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Abstract. We study a class of quantum dynamical semigroups on B(H) with Lindbladian
generators. We give new conditions in order to easily verify that a quantum dynamical
system returns to thermal equilibrium. In the classical picture of the interacting
-System+Reservoir-, our result can physically be interpreted as follows : the transition
may be sufficient so that each eigenvalue energy state of the system communicates with
another.
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1. Introduction

There exists an enormous amount of literature on the study of the approach to
equilibrium of an open quantum system. In general, we call an open quantum sys-
tem a small system S described by a Hilbert space interacting with a system R,
called reservoir or environment, with an infinite number of degrees of freedom.
This environment is described by a C∗ or W ∗-algebra. If the environment admits
a stationary state which is β-KMS with respect to the free dynamics then we said
that the open quantum system is thermal. The basic concepts of the algebraic the-
ory of quantum dynamical systems can be found in Bratteli and Robinson [1] as
well as in Pillet [13]. Mathematical tools and their physical interpretations can also
be found in Haag [10].

Let H be a Hilbert space and we denote by B(H) the algebra of all bounded
operators on H. A quantum dynamical system is a triple (B(H), τ t ,ω) where

• τ t is a σ -weakly continuous group of �-automorphisms of B(H);
• ω is a normal stationary (τ t -invariant for all t ∈R) state on B(H).

We will say this system returns to thermal equilibrium at the inverse temperature
β if there exists a (τ, β)-KMS state ωe such that :

∀A ∈B(H), lim
t→∞ tr

(
ρτ t (A)

)=ωe(A) ,

and for all density matrix ρ, i.e., a non-negative trace class operator ρ on H with
tr(ρ)=1.
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In this note, we give a simple proof of the approach to equilibrium for a quan-
tum dynamical semigroup (τ t )t≥0. This report is a part of Fellah’s thesis studying
the weak coupling limit.

The particular form of the time evolution τ t = exp t K plays an important role
in our result.

A quantum dynamical semigroup is a one parameter family (τ t )t≥0 of linear
maps of B(H) into itself satisfying the following properties.

(1) τ t (I )= I .
(2) τ t+s = τ tτ s .
(3) τ t is ultraweakly continuous.
(4) τ t (A)→ A ultraweakly as t ↘0.
(5) τ t is completely positive, i.e.

∑
1≤i, j≤N B∗

i τ t (A∗
i A j )B j ≥0 , for all integers N ,

all Ai and B j of B(H).

Then we known that there exists a (generally unbounded) map K defined on an
ultraweakly dense domain D(K ) such that

lim
t↘0

‖K − (τ t −1)/t‖=0 ,

for all A ∈ D(K ).
When the semigroup is norm continuous (lim

t↘0
‖τ t − 1‖ = 0) then K is bounded

and τ t = exp(t K ). Lindblad [12] proved that the general form of K is given by

K (A)= i[H, A]+
∑

i∈I

(
[V ∗

i , A]Vi + V ∗
i [A, Vi ]

)
, (1)

where H is a bounded self-adjoint operator, Vi ∈ B(H) such that the series con-
verge ultraweakly.

We will use Frigerio’s theorem (see THEOREM 12 in Appendix 3) established
in Frigerio [8] after the studies made in Frigerio [9], Spohn [14,15].

A generalization of this theorem to unbounded H and Vi has been given by
Fagnola and Rebolledo [6]. However their conditions are more difficult to verify.
In concrete models our method is applied with more simplicity.

This concrete physical model (see for example [3,4,11]) can be described as fol-
lows : a small system S interacts with an environment R, the Hamiltonian has the
form

Hλ = H0 +λQ ⊗φ, H0 = Hs ⊗1r +1s ⊗ Hr . (2)

We look at the time evolution of observables of the small system. Let P be the
partial trace over the reservoir such that P[H0, ]P = 0. Then, under appropriate
assumptions (e.g. [4]), one shows that there exists an operator K acting on B(H)

such that

lim
λ→0

Pe−i t L0/λ
2
eit Lλ/λ2

P = et K .
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where Lλ =[Hλ, ]. The weak coupling limit gives a quantum dynamical system τ t

which is Markovian with

τ t (A)= et K (A) ,

for any observable A of S.
K has the above form (1). The theory shows that Vi are functions of Q with

parameters dependent on the two-point correlation functions of R.
The reader can study the abstract structure of the weak coupling limit in

Dereziński and Jakšic̀ [5]. In the next section, we give a general structure for a
class of semigroup τ t which the generator K has a Lindbladian form and where
the terms Vi are precised with respect to a β-KMS property.

So, one obtains that the system (B(H), τ t ) returns to thermal equilibrium at the
inverse temperature β.

2. A class of Lindbladian Operators

Let B(H) be the algebra of all bounded operators on a separable Hilbert
space H. We consider Hs a Hamiltonian operator which has a purely discrete
non-degenerate spectruum

σ(Hs)=
{

E0 < E1 < · · ·
}

,

and an orthonormal basis (|n >)n of H such that

Hs |n >= En|n >,

for all n ∈N.
We denote by Pn the spectral projector associated to En . It is well-known that

the spectrum of [Hs, ·] is the set
{
µ

/∃(i, f ) ,µ= Ei − E f

}
.

And

[Hs, ·]=
∑

µ

µPµ ,

where the Pµ are the spectral projections of [Hs, ·], given by

Pµ(M)=
∑

i, f
Ei −E f =µ

Pi M Pf ,

for all M ∈B(H).
For Q = Q∗ ∈B(H) and µ∈σ([Hs, ·]), we introduce the following notation

Qµ = Pµ(Q)=
∑

i, f
Ei −E f =µ

Pi Q Pf .
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Let q be a map of R into C such that :

∀µ∈σ([Hs, ·])\ {0} , q(µ) �=0 (3)

and

∀µ∈σ([Hs, ·]) , |q(−µ)|2 = e−βµ|q(µ)|2 (4)

where β >0.
We will call this last property the KMS-condition for q (see below).

Example 1. In the classical model (e.g Lebowitz–Spohn [11]), let h be the Fourier
transform of the correlations functions given by the reservoir at the inverse tem-
perature β, then one has

q(µ)=√
h(µ)/2 .

Let (τ t )t≥0 be a one-parameter semigroup with

τ t = exp(t K ) ,

where the general form of K is Lindbladian

K (A)= i[H, A]+
∑

µ∈σ([Hs ,·])
[Vµ, A]V ∗

µ + Vµ[A, V ∗
µ ] , (5)

Vµ =q(µ)Qµ , (6)

for all A ∈B(H) where the series converge ultraweakly and where H∗ = H ∈B(H)

is an operator commuting with Hs .
Now we are in a position to state our main result.

THEOREM 2. We assume the following hypotheses (H 1)–(H 5) hold.

(H 1) Hs has a non-degenerate discrete spectrum.
(H 2) Let q be a map of R into C satisfying (3) and (4).
(H 3) [Hs, Q] �= 0.
(H 4) There exists an integer N , N ≥1 such that

<n|QN |m > �= 0 ,

for all (n,m) satisfying n �=m.
(H 5) tr(e−βHs )<∞.

Then there exists a unique normal faithful and stationary state ωe such that :

lim
t→∞ tr

(
ρτ t (A)

)=ωe(A) ,

for all A ∈B(H) and all ρ density matrix of H.
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The state ωe is given by

ωe(A)= tr(ρe A) , ρe = Z−1e−βHs , Z = tr(e−βHs ) ,

for all A ∈B(H).

This result will be proven in Sect. 3.

Remark 3. Let us make some comments about these assumptions.

• Intuitively, the hypothesis (H 4) says in the interacting picture of the couple
-system+environment- that the small system goes from one initial energy state En

to another energy state Em with a non-zero probability after N transitions run by
Q.
We can also think about a Markov chain of type Xn+1 = Q Xn , X N = QN X0. The
condition (H 4) implies there exists an invariant measure (Châcon’s theorem).

• The conditions (3) and (4) of (H2) are satisfied in the classical model (e.g
[4,11]). Their express the KMS-conditions, but our method can built others mod-
els.

• It is clear that the hypothesis (H 4) excludes the case dim H=1.
• The hypothesis (H 3) implies Hs �∈C ·1; in particular dim H �=1.

We consider S the following subset of B(H),

S =
{

Qµ

/
µ∈σ([Hs, ·])\ {0}

}
.

As Q∗
µ = Q−µ for all µ, then we have S ∗ =S , thus the commutant S ′ in B(H) is

a von Neumann subalgebra of B(H). But the equality Vµ =q(µ)Qµ, where q(µ) �=
0 for any µ∈σ([H0, ·])\ {0}, shows :

{
Vµ

/
µ∈σ([Hs, ·])

}′ ⊂
{

Vµ

/
µ∈σ([Hs, ·])\ {0}

}′ =S ′ .

So, to apply theorem 12, it is sufficient to obtain S ′ =C ·1.

Remark 4.

1. Let us remark if Hs and Q commute then Qµ =0 for all µ∈σ([Hs, ·])\ {0} and
Q0 = Q. Thus

S ′ =B(H) , Hs ∈
{

Q
}′ =

{
Qµ

/
µ∈σ([Hs, ·])

}′
,

and in order for the condition (F 2) of theorem 12 holds, it is necessary that

[Hs, Q] �=0 .
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2. In example 1, we can define s : R � µ �→ s(µ) the real valued function which
denotes the principal part

s(µ)= 1
2π i

P P
( +∞∫

−∞

h(t)

t −µ
dt

)
.

and the weak coupling limit (see for example [4,7,11]) gives

H =
∑

µ∈σ([Hs ,·])
s(µ)QµQ∗

µ ;

Vµ =q(µ)Qµ ,

for any µ∈σ([Hs, ·]) and where the serie converges ultraweakly.

3. Proof of Theorem 2

We begin by the next proposition which establishes a stationary state.

PROPOSITION 5. One assumes that he hypothesis (H 1)–(H 5) hold. Let ρe be
the following density matrix

ρe = Z−1e−βHs , Z = tr(e−βHs ) .

Then the state ωe, defined by

ωe(A)= tr(ρe A) ,

for all A ∈B(H), is normal, faithful and stationary.
Moreover, (B(H), τ t ,ωe) is a quantum dynamical system.

Proof of Proposition 5. At this end, we consider the duality between B(H) and the
Banach space T (H) of trace-class operators on H given by the map
B(H) × T (H) −→ C

A × ρ �−→ tr(Aρ) .
So, we can define the adjoint operator L of K for this duality and hence

tr
(
ρτ t (A)

)= tr
(

et L(ρ)A
)

,

for all A ∈B(H), all ρ ∈T (H) and all t ≥0.
More precisely, we have

L(ρ)=−i[H, ρ]+
∑

µ

[V ∗
µρ, Vµ]+ [V ∗

µ,ρVµ] ,

for all ρ ∈T (H).
A simple calculation shows that

Q∗
µρe Qµ = e−βµρe Q∗

µQµ ,

for all µ∈σ([Hs, ·]).
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To compute L(ρe), one truncates the sums with the terms µ> 0 and the terms
µ<0 separately (the terms µ=0 cancel because Q0 Q∗

0 = Q∗
0 Q0). Then the equality

Q−µ = Q∗
µ and the KMS-condition (4) finally give L(ρe)=0.

And this property suffices to finish the proof.
Note this truncation is usual in the standard description of atomic radiation :

the three terms correspond to the emission term, the absorption term and a term
describing a shift of the free energy levels.

We start by a sequence of lemmas and propositions which will be needed to sat-
isfy the conditions (F 1) and (F 2) of theorem 12.

We recall the form of Pn ,

Pn =
d(n)∑

i=1

|ni ><ni | , Hs |ni >= En|ni >, (7)

where d(n)=dim K er(Hs − En ·1).
We denote by τ0 the free dynamics

τ t
0(A)= eit Hs Ae−i t Hs =

∑

µ∈σ([Hs ,·])
eitµ Pµ(A) , (8)

for all A ∈B(H).
Using the identities

∀µ∈σ([Hs, ·]) , Qµ = lim
T →∞

1
2T

T∫

−T

dt e−i tµτ t
0(Q) ;

∀t ∈R , τ t
0(Q)=

∑

µ∈σ([H0,·])
eitµQµ ,

one easily shows the following proposition.

PROPOSITION 6. The next assertions are equivalent:

(i) A ∈S ′;
(ii) ∀t ∈R : [A, τ t

0(Q)]= [A, Q].

Let us give some results, independent of the degeneration or not of the spectrum
of Hs , which are used in the following.

COROLLARY 7. The family (Tn)n≥1 of self-adjoint operators, defined by the induc-
tion relations

T1 = i[Hs, Q] , Tn+1 = i[Hs, Tn] ,
satisfies, for all A ∈S ′:
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(iii) ∀t ∈R , ∀n ≥1 : [A, τ t
0(Tn)]=0;

(iv) ∀n ≥1 : [A, Tn]=0.

And

COROLLARY 8. The restriction of τ0 to S ′ is a C∗-automorphism of S ′.
In particular, the propositions (v) and (vi) are equivalent :

(v) ∀A ∈S ′ , ∀t ∈R , ∀n ≥1 : [A, τ t
0(Tn)]=0;

and
(vi) ∀A ∈S ′ , ∀n ≥1 : [A, Tn]=0 .

The two following lemmas are taken into consideration for the end of the proof.

LEMMA 9. Let us define the hypothesis (H) : for all n ≥1, there exists a real num-
ber λn such that

Pn Q Pn =λn Pn .

Then, we have

{
Hs

}′ ∩{
Q

}′ ={
Hs

}′ ∩{
T1

}′
,

where each communtant is taken in B(H).

Proof of Lemma 9. It is clear that if [A, Hs] = [A, Q] = 0 then A commutes with
any function of two variables Hs and Q, in particular with T1.

Inversely, let A be an element commuting with Hs and T1. Jacobi’s identity

[A, [Hs, Q]]+ [Hs, [Q, A]]+ [Q, [A, Hs]]=0

gives [Hs, [Q, A]] = 0]. But any observable M which commutes with Hs has the
form as

M =
∑

n

Pn M Pn ,

because

0= Pm[M, Hs]Pn = (En − Em)Pm M Pn

and n �=m implies Pm M Pn =0.
Then, we have:

A =
∑

n

Pn APn , [A, Q]=
∑

n

Pn[A, Q]Pn .
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The hypothesis (H) shows

Pn[A, Q]Pn =[A, Pn Q Pn]=λn[A, Pn]=0 ,

thus [A, Q]=0.

LEMMA 10. The hypotheses (H1) and (H 4) imply

{
Hs

}′ ∩{
QN }′ =C ·1 .

Thus, in particular

{
Hs

}′ ∩{
Q

}′ =C ·1 .

Proof of Lemma 10 (H 1) is written as

d(n)=1 , Pn =|n ><n|
for all n.

Let A be an element commutes with Hs and QN ,

A =<0|A|0> |0><0|+
∑

n≥1

<n|A|n > |n ><n| .

The hypothesis (H 4) gives < n|A|n >=< m|A|m > for all n and m, because, for
n �=m,

0=<n|[A, QN ]|m >= (<n|A|n >−<m|A|m >)<n|QN |m > .

Thus : A =<0|A|0> ·1.
The inclusion

{
Hs

}′ ∩{
Q

}′ ⊂{
Hs

}′ ∩{
QN }′

establishes the second point.

Remark that the hypothesis (H 1) implies the hypothesis (H).
The end of the proof of theorem 2 is composed of the six following steps.

Step 1. If A ∈S ′ then A ∈C ·1, where

A = lim
t→∞

1
2t

t∫

−t

ds τ s
0 (A)=

∑

n

<n|A|n > |n ><n| .

As τ s
0 (A) ∈ S ′, the corollary 7 shows [A, T1] = 0. Moreover [A, Hs] = 0 then the

lemma 9 and lemma 10 give the result.
Step 2. We have : ∀A ∈S ′ , ∀n ∈N , <n|A|n >=<0|A|0>.
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Because, for any n, we have

<n|A|n >=<n|A|n >=<0|A|0>=<0|A|0> .

Step 3. For all A ∈S ′ and for all density matrix ρ = f (Hs), we have:

ωρ(A)=<0|A|0>,

where

ωρ(M)= tr(ρM)=
∑

n

f (En)<n|M |n > .

We have

ωρ(A)=
∑

n

f (En)<n|A|n >=
(∑

n

f (En)
)

<0|A|0>=1×<0|A|0> .

Step 4. Let A and B be two elements of S ′. For all γ >β and all n, it comes
∑

k

e−γ (Ek−En) <n|A|k >< k|B|n >=<n|B A|n > . (9)

We consider the state ωγ , defined by

ωγ (M)= Z−1
γ tr(e−γ Hs M) , Zγ = tr(e−γ Hs ) , (Zγ < Zβ <∞) .

ωe is a (τ0, γ )-KMS state. Then, according to proposition 5.3.7 in [2], we know
there exists a complex function FA,B which is analytic on the open strip

Dγ ={
z; z ∈C, 0< Im(z)<γ

}
,

and bounded and continuous on its closure Dγ , such that

FA,B(t)=ωγ (Aτ t
0(B)) ,

FA,B(t + iγ )=ωγ (τ t
0(B)A) ,

for all t ∈R.
In particular, on the boundary we have

FA,B(iγ )=ωγ (Aτ
iγ
0 (B))=ωγ (B A) .

By Step 3 , the result is that this last equality gives for all integer n:

<n|Aτ
iγ
0 (B)|n >=<n|B A|n >,

for all integer n. Thus the result (9).
Step 5. ∀A ∈S ′ , ∀k ≥1=⇒<0|A|k >=0.

The equality (9) gives, in choosing n =0,

<0|A|0><0|B|0>+
∑

k≥1

e−γ (Ek−E0) <0|A|k >< k|B|0>=<0|B A|0> .



RETURN TO THERMAL EQUILIBRIUM 111

With Ek − E0 ≥ E1 − E0 > 0, for all k ≥ 1 and Cauchy-Schwarz’s inequality, we
obtain

∣∣∣
∑

k≥1

e−γ (Ek−E0) <0|A|k >< k|B|0>

∣∣∣
2

≤ e−2γ (E1−E0)
(∑

k≥1

|<0|A|k > |2
)

×
(∑

k≥1

|< k|B|0> |2
)

≤ e−2γ (E1−E0) <0|AA∗|0> |×<0|B B∗|0> .

And therefore, taking γ →+∞, we have:

<0|A|0><0|B|0>=<0|B A|0> .

By Step 2, it follows that

<n|A|n ><n|B|n >=<n|B A|n >,

for all n. The choice B = A∗ implies |<0|A|0> |2 =<0|A∗ A|0> and
∑

k≥1

e−γ Ek |<0|A|k > |2 =0 .

Hence : <0|A|k >=0, for all k ≥1.
Step 6. ∀A ∈S ′ , ∀(k,n), k �=n =⇒<n|A|k >=0.

Let B = A∗, |<n|A|n > |2 =<n|A∗ A|n >. The equality (9) gives
∑

k≥1

e−γ (Ek−En)|<n|A|k > |2 =|<n|A|n > |2 .

Thus
∑

k≥1, k �=n

e−γ (Ek−En)|<n|A|k > |2 =0 ,

i.e. <n|A|k >=0, for all (k,n) such that k �=n.
So

A =
∑

k,n

|<n|A|k > |n >< k|=
∑

n

<n|A|n > |n ><n|

=<0|A|0> ·
∑

n

|n ><n|=<0|A|0> ·1 .

In other words, S ′ =C ·1.
Finally, the conditions (F 1) and (F 2) of theorem 12 are satisfied.

Remark 11. In adapting these conditions, it will be strongly motivating to extend
the above method when the operators are unbounded. At the start, the operators are
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defined in the weak sense sesquilinear forms in H : there exists a domain D, dense
in H such that

< x |K (A)|y >=< Gx |Ay >+< x |G A|y >+
∑

i∈I

< Vi x |AVi |y >,

for all (x, y)∈D2.

Appendix

THEOREM 12 [8]. Let τ t = exp(t K ) be a one-parameter semigroup of B(H) where
K has the Lindblad general form :

K (A)= i[H, A]+
∑

i∈I

(
[V ∗

i , A]Vi + V ∗
i [A, Vi ]

)
, (10)

for any A∈B(H) where H∗ = H and Vi are in B(H) and the series converge ultra-
weakly.

We assume that the following hyotheses hold :

(F 1) the subspace of B(H) generated by
{

Vi ; i ∈ I
}

is a self-adjoint set;
(F 2) the commutant

{
Vi ; i ∈ I

}′ in B(H) is equal to C ·1.

Let ω be a normal stationary state for τ t then

(i) ω is faithful;
(ii) for all A ∈B(H), we have : w∗ − lim

t→∞ τ t (A)=ω(A) ·1.

Acknowledgements

I would like to thank C.-A. Pillet for his useful comments and careful reading of
the manuscript. I am grateful to the referee for his remarks in the first version.

References

1. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics,
TMP, 2nd edn. vol.1. Springer, Heidelberg (1987)

2. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics.
TMP, 2nd edn. vol.II, Springer, 1996

3. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Processus d’interaction entre
photons et atomes. EDP-Sciences, CNRS Editions, 2nd edn, 1996

4. Davies, E.B.: Markovian Master Equations. Commun. Math. Phys. 39, 91–110 (1974)
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