕0 M . Hence we have [µ̂, µ̂]=0. By
the graded Jacobi rule of G-bracket, dµ̂ := [µ̂, ·] becomes a square-zero derivation
of degree +1. By using the derivation, we define the second bracket below. For any
f, g ∈ G(A⊕0 M),

[ f, g]µ̂ := [dµ̂ f, g]= [[µ̂, f ], g].
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The bracket, [·, ·]µ̂, is called a derived bracket (see [13]). The derived bracket is not
graded commutative, but it satisfies a graded Leibniz rule.

The derivation of π̂ by µ̂ has the form,

[µ̂, π̂ ]= µ̂(π̂⊗ id)+ µ̂(id ⊗ π̂)− π̂ ◦ µ̂.
where π̂ is defined in Proposition 2.8. The following lemma is the key.

LEMMA 2.13. π̂ ◦ π̂ =0.

From this lemma we obtain

1
2
[π̂ , π̂ ]µ̂= µ̂(π̂⊗ π̂)− π̂ ◦ µ̂(π̂⊗ id)− π̂ ◦ µ̂(id ⊗ π̂),

or explicitly, for any (a,m), (b,n)∈A⊕0 M ,

1
2
[π̂ , π̂ ]µ̂((a,m), (b,n))=
= µ̂((π(m),0), (π(n),0))−π̂ ◦ µ̂((π(m),0), (b,n))− π̂ ◦ µ̂((a,m), (π(n),0))=
=π(m)π(n)−π(π(m) ·n)−π(m ·π(n)). (14)

From (14), we obtain the structure equation for GRB-operator.

PROPOSITION 2.14. A linear map π : M →A is a GRB-operator if and only if it
is a solution of

1
2
[π̂ , π̂ ]µ̂=0.

From the graded Jacobi rule of G-bracket, we obtain the corollaries below.

COROLLARY 2.15. If π is GRB then [µ̂, π̂ ] is an associative structure on A⊕ M ,
and the associative multiplication has the form,

(a,m)∗π (b,n) := [µ̂, π̂ ]((a,m), (b,n))= (a ·π n +m ·π b,mn)

where mn =π(m) ·n +m ·π(n) and ·π was defined in Lemma 2.11.

Proof. Since [[µ̂, π̂ ], [µ̂, π̂ ]] = 0, it is an associative structure. For any a,b ∈ A
and m,n ∈ M , we obtain

[µ̂, π̂ ](a,m)= µ̂(π̂(a)⊗m)+ µ̂(a ⊗ π̂(m))− π̂ ◦ µ̂(a,m)=aπ(m)−π(a ·m)

and [µ̂, π̂ ](n,b)=π(n)b −π(n · b). In the same way, we have [µ̂, π̂ ](m,n)=π(m) ·
n +m ·π(n) and [µ̂, π̂ ](a,b)=0. �

By above corollary, the proof of Lemma 2.11 is completed.
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COROLLARY 2.16. [π̂ , ·]µ̂ is a square zero derivation of degree +1 for the derived
bracket.

When π is GRB, µ̂+[µ̂, π̂ ] is an associative structure, i.e., the pair of associative
structures, (µ̂, [µ̂, π̂ ]), is compatible. This will be extended in Corollary 3.11 below.

3. Twisted Rota–Baxter Operators and NS-Algebras

In this section, we will construct the twisted version of Section 2.
The semi-direct product algebra appears as the trivial extension of A by M :

0 −−−−→ M −−−−→ A⊕0 M −−−−→ A −−−−→ 0. (exact)

In general, given an abelian extension, an associative multiplication on A⊕ M has
the form [15],

(a,m)∗ (b,n) := (ab,a ·n +m ·b +φ(a,b)), (15)

where φ is a Hochschild 2-cocycle in C2(A,M), i.e., φ is satisfying a cocycle condi-
tion of Hochschild:

0=∂φ(a,b, c)=a ·φ(b, c)−φ(ab, c)+φ(a,bc)−φ(a,b) · c,

where ∂ is Hochschild’s coboundary map and a,b, c ∈A. We denote an associative
algebra A⊕ M equipped with the twisted multiplication (15) by A⊕φ M .

DEFINITION 3.1. Let π : M → A be a linear map. We call π a twisted Rota–
Baxter operator, or simply φ-Rota–Baxter operator, if

π(m)π(n)=π(π(m) ·n +m ·π(n))+πφ(π(m), π(n)) (16)

is satisfied for any m,n ∈ M .

Similarly to Lemma 2.7, we consider the graph of π . It is shown that the graph
Lπ is a subalgebra of A⊕φ M if and only if π is a φ-Rota–Baxter operator. From
the isomorphism Lπ ∼= M , a φ-Rota–Baxter operator induces an associative multi-
plication on M . The induced multiplication on M has the form,

m ×n :=π(m) ·n +m ·π(n)+φ(π(m), π(n)). (17)

It is obvious that π is an algebra homomorphism: π(m ×n)=π(m)π(n).

EXAMPLE 3.2. Let ω : M → A be an invertible 1-cochain. Then the inverse ω−1

is a twisted Rota–Baxter operator, and in this case φ :=−∂ω.
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Proof. We put π :=ω−1. The condition (16) is equal to

ω(π(m)π(n))=π(m) ·n +m ·π(n)+φ(π(m), π(n)).

This is the same as −π(m) · n +ω(π(m)π(n))− m ·π(n)=φ(π(m), π(n)). Since the
coboundary of ω is defined by ∂ω(a,b)= a · ω(b)− ω(ab)+ ω(a) · b, we obtain
∂ω(π(m), π(n))=−φ(π(m), π(n)). �

EXAMPLE 3.3. Assume that A is unital. Let f : M →A be a A-linear surjection.
We fix an element e ∈ M such that f (e)=1A, where 1A is the unit element of A.
A cochain φ(a,b) :=−a · e ·b is a 2-cocycle. f is a twisted Rota–Baxter:

f ( f (m) ·n +m · f (n))− f ( f (m) · e · f (n))=
= f (m) f (n)+ f (m) f (n)− f (m)1A f (n)= f (m) f (n).

For instance, M =A⊗A, f =µ and e = x ⊗ x−1, where µ is the associative multi-
plication and x is an invertible element.

EXAMPLE 3.4. A is not necessarily unital. An associative multiplication µ :A⊗
A→A, µ(a ⊗ b)= ab is a twisted Rota–Baxter operator with a cocycle φ(a,b) :=
−a ⊗b.

EXAMPLE 3.5. A linear endomorphism R : A → A is called a Reynolds operator
[18], if the condition

R(a)R(b)= R(R(a)b +a R(b))− R(R(a)R(b))

is satisfied for any a,b ∈A. The last term −R(a)R(b) is the associative multiplica-
tion −µ(R(a), R(b)), which is the Hochschild 2-cocycle. Thus each Reynolds ope-
rator can be seen as twisted Rota–Baxter operator.

In Proposition 2.10, we saw that GRB-operators induce dendriform algebra
structures. We show a similar result with respect to twisted Rota–Baxter operators.
First we recall the NS-algebras of Leroux [14].

DEFINITION 3.6. Let T be a k-module equipped with three binary multiplica-
tions �, ≺ and ∨. T is called a NS-algebra, if the following four axioms are satis-
fied. For any x, y, z ∈T :

(x ≺ y)≺ z = x ≺ (y � z + y ≺ z + y ∨ z), (18)

(x � y)≺ z = x � (y ≺ z), (19)

x � (y � z)= (x � y + x ≺ y + x ∨ y)� z, (20)
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and

x � (y ∨ z)− (x × y)∨ z + x ∨ (y × z)− (x ∨ y)≺ z =0, (21)

where × is defined as x × y := x � y + x ≺ y + x ∨ y.

We recall the associative Nijenhuis condition (AN) in the Introduction. In [14],
it was shown that if N is an associative Nijenhuis operator then the multipli-
cations x � y := N (x)y, x ≺ y := x N (y) and x ∨ y := −N (xy) satisfy the axioms
of NS-algebras. The basic property of usual dendriform algebras is satisfied on
NS-algebras.

PROPOSITION 3.7. [14] Let T be a NS-algebra. Then the multiplication × above
is associative.

We show that the quantum algebra, or nonclassical algebra, associated with a
twisted Rota–Baxter operator is a NS-algebra.

PROPOSITION 3.8. If π : M → A is a φ-Rota–Baxter operator then M is a
NS-algebra by the following three multiplications:

m �n :=π(m) ·n, m ≺n :=m ·π(n), m ∨n :=φ(π(m), π(n))

Proof. It is easy to check the conditions (18)–(20). We show (21). Since φ is a
Hochschild cocycle, we have the cocycle condition:

∂φ(π(m), π(n), π(l))=π(m) ·φ(π(n), π(l))−φ(π(m)π(n), π(l))+
+φ(π(m), π(n)π(l))−φ(π(m), π(n)) ·π(l)=0,

where m,n, l ∈ M . From the definitions of ≺, � and ∨, we have

m � (n ∨ l)−φ(π(m)π(n), π(l))+φ(π(m), π(n)π(l))− (m ∨n)≺ l =0. (22)

On the other hand, we have

π(m)π(n)=π(π(m) ·n +m ·π(n)+φ(π(m), π(n))=
=π(m �n +m ≺n +m ∨n)=
=π(m ×n).

Hence we obtain

φ(π(m)π(n), π(l))=φ(π(m ×n), π(l))= (m ×n)∨ l.

In the same way, we have φ(π(m), π(n)π(l))=φ(π(m), π(n × l))=m ∨ (n × l). This
says that (22) is equal to (21). �
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We study a relation between twisted Rota–Baxter operators and NS-algebras.
Let T be a NS-algebra. We denote the associative algebra (T ,×) by Tass. A Tass-
bimodule structure on T is well-defined by t · x := t � x and x · t := x ≺ t , where
t ∈Tass.

LEMMA 3.9. For any x, y ∈ Tass, �(x, y) := x ∨ y is a Hochschild cocycle in
C2(Tass,T ).

Proof. The cocycle condition of � is the same as (21). �
We denote the categories of twisted Rota–Baxter operators and NS-algebra by

TRB and NS, respectively. The objects of NS are NS-algebras and the morphisms
are the obvious ones. The objects and morphisms of TRB are defined by the fol-
lowing commutative diagram.

A⊗A ψ0⊗ψ0−−−−→ A′ ⊗A′

φ

⏐⏐
 φ′
⏐⏐


M
ψ1−−−−→ M ′

π

⏐⏐
 γ

⏐⏐

A ψ0−−−−→ A′.

The compatibility conditions between ψ0 and ψ1 are defined by the same way as
Section 2.2. From Proposition 3.8, we have a functor G from TRB to NS. On the
other hand, by Lemma 3.9, if T is a NS-algebra then the identity map 1 :T →Tass

is a twisted Rota–Baxter operator with the 2-cocycle �(x, y)= x ∨ y. This defines
a functor F :NS→TRB. We obtain an adjoint relation:

HomTRB(F(T ), (π,φ))∼=HomNS(T ,G(π,φ)),

where (π,φ) is an object in TRB.
Recall Proposition 2.14. We consider a structure equation for twisted Rota–

Baxter operators. For any linear map π : M →A, we have

1
2
[π̂ , π̂ ]µ̂= µ̂(π̂⊗ π̂)− π̂ ◦ µ̂(π̂⊗ id)− π̂ ◦ µ̂(id ⊗ π̂)

where µ̂ was defined in Section 2.3. On the other hand, π is a φ-Rota–Baxter ope-
rator if and only if π̂ satisfies

µ̂(π̂⊗ π̂)− π̂ ◦ µ̂(π̂⊗ id)− π̂ ◦ µ̂(id ⊗ π̂)− π̂ ◦ φ̂(π̂⊗ π̂)=0, (23)

where φ̂(a,b) :=φ(a,b) and φ̂= 0 all other cases. We recall the notion of twisted
Poisson structure (3) in Introduction. It is known that the twisted Poisson condi-
tion is equivalent with a modified Maurer–Cartan equation:

1
2
[π,π ]=−1

6
{{{φ,π}, π}, π}, (24)
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where {·, ·} is a certain graded Poisson bracket. We give a twisted Rota–Baxter ver-
sion of (24).

PROPOSITION 3.10. We assume Q ⊂ k. A linear map π : M → A is a φ-Rota–
Baxter operator if and only if π is a solution of

1
2
[π̂ , π̂ ]µ̂=−1

6
[[[φ̂, π̂ ], π̂ ], π̂].

Proof.

1
2
[[[φ̂, π̂ ], π̂], π̂ ]= [φ̂(π̂⊗ π̂)− π̂ ◦ φ̂(π̂⊗1)− π̂ ◦ φ̂(1⊗ π̂), π̂ ]=

=[φ̂(π̂⊗ π̂), π̂ ]− [π̂ ◦ φ̂(π̂⊗1), π̂ ]− [π̂ ◦ φ̂(1⊗ π̂), π̂ ]=
=−π̂ ◦ φ̂(π̂⊗ π̂)− π̂ ◦ φ̂(π̂⊗ π̂)− π̂ ◦ φ̂(π̂⊗ π̂)=
=−3π̂ ◦ φ̂(π̂⊗ π̂).

Thus we have π̂ ◦ φ̂(π̂ ⊗ π̂)=− 1
6 [[[φ̂, π̂ ], π̂ ], π̂ ]. From (23), we obtain the desired

result. �
Let π : M →A be a linear map, not necessarily (twisted-)Rota–Baxter. We define

a Hamiltonian vector field of π by the derivation, Xπ (·) := [·, π̂]. The associated
Hamiltonian flow is, by definition,

exp(Xπ ) :=1+ Xπ + 1
2! X2

π + 1
3! X3

π +· · · , (25)

where the series is convergent, because π̂ ◦ π̂ =0.

Remark 2. One can directly check that exp(Xπ )(µ̂ + φ̂) is again an associative
structure and that it is isomorphic to µ̂+ φ̂ on A⊕ M .

We should determine the structure of exp(Xπ )(µ̂+ φ̂). We have

1
2! X2

π (µ̂+ φ̂)= 1
2! [[µ̂+ φ̂, π̂ ], π̂]= 1

2! [π̂ , π̂ ]µ̂+ 1
2! [[φ̂, π̂ ], π̂]

and

1
3! X3

π (µ̂+ φ̂)= 1
3! [[[µ̂+ φ̂, π̂ ], π̂ ], π̂ ]= 1

3! [[[φ̂, π̂ ], π̂ ], π̂ ],

where [[[µ̂, π̂ ], π̂], π̂ ]=0 is used. Hence we obtain

exp(Xπ )(µ̂+ φ̂)= µ̂+ φ̂+[µ̂+ φ̂, π̂ ]+ 1
2
[π̂ , π̂ ]µ̂+ 1

2
[[φ̂, π̂ ], π̂]+ 1

6
[[[φ̂, π̂ ], π̂ ], π̂ ],

where X I
π (µ̂+ φ̂) are all zero for any 4 ≤ I , because π̂ ◦ π̂ = 0. As a corollary of

Proposition 3.10, we give
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COROLLARY 3.11. π is a φ-Rota–Baxter operator if and only if

exp(Xπ )(µ̂+ φ̂)= µ̂+ φ̂+[µ̂+ φ̂, π̂ ]+ 1
2
[[φ̂, π̂ ], π̂].

Then exp(Xπ )(µ̂+ φ̂) defines an associative multiplication on M which has the form
(17).

Proof. For any m,n ∈ M , we have

exp(Xπ )(µ̂+ φ̂)(m,n)=[µ̂, π̂ ](m,n)+ 1
2
[[φ̂, π̂ ], π̂ ](m,n),

where all other terms are zero. Simply, we obtain

[µ̂, π̂ ](m,n)+ 1
2
[[φ̂, π̂ ], π̂ ](m,n)=π(m) ·n +m ·π(n)+φ(π(m), π(n)).

�
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Appendix

Let B be a k-module. We set the space of multilinear maps,

G(B) :=
⊕
n≥1

Homk(B
⊗n, B).

The degree of f ∈G(B) is m, if f is in Homk(B⊗m, B). For any f ∈Homk(B⊗m, B)
and g ∈Homk(B⊗n, B), define a binary product ◦̄:

f ◦̄g :=
m∑

i=1

(−1)(i−1)(n−1) f ◦i g,

where ◦i is the composition of maps defined by

f ◦i g(b1, . . . ,bm+n)= f (b1, . . . ,bi−1, g(bi , . . . ,bi+n−1),bi+n, . . . ,bm+n).

The degree of f ◦̄g is m +n −1. The G-bracket on G(B) is by definition a graded
commutator:

[ f, g] := f ◦̄g − (−1)(m−1)(n−1)g◦̄ f.
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We recall two fundamental identities: [ f, g]=−(−1)(m−1)(n−1)[g, f ] and

(−1)(m−1)(l−1)[[ f, g],h]+ (−1)(l−1)(n−1)[[h, f ], g]+ (−1)(n−1)(m−1)[[g,h], f ]=0,

where the degree of h is l. The above graded Jacobi rule is equivalent with the fol-
lowing graded Leibniz rule.

[ f, [g,h]]= [[ f, g],h]+ (−1)(m−1)(n−1)[g, [ f,h]].
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