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Via Valleggio 11, 22100 Como, Italy. e-mail: sergio.cacciatori@uninsubria.it
2INFN, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy.
3Dipartimento di Scienze Fisiche e Matematiche, Universitá dell’ Insubria,
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Abstract. In this paper we describe how representation theory of groups can be used to
shorten the derivation of two loop partition functions in string theory, giving an intrinsic
description of modular forms appearing in the results of D’Hoker and Phong (Nucl Phys
B639:129–181, 2002). Our method has the advantage of using only algebraic properties of
modular functions and it can be extended to any genus g.
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1. Introduction

It was conjectured by Belavin and Knizhnik [2] that “any multiloop amplitude
in any conformal invariant string theory may be deduced from purely algebraic
objects on moduli spaces Mp of Riemann surfaces”. This was a known fact for
zero and for one loop amplitudes. For bosonic strings, two, three and four loop
amplitudes was computed (in the same year) in [3–5] in terms of modular forms.

For superstring theories the story is much longer because of some technical dif-
ficulties. In particular, the presence of fermionic interactions makes the splitting
between chiral and antichiral modes hard. Moreover, grassmanian variables arise
from worldsheet supersymmetry and one needs a covariant way to integrate them
out. Both problems were solved by D’Hoker and Phong, who in a series of articles
[1,6–8] showed that the computation of g-loop string amplitudes in perturbation
theory is strictly connected with the construction of a suitable measure on the
moduli space of genus g Riemann surfaces. They claim [9,10] that the genus g
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vacuum to vacuum amplitude must take the form

A=
∫

Mg

(det Im τ)−5
∑
δ,δ̄

cδ,δ̄dµ[δ](τ )∧dµ[δ̄](τ ), (1.1)

where δ and δ̄ denote two spin structures or theta characteristics, cδ,δ̄ are suitable
constant phases depending on the details of the model and dµ[δ](τ ) is a holomor-
phic form of maximal rank (3g − 3,0) on the moduli space of genus g Riemann
surfaces. The Riemann surface is represented by its period matrix τ , after a choice
of canonical homology basis. Since the integrand should be independent from the
choice of homology basis, it follows that the measure dµ[δ](τ ) must transform
covariantly under the modular group Sp(2g,Z).

In [1] D’Hoker and Phong have given an explicit expression for the two loop
measure in terms of theta constants, i.e. theta functions evaluated at the origin,
z=0. The amplitude (1.1) is written in terms of modular forms and is manifestly
modular invariant:

dµ[δ](τ )= θ4[δ](τ,0)�6[δ](τ,0)

16π6�10(τ )

∏
I≤J

dτI J . (1.2)

Here �10(τ ) is a modular form of weight ten:

�10 =
∏
δ

θ2[δ](τ,0),

where δ varies on the whole set of even spin structures (consisting of ten elements).
The ten �6[δ] are defined1 by

�6[δ](τ,0) :=
∑

1≤i< j≤3

〈νi |ν j 〉
∏

k=4,5,6

θ4[νi +ν j +νk](τ,0),

where each even spin structure is written as a sum of three distinct odd spin struc-
tures δ = ν1 + ν2 + ν3 and ν4, ν5, ν6 denote the remaining three distinct odd spin
structures, see Appendix A. The signature of a pair of spin structures, even or
odd, is defined by:

〈κ|λ〉 := eπ i(aκ ·bλ−bκ ·aλ), κ =
[

aκ

bκ

]
, λ=

[
aλ

bλ

]
.

In what follows we will refer to the theta constants as θ [δ] :=θ [δ](τ,0) and similar
for �6[δ].

Our aim in this letter is to give an intrinsic description of the kind of mod-
ular forms appearing in two loop amplitudes, and to show how to give explicit
expressions of them in terms of theta constants employing group representation

1Comparing our conventions with the ones of D’Hoker and Phong one should note that our
spin matrices are transposed, according with our conventions on theta functions, signatures, etc.
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techniques. Our method has the advantage of using only algebraic properties of
modular functions (in the spirit of [2]) and it can be extended to any genus g. In
particular it can be used to overcome the difficulties encountered in [9,10] for the
computation of three loop amplitudes, as will be shown in a forthcoming paper.

2. The Igusa Quartic and the Forms �6[δ]
At genus two, there are ten even spin structures which correspond to ten theta
functions with even characteristics. To study even powers of these functions we
define:


[ε](τ )= θ
[
ε
0

]
(2τ,0),

with [ε]= [ε1 ε2] and we use the formula [11]:

θ

[
α

β +γ

]
(τ, z1 + z2)θ

[
α

β

]
(τ, z1 − z2)=

=
∑

δ∈(Z/2Z)g

(−1)β·δθ
[
δ

γ

]
(2τ,2z1)θ

[
α + δ

γ

]
(2τ,2z2),

with z1 = z2 = 0, γ = 0 and g = 2. It follows that the fourth powers of the theta
functions θ [δ](τ, z), evaluated at the origin, z = 0, form a five dimensional vector
space, that we call Vθ . We can choose a basis for this space of holomorphic func-
tions on the Siegel space for g =2 and, for our purpose, a convenient one is:

P0 =
4[0 0]+
4[0 1]+
4[1 0]+
4[1 1]
P1 =2(
2[0 0]
2[0 1]+
2[1 0]
2[1 1])
P2 =2(
2[0 0]
2[1 0]+
2[0 1]
2[1 1])
P3 =2(
2[0 0]
2[1 1]+
2[0 1]
2[1 0])
P4 =4
[0 0]
[0 1]
[1 0]
[1 1],

The expansions of the theta constants on this basis are summarized in Table I.
The period matrix τ , that defines the Riemann surface, at genus two belongs

to the complex variety H2 ={τ ∈ M2(C) t.c.: tτ = τ, Im(τ )> 0}. The selected basis
defines the map:

ϕ4 :H2 −→P
4

τ �−→ (P0(τ ) : P1(τ ) : P2(τ ) : P3(τ ) : P4(τ )).

The closure of the image of ϕ4 is the “Igusa quartic”, the vanishing locus of

I4 = P4
4 + P2

4 P2
0 − P2

4 P2
1 − P2

4 P2
2 − P2

4 P2
3 +

+P2
1 P2

2 + P2
1 P2

3 + P2
2 P2

3 −2P0 P1 P2 P3
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Table I. Expansion of θ4[δ] on the basis of Pi

δ θ4[δ] P04 P1 P2 P3 P4

δ1 θ4[0 0
0 0

]
1 1 1 1 0

δ2 θ4[0 0
0 1

]
1 −1 1 −1 0

δ3 θ4[0 0
1 0

]
1 1 −1 −1 0

δ4 θ4[0 0
1 1

]
1 −1 −1 1 0

δ5 θ4[0 1
0 0

]
0 2 0 0 2

δ6 θ4[0 1
1 0

]
0 2 0 0 −2

δ7 θ4[1 0
0 0

]
0 0 2 0 2

δ8 θ4[1 0
0 1

]
0 0 2 0 −2

δ9 θ4[1 1
0 0

]
0 0 0 2 2

δ10 θ4[1 1
1 1

]
0 0 0 2 −2

in P
4. It is indeed immediate to verify, expressing the Pi in terms of the four theta

constants 
[ε], that this polynomial is identically zero. We can also write I4 as:

I4 = 1
192

⎡
⎣

(∑
δ

θ8[δ]
)2

−4
∑

δ

θ16[δ]
⎤
⎦ . (2.3)

We want to find a connection between the forms �6[δ] appearing in the works of
D’Hoker and Phong and the Igusa quartic whose mathematical structure is well
known. For this purpose, we start considering two vector spaces which we call V�

and V∂p I . The first one is the space generated by the ten forms �6[δ]:

V� =〈. . . ,�6[δ], . . . 〉.

We will see that it is a five dimensional space. The second vector space we are
interested in is the space of the derivatives of the Igusa quartic with respect to Pi :

V∂P I =
〈
. . . ,

∂I4

∂Pi
, . . .

〉
i=0,...,4

,

which is again a five dimensional space. Both spaces are generated by homoge-
neous polynomials of degree twelve in the theta constants 
[ε] or, equivalently,
of degree three in the Pi . We find:

THEOREM 1. We have V� = V∂P I , in particular dim V� =5 and Table II gives the
expansion of each �6[δ] as linear combination of the derivative of Igusa quartic with
respect to Pi .
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Table II. Expansion of the functions �6[δ](τ ) on the ∂I4
∂Pi

δ ∂P0 I4 ∂P1 I4 ∂P2 I4 ∂P3 I4 ∂P4 I4

�6[δ1] 6 2 2 2 0

�6[δ2] 6 −2 2 −2 0

�6[δ3] 6 2 −2 −2 0

�6[δ4] 6 −2 −2 2 0

�6[δ5] 0 4 0 0 2

�6[δ6] 0 4 0 0 −2

�6[δ7] 0 0 4 0 2

�6[δ8] 0 0 4 0 −2

�6[δ9] 0 0 0 4 2

�6[δ10] 0 0 0 4 −2

We intend ∂P0 I4 ≡ ∂I4
∂Pi

Another interesting vector space is the one generated by the derivatives of the
Igusa quartic with respect to the ten theta constants θ [δ] at the fourth power:

V∂θ I :=
〈
. . . ,

∂I4

∂θ4[δ] , . . .
〉
.

In computing these derivatives the theta constants θ4[δ] must be considered as
independent functions and we use (2.3). V∂θ I has dimension ten, so these polyno-
mials are all independent. Next define the ten functions:

fδ :=2�6[δ]− ∂I4

∂θ4[δ] , (2.4)

generating the vector space V f =〈. . . , fδ, . . .〉 of dimension five. Then:

∑
δ

∂I4

∂θ4[δ] fδ =0 and V∂θ I = V f ⊕ V�.

This connection of the Igusa quartic with the forms �6[δ] suggests study-
ing the whole space of the polynomials of degree three in the Pi : S3Vθ =
〈. . . , Pi Pj Pk, . . .〉0≤i≤ j≤k≤4, the triple symmetric tensor product of the space Vθ .
We want to decompose this 35 dimensional space in a “natural” way and under-
stand which parts of such a decomposition are involved in the measure (1.2).

3. Decomposition of S3V θ

To decompose the whole space S3Vθ in a “natural” way as a direct sum of vec-
tor spaces, S3Vθ =⊕

i Vi , we employ the theory of representations of finite groups.
The point is that string amplitudes must be invariant under the action of the
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Table III. Relationship between the generators of the modular group and S6

M1 M2 M3 S � T

(1 3) (2 4) (1 3)(2 4)(5 6) (3 5)(4 6) (1 2)(3 4)(5 6) (1 3)(2 6)(4 5)

modular group Sp(2g,Z). In particular for genus two surfaces the modular group
is Sp(4,Z)≡�2. This group can be surjectively mapped into the symmetric group
S6 with kernel �2(2) = {M ∈ �2, M ≡ Id (mod 2)}, so that S6 
 �2/�2(2). The
action of S6 on the theta constants θ4[δ] together with the representation theory
of finite groups provide the tools to understand how the space S3Vθ decomposes
in terms of invariant subspaces under the action of the modular group and which
combinations of theta constants generate each subspace.

To study the action of the symmetric group S6 on Vθ we have to relate the gen-
erators of the modular group, see Appendix B, to the elements of S6. We report
this relation in Table III.

Each generator induces a permutation of the six odd characteristics ν1, . . . , ν6

and thus defines an element of S6. Writing the even characteristics as sum of three
odd characteristics, as explained in Appendix A, we find how the even theta con-
stants θ4[δ] transform under the action of Sp(4,Z).

We want to identify the representation of S6 on Vθ . This can be obtained fix-
ing a basis for Vθ , for example θ4[δ1], θ4[δ2], θ4[δ3], θ4[δ4], θ4[δ5], to compute the
representation matrices of Mi , S, � and T and thus of the generators of S6. The
symmetric group S6 has eleven conjugacy classes and thus has eleven irreducible
representations (irreps), as shown in Table IV. For example, the conjugacy class
C3,2 consists of the product of a two-cycle and a three-cycle and the character
of the first ten dimensional representation, sw10, for this class is 1. The space Vθ

is five dimensional, therefore it must be one of the four representations of this
dimension. Looking at the character of the matrix representing M1 allows us to
identify Vθ with st5.

An alternative way to reach the same result is provideed by the Thomae for-
mula [11,12]:

θ4[δ]= c εS,T

∏
i, j∈S i< j

(ui −u j )
∏

k,l∈T k<l

(uk −ul),

where ui are the six branch points of the Riemann surface of genus two, S and
T contain the indices of the odd characteristics in the two triads which yield the
same even characteristic,2 as explained in [1] or [13], εS,T is a sign depending on
the triads, as indicated in Table V, and c is a constant independent from the char-
acteristic.

2For example for δ4, S ={1,4,5} and T ={2,3,6}.
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Table IV. Characters of the conjugacy classes of the irreps of S6

S6 Partition C1 C2 C3 C2,2 C4 C3,2 C5 C2,2,2 C3,3 C4,2 C6

id1 [6] 1 1 1 1 1 1 1 1 1 1 1

alt1 [16] 1 −1 1 1 −1 −1 1 −1 1 1 −1

st5 [23] 5 −1 −1 1 1 −1 0 3 2 −1 0

sta5 [32] 5 1 −1 1 −1 1 0 −3 2 −1 0

rep5 [5 1] 5 3 2 1 1 0 0 −1 −1 −1 −1

repa5 [2 14] 5 −3 2 1 −1 0 0 1 −1 −1 1

n9 [4 2] 9 3 0 1 −1 0 −1 3 0 1 0

na9 [22 12] 9 −3 0 1 1 0 −1 −3 0 1 0

sw10 [3 13] 10 −2 1 −2 0 1 0 2 1 0 −1

swa10 [4 12] 10 2 1 −2 0 −1 0 −2 1 0 1

s16 [3 2 1] 16 0 −2 0 0 0 1 0 −2 0 0

Table V. Relative signs between the theta constants θ4[δ] for the Thomae formula

146 126 125 145 124 156 123 134 136 135
235 345 346 236 356 234 456 256 245 246

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10
−1 1 1 −1 1 −1 1 −1 −1 −1

The Thomae formula shows that S6 acts on the theta constants by permuting
the branch points. Evaluating in this way the effect of permutations, and compar-
ing the characters we find again that the representation Vθ must be identified with
st5.

Thus the representation on the space S3Vθ is the S3(st5) that decomposes as fol-
lows:

S3(st5)= id1 +n9 + repa5 +2st5 + sw10. (3.5)

The presence of id1, the trivial representation of S6, implies the existence of an
invariant polynomial. Its expression in terms of the basis Pi , up to a scalar, is:

�6 = P3
0 −9P0(P2

1 + P2
2 + P2

3 −4P2
4 )+54P1 P2 P3, (3.6)

and essentially it is the modular form of weight six appearing in [1].
We will now identify some subspaces of S3Vθ in the decomposition (3.5). All

these subspaces must be invariant over the action of the modular group other-
wise a modular transformation of θ4[δ] would send an element of a subspace in
another one. We summarize the results in Table VI.
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Table VI. Decomposition of the given subspaces

Space Dimension Representation

〈P3
0 +· · ·+54 P1 P2 P3〉≡ VI 1 id1

〈∂Pi I4〉≡〈�6[δ]〉≡ V� 5 st5

〈2�6[δ]− ∂I4
∂θ4[δ] 〉≡ V f 5 repa5

〈θ4[δi ]
∑

δ′ θ8[δ′]〉≡ VS 5 st5

〈 ∂I4
∂θ4[δi ] 〉 10 st5 ⊕ repa5

〈θ12[δi ]〉 10 st5 ⊕ repa5

〈θ12[δi ], ∂I4
∂θ4[δ j ] 〉 15 2st5 ⊕ repa5

〈θ12[δi ],�6[δ]〉 15 2st5 ⊕ repa5

〈θ12[δi ], θ4[δ j ]
∑

δ′ θ8[δ′]〉 15 2st5 ⊕ repa5

〈θ12[δi ], θ4[δ j ]
∑

δ′ θ8[δ′],∂δk I4〉 15 2st5 ⊕ repa5

〈θ4[δi ]θ4[δ j ]θ4[δk]〉δi +δ j +δk odd 20 st5 ⊕ repa5 ⊕ sw10

〈θ4[δi ]θ8[δ j ]〉 34 2st5 ⊕ repa5 ⊕n9 ⊕ sw10

〈θ4[δi ]θ4[δ j ]θ4[δk ]〉δi ,δ j ,δk even 35 S3Vθ

〈θ4[δi ]θ4[δ j ]θ4[δk ]〉δi +δ j +δk even 35 S3Vθ

The final decomposition of the whole space S3Vθ is then:

S3Vθ = VI ⊕ V� ⊕ V f ⊕ VS ⊕ V9 ⊕ V10,

where VI is the subspace generated by the invariant polynomial �6 (3.6), V� is
generated by the forms �6[δ], V f is generated by the functions defined in (2.4) and
V9 and V10 are parts of the subspaces of dimension 20 or 34 given in Table VI.

Note that �6 cannot be written as a linear combination of the products θ4[δi ]
θ4[δ j ]θ4[δk] for δi + δ j + δk an odd characteristic, in contradiction to the claim in
[14], because the subspace VI is not contained in 〈θ4[δi ]θ4[δ j ]θ4[δk]〉δi +δ j +δk odd.
Instead �6 can be written as a linear combination of the products θ4[δi ]θ4[δ j ]
θ4[δk] for δi + δ j + δk an even characteristic, as correctly said in [1]. Indeed these
products of theta constants span the whole S3Vθ .

4. Conclusions

In this letter we clarified the algebraic properties of the modular structures under-
lying two loop superstring amplitudes. In the papers of D’Hoker and Phong it
was shown that the crucial ingredients are the modular forms �6[δ] appearing
in (1.2). In Section 2 we have connected the forms �6[δ] to the mathematically
well known Igusa quartic. This clarifies the origin of such forms which result to
live in a given five dimensional subspace of the vector space of cubic polynomials
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in the fourth powers of the 10 even theta constants. We studied the whole space
in Section 3 where we decomposed it in irreducible representations (irreps) of the
group S6, a quotient of the modular group. In this way we identified the irrep
corresponding to the space generated by the forms �6[δ]. Our analysis can be
extended to any genus g and gives a direct and quick strategy for searching mod-
ular forms with certain properties. However, there are some difficulties in carry-
ing on such a generalization. Possibly Equation (1.1) is no more true for genus
g >2 for the following reasons (E. Witten, Private Communication): D’Hoker and
Phong obtained (1.1) from a chiral splitting which works using the fact that, for
a g = 2 super Riemann surface with an even spin structure, there are two even
holomorphic differentials and no odd ones. The second point necessary for the
splitting is that by taking the periods of the two holomorphic differentials, one
associates to the original super Riemann surface M an abelian variety J , so that
one maps the given super Riemann surface M to the ordinary Riemann surface
M ′ that has M for its Jacobian. For a g > 2 super Riemann surface with an
even spin structure there are “generically” g even holomorphic differentials and
no odd ones, but it is possible to have odd ones for special complex structures
on M . So, in an arbitrary genus g where we can have also odd holomorphic
differentials, this procedure can not be carried on. Also, if there are no odd holo-
morphic differentials, taking the periods of the even holomorphic differentials will
give us an abelian variety, but it won’t necessarily be the Jacobian of an ordinary
Riemann surface. Its period can differ from those of an arbitrary Riemann sur-
face by terms that are bilinear in fermionic moduli. Thus equation (1.1) requires
an improvement for g >2.

Such issue and similar, together with the application of our analysis to the con-
struction of genus three amplitudes and to open and type O string amplitudes will
be the goals of future papers.
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Appendix A: Spin Structure

At genus two there are sixteen independent characteristics, six odd and ten even.
The odd characteristics are:

ν1 =
[

0 1
0 1

]
, ν2 =

[
1 0
1 0

]
, ν3 =

[
0 1
1 1

]
, ν4 =

[
1 0
1 1

]
, ν5 =

[
1 1
0 1

]
, ν6 =

[
1 1
1 0

]
.
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Table VII. Combinations of odd characteristics that form the same even charac-
teristic

Triad
146
235

126
345

125
346

145
236

124
356

156
234

123
456

134
256

136
245

135
246

[δ] [0 0
0 0

] [0 0
0 1

] [0 0
1 0

] [0 0
1 1

] [0 1
0 0

] [0 1
1 0

] [1 0
0 0

] [1 0
0 1

] [1 1
0 0

] [1 1
1 1

]
δ δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

The even characteristics are:

δ1 =
[

0 0
0 0

]
, δ2 =

[
0 0
0 1

]
, δ3 =

[
0 0
1 0

]
, δ4 =

[
0 0
1 1

]
, δ5 =

[
0 1
0 0

]
,

δ6 =
[

0 1
1 0

]
, δ7 =

[
1 0
0 0

]
, δ8 =

[
1 0
0 1

]
, δ9 =

[
1 1
0 0

]
, δ10 =

[
1 1
1 1

]
.

Each even characteristic can be obtained in two distinct way as a sum of three
odd characteristics [1,13] as shown in Table VII.

In the first line are listed the indices of the two sets of three odd characteristics
that summed give the same even characteristic.

Appendix B: The Modular Group Sp(4,Z)

The modular group Sp(4,Z) is defined by the matrices M =
(

A B
C D

)
satisfying:

(
A B
C D

)(
0 I

−I 0

) t(
A B
C D

)
=

(
0 I

−I 0

)
,

where A, B, C , D ∈M2(Z). The group is generated by:

Mi =
(

I Bi

0 I

)
, B1 =

(
1 0
0 0

)
, B2 =

(
0 0
0 1

)
, B3 =

(
0 1
1 0

)
;

S =
(

0 I
−I 0

)
; � =

(
σ 0
0 −σ

)
, σ =

(
0 1

−1 0

)
;

T =
(

τ+ 0
0 τ−

)
, τ+ =

(
1 1
0 1

)
, τ− =

(
1 0

−1 1

)
.

The action of the modular group on a characteristic κ (even or odd), at genus
g =2, is given by:

( tã
tb̃

)
=

(
D −C

−B A

)( ta
tb

)
+Diag

(
C · tD
A · tB

)
,

where a and b are the rows of the characteristic κ = [a
b

]
. Diag(M) for a n × n

matrix M is an 1 × n column vector whose entries are the diagonal entries of M .
The action of a modular transformation on a period matrix is

τ̃ = (Aτ + B)(Cτ + D)−1,
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Table VIII. Transformation of the even characteristics under the action of the
modular group

Triad [δ] δ M1 M2 M3 S � T ε4(δ, M1) ε4(δ, M2)

146 235
[0 0
0 0

]
δ1 δ3 δ2 δ1 δ1 δ1 δ1 + +

126 345
[0 0
0 1

]
δ2 δ4 δ1 δ2 δ5 δ3 δ4 + +

125 346
[0 0
1 0

]
δ3 δ1 δ4 δ3 δ7 δ2 δ3 + +

145 236
[0 0
1 1

]
δ4 δ2 δ3 δ4 δ9 δ4 δ2 + +

124 356
[0 1
0 0

]
δ5 δ6 δ5 δ6 δ2 δ7 δ5 + −

156 234
[0 1
1 0

]
δ6 δ5 δ6 δ5 δ8 δ8 δ6 + −

123 456
[1 0
0 0

]
δ7 δ7 δ8 δ8 δ3 δ5 δ9 − +

134 256
[1 0
0 1

]
δ8 δ8 δ7 δ7 δ6 δ6 δ10 − +

136 245
[1 1
0 0

]
δ9 δ9 δ9 δ10 δ4 δ9 δ7 − −

135 246
[1 1
1 1

]
δ10 δ10 δ10 δ9 δ10 δ10 δ8 − −

Table IX. Transformation of the odd characteristics under the action of the
modular group

[ν] ν M1 M2 M3 S � T

[0 1
0 1

]
ν1 ν3 ν1 ν3 ν1 ν2 ν3[1 0

1 0
]

ν2 ν2 ν4 ν4 ν2 ν1 ν6[0 1
1 1

]
ν3 ν1 ν3 ν1 ν5 ν4 ν1[1 0

1 1
]

ν4 ν4 ν2 ν2 ν6 ν3 ν5[1 1
0 1

]
ν5 ν5 ν5 ν6 ν3 ν6 ν4[1 1

1 0
]

ν6 ν6 ν6 ν5 ν4 ν5 ν2

and on the theta functions:

θ [κ̃](τ̃ , t(Cτ + D)−1z)= ε(κ, M)det(Cτ + D)
1
2 eπ i tz(Cτ+D)−1Czθ [κ](τ, z).

The phase factor ε(κ, M), satisfying ε8(κ, M)= 1, depends both on the character-
istic κ and on the matrix M generating the transformation. For the even charac-
teristics δ = [a

b

]
the fourth powers of ε are given by:

ε4(δ, Mi )= eπ i ta Bi a i =1,2

ε4(δ, M3)= ε4(δ, S)= ε4(δ,�)= ε4(δ, T )=1.

The action of the six generators on the theta characteristics and on the triads are
reported in Table VIII.

In Table IX we report the action of the generators of the modular group on the
odd characteristics.
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