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Abstract. Given a potential of pair interaction and a value of activity, one can consider
the Gibbs distribution in a finite domain �⊂Z

d . It is well known that for small values of
activity there exist the infinite volume (�→Z

d ) limiting Gibbs distribution and the infinite
volume correlation functions. In this paper we consider the converse problem – we show
that given ρ1 and ρ2(x), where ρ1 is a constant and ρ2(x) is a function on Z

d , which are
sufficiently small, there exist a pair potential and a value of activity, for which ρ1 is the
density and ρ2(x) is the pair correlation function.
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1. Introduction

Let us consider a translation invariant measure µ on the space of particle con-
figurations on the lattice Z

d . For a given configuration each site can be occupied
by one particle or be empty. An m-point correlation function ρm(x1, . . . , xm) is the
probability of finding m different particles at positions x1, . . . , xm∈Z

d . The follow-
ing natural question has been extensively discussed in physical and mathematical
literature: given ρ1(x1)≡ρ1 and ρ2(x1, x2)=ρ2(x1 −x2), does there exist a measure
µ, for which these are the first correlation function (density) and the pair correla-
tion function, respectively?

In a series of papers [3–5] Lenard provided a set of relations on the functions
ρm which are necessary and sufficient for the existence of such a measure. How-
ever, given ρ1 and ρ2, it is not clear how to check if there are some ρ3, ρ4, . . . for
which these relations hold.

There are several recent papers which demonstrate the existence of particular
types of point processes (measures on the space of particle configurations), which
correspond to given ρ1 and ρ2 under certain conditions on ρ1 and ρ2. In particu-
lar, one dimensional point processes of renewal type are considered by Costin and

�Partially supported by NSF Research Grant.
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Lebowitz in [2], while determinantal processes are considered by Soshnikov in [8].
In [1] Ambartzumian and Sukiasian prove the existence of a point process corre-
sponding to a sufficiently small density and correlation function. Recently, Costin
and Lebowitz [2] suggested generalizations of their results. In [9] Stillinger and
Torquato consider fields over a space with finitely many points. Besides, for the
lattice model, they discuss possible existence of a pair potential for a given den-
sity and correlation function using cluster expansion without addressing the issue
of convergence.

In this paper we show that if ρ1 and ρ2 are small (in a certain sense), there exists
a measure on the space of configurations for which ρ1 is the density and ρ2 is
the pair correlation function. Moreover, this measure is the Gibbs measure corre-
sponding to some pair potential and some value of activity. In a sense, this is the
converse of the classical statement that a given potential of pair interaction and a
sufficiently small value of activity determine a translation invariant Gibbs measure
on the space of particle configurations in Z

d (or R
d ) and the sequence of infinite

volume correlation functions.

2. Notations and Formulation of the Result

We shall consider the following lattice system. Let �(x), x ∈Z
d be a potential of

pair interaction and let U(x1, . . . , xn)=
∑

1�i<j�n �(xi −xj ) be the total potential
energy of the configuration (x1, . . . , xn). We assume that �(x)=�(−x)� c0>−∞
for all x and that �(0)=+∞. The full list of assumptions on �(x) will be given
below.

Let � be a finite subset of Z
d . The grand canonical ensemble is defined by a

measure on
⋃∞
n=0�

n, whose restriction on �n is equal to

ν(x1, . . . , xn)= zn

n!
e−U(x1,...,xn).

The parameter z > 0 is called the activity. The inverse temperature, which is the
factor usually present in front of the function U , is set to be equal to one (or,
equivalently, incorporated into the function U ). The total mass of the measure is
the grand partition function

�(�, z,�)=
∞∑

n=0

zn

n!

∑

(x1,...,xn)∈�n
e−U(x1,...,xn).

The m-point correlation function is defined as the probability of finding m

different particles at positions x1, . . . , xm ∈�,

ρ�m(x1, . . . , xm)=�(�, z,�)−1
∞∑

n=0

zm+n

n!

∑

(y1,...,yn)∈�n
e−U(x1,...,xm,y1,...,yn).

The corresponding measure on the space of all configurations of particles on the
set � (Gibbs measure) will be denoted by µ�. Given another set �0 ⊆�, we can
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consider the measure µ��0
obtained as a restriction of the measure µ� to the set

of particle configurations on �0.
Given a potential of pair interaction �(x), we define g(x)= e−�(x)− 1, x ∈ Z

d .
We shall make the following standard assumptions:

g(x)�−a>−1 for x �=0. (1)

g(0)=−1; g(x)=g(−x) for all x;
∑

x �=0

|g(x)|� c<∞. (2)

Clearly, any function g(x) which satisfies (1) and (2) defines a potential of pair
interaction via

�(x)=− ln(g(x)+1).

It is well known ([6,7]) that when �→ Z
d in a suitable manner (for example,

�= [−k, k]d and k→∞) the following two limits exist for sufficiently small z:
(a) There is a probability measure µZ

d
on the space of all configurations on Z

d ,
such that

µ��0
→µZ

d

�0
as �→Z

d (3)

for any finite set �0 ⊂Z
d .

(b) All the correlation functions converge to the infinite volume correlation func-
tions. Namely,

ρ�m(x1, . . . , xm)→ρm(x1, . . . , xm) as �→Z
d . (4)

The infinite volume correlation functions are the probabilities with respect to the
measure µZ

d
of finding m different particles at positions x1, . . . , xm∈Z

d . To make
these statements precise we formulate them as a lemma.

LEMMA 2.1 [6,7]. Assuming that (1) and (2) hold, there is a positive z= z(a, c),
such that (3) and (4) hold for all 0<z� z when �= [−k, k]d and k→∞.

Thus, a pair potential defines a sequence of infinite volume correlation functions
for sufficiently small values of activity. Note that ρm(x1, . . . , xm)= 0 if xi = xj for
i �= j , since two distinct particles cannot occupy the same position. Also note that
all the correlation functions are translation invariant,

ρm(x1, . . . , xm)=ρm(0, x2 −x1, . . . , xm−x1).

Thus, ρ1 is a constant, ρ2 can be considered as a function of one variable, etc. Let
ρm be the function of m−1 variables, such that

ρm(x1, . . . , xm)=ρm(x2 −x1, . . . , xm−x1). (5)

The main result of this paper is the following theorem.
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THEOREM 2.2. Let 0<r < 1 be a constant. Given any sufficiently small constant
ρ1 and any function ρ2(x), such that ρ2(0)= 0 and

∑
x �=0 |ρ2(x)− ρ2

1| � rρ2
1, there

are a potential �(x), which satisfies (1) and (2), and a value of activity z, such that
ρ1 and ρ2(x) are the first and the second correlation functions respectively for the
system defined by (z,�).

Remark 1. Let ξ(x) be a random field with values 0 and 1 (which is the same
as a measure on the space of particle configurations), and let ρ1 and ρ2(x) be its
first two correlation functions. Then

E(ξ(x)−ρ1)(ξ(0)−ρ1)=
{
ρ1 −ρ2

1 if x=0
ρ2(x)−ρ2

1 otherwise.

The positive definiteness of this function, which is necessary for the existence of
the field ξ(x) with the given ρ1 and ρ2(x), is clearly guaranteed by the conditions
of the theorem if ρ1 is sufficiently small.

Remark 2. As will be seen from the proof of the theorem, the pair potential and
the activity corresponding to given ρ1 and ρ2(x) are unique, if we restrict consid-
eration to sufficiently small values of � and z. The method of the proof allows
one to explore the properties of the pair potential based on the properties of the
correlation function.

The outline of the proof is the following. In Sections 3 and 4, assuming that
a pair potential and a value of the activity exist, we express the correlation func-
tions (or, rather, the cluster functions, which are closely related to the correlation
functions) in terms of the pair potential and the activity. This relationship can be
viewed as an equation for unknown � and z. In Section 5, we use the contracting
mapping principle to demonstrate that this equation has a solution. In Section 6,
we provide the technical estimates needed to prove that the right-hand side of the
equation on � and z is indeed a contraction.

3. Cluster Functions and Ursell Functions

In this section, we shall obtain a useful expression for cluster functions in terms
of the pair potential. The cluster functions are closely related to the correlation
functions. Some of the general known facts will be stated in this section without
proofs. The reader is referred to Chapter 4 of [7] for a more detailed exposition.

Let A be the complex vector space of sequences ψ ,

ψ= (ψm(x1, . . . , xm))m�0

such that, for each m�1, ψm is a bounded function on Z
md , and ψ0 is a complex

number. It will be convenient to represent a finite sequence (x1, . . . , xm) by a single
letter X= (x1, . . . , xm). We shall write



EXISTENCE OF PAIR POTENTIAL 139

ψ(X)=ψm(x1, . . . , xm).

Let now ψ1,ψ2 ∈A. We define

ψ1 ∗ψ2(X)=
∑

Y⊆X
ψ1(Y )ψ2(X\Y ),

where the summation is over all subsequences Y of X and X\Y is the subsequence
of X obtained by striking out the elements of Y in X.

Let A+ be the subspace of A formed by the elements ψ such that ψ0 =0. Let 1
be the unit element of A (10 =1,1m≡0 for m�1).

We define the mapping 	 of A+ onto 1+A+:

	ϕ=1+ϕ+ ϕ ∗ϕ
2!

+ ϕ ∗ϕ ∗ϕ
3!

+· · ·

The mapping 	 has an inverse 	−1 on 1+A+:

	−1(1+ϕ′)=ϕ′ − ϕ′ ∗ϕ′

2
+ ϕ′ ∗ϕ′ ∗ϕ′

3
−· · ·

It is easy to see that 	ϕ(X) is the sum of the products ϕ(X1)...ϕ(Xr) correspond-
ing to all the partitions of X into subsequences X1, . . . ,Xr . If ϕ∈A+ and ψ=	ϕ,
the first few components of ψ are

ψ0 =1; ψ1(x1)=ϕ1(x1); ψ2(x1, x2)=ϕ2(x1, x2)+ϕ1(x1)ϕ1(x2).

Let � be a pair correlation function which satisfies (1) and (2), and let z�z(a, c).
Note that the sequence of correlation functions ρ= (ρm)m�0 (with ρ0 =1) is an ele-
ment of 1+A+.

DEFINITION 3.1. The cluster functions ωm(x1, . . . , xm), m�1 are defined by

ω=	−1ρ.

Thus,
ω1(x1)=ρ1(x1); ω2(x1, x2)=ρ2(x1, x2)−ρ1(x1)ρ1(x2),

or, equivalently,
ω1 =ρ1; ω2(x)=ρ2(x)−ρ2

1

where ωm are defined as in (5).
Let ψ ∈1+A+ be defined by

ψ0 =1; ψm(x1, . . . , xm)= e−U(x1,...,xm).

Define also

ϕ=	−1ψ.

DEFINITION 3.2. The functions ψm and ϕm are called Boltzmann factors and
Ursell functions, respectively.
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LEMMA 3.3 [7]. The cluster functions can be expressed in terms of the Ursell func-
tions as follows

ωm(x1, . . . , xm)= zm
∞∑

n=0

zn

n!

∑

y1,...,yn∈Zd

ϕm+n(x1, . . . , xm, y1, . . . , yn).

We shall later need certain estimates on the Ursell functions in terms of the
potential. To this end we obtain a recurrence formula on a set of functions related
to the Ursell functions. Given X= (x1, . . . , xm), we define the operator DX:A→A

by

(DXψ)n(y1, . . . , yn)=ψm+n(x1, . . . , xm, y1, . . . , yn).

Then define

ϕ̃X=ψ−1 ∗DXψ,
where ψ is the sequence of Boltzmann factors, and ψ−1 is such that ψ−1 ∗ψ=1.
It can be seen that

ϕ1+n(x1, y1, . . . , yn)= ϕ̃x1(y1, . . . , yn) (6)

and that the functions ϕ̃X satisfy a certain recurrence relation, which we state here
as a lemma.

LEMMA 3.4 [7]. The functions ϕ̃X satisfy the following recurrence relation

ϕ̃X(Y )= exp

(

−
m∑

i=2

�(xi −x1)

)
∑

S⊆Y

∏

j,yj∈S
(exp(−�(yj −x1))−1)ϕ̃S∪X\x1(Y\S),

(7)

where X= (x1, . . . , xm), m�1, Y = (y1, . . . , yn), n�0, and ϕ̃X(Y )=1 if m=0.

4. Equations Relating the Potential, the Activity, and the Cluster Functions

In this section, we shall recast the main theorem in terms of the cluster functions
and examine a system of equations, which relates the first two cluster functions
with the pair potential and the activity.

First, Theorem 2.2 can clearly be re-formulated as follows

PROPOSITION 4.1. Let 0<r < 1 be a constant. Given any sufficiently small con-
stant ω1 and any function ω2(x), such that ω2(0)= −ω2

1 and
∑
x �=0 |ω2(x)| � rω2

1,
there are a potential �(x), which satisfies (1) and (2), and a value of activity z, such
that ω1 and ω2(x) are the first and the second cluster functions respectively for the
system defined by (z,�).
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Consider the power expansions for ω1 and ω2, which are provided by Lemma
3.3. Let us single out the first term in both expansions. Note the translation invari-
ance of the functions ωm and ϕm and the fact that ϕ(x1, x2)=g(x1 −x2).

ω1 = z+ z2
∞∑

n=1

zn−1

n!

∑

y1,...,yn∈Zd

ϕ1+n(0, y1, . . . , yn), (8)

ω2(x)= z2g(x)+ z3
∞∑

n=1

zn−1

n!

∑

y1,...,yn∈Zd

ϕ2+n(0, x, y1, . . . , yn). (9)

Let

A(z, g)=
∞∑

n=1

zn−1

n!

∑

y1,...,yn∈Zd

ϕ1+n(0, y1, . . . , yn),

B(z, g)(x)=
∞∑

n=1

zn−1

n!

∑

y1,...,yn∈Zd

ϕ2+n(0, x, y1, . . . , yn).

Thus, the Equations (8) and (9) can be rewritten as follows

z=ω1 − z2A(z, g), (10)

g= ω2

z2
− zB(z, g). (11)

Instead of looking at (10) and (11) as a formula defining ω1 and ω2 by a given
pair potential and the activity, we can instead consider the functions ω1 and ω2

fixed, and g and z unknown. Thus, Proposition 4.1 follows from the following.

PROPOSITION 4.2. If ω1 and ω2 satisfy the assumptions of Proposition 4.1, then
the system (10) and (11) has a solution (z, g), such that the function g satisfies (1)
and (2) and z� z(a, c).

5. Proof of the Main Result

This section is devoted to the proof of Proposition 4.2. We shall need the following
notations. Let G be the space of functions g, which satisfy (2) with some c<∞.
Let ||g||=∑x �=0 |g(x)|. This is not a norm, since G is not a linear space, however,
d(g1, g2)=||g1 −g2|| is a metric on the space G. Let Gc be the set of elements of
G for which ||g|| � c. Note that if c < 1 then all elements of Gc satisfy (1) with
a= c.

We also define I a1,a2
z0 = [a1z0, a2z0]. Let D= I a1,a2

z0 ×Gc. Note that if c < 1 then
(z, g)∈D implies that z� z(c, c) if z0 is sufficiently small. Thus, the infinite vol-
ume correlation functions and cluster functions are correctly defined for (z, g)∈D
if z0 is sufficiently small.
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Let us define an operator Q on the space of pairs (z, g)∈D by Q(z, g)= (z′, g′),
where

z′ =ω1 − z2A(z, g), (12)

g′(x)= ω2(x)

z2
− zB(z, g)(x) for x �=0; g′(0)=−1. (13)

We shall prove the following lemma.

LEMMA 5.1. Let 0<r<1 be a constant. There exist positive constants a1<1, a2>

1, and c< 1 such that the equation (z, g)=Q(z, g) has a solution (z, g)∈D for all
sufficiently small z0 if ω1 = z0, ω2(0)=−z2

0, and
∑
x �=0 |ω2(x)|� rz2

0.

Before we prove this lemma, let us verify that it implies Proposition 4.2. Let 0<
r < 1 be fixed and let ω1 be sufficiently small for the statement of Lemma 5.1 to
be valid. Let ω2 be such that ω2(0)= −ω2

1 and
∑
x �=0 |ω2(x)| � rω2

1. Let (z, g) be
the solution of (z, g)=Q(z, g), whose existence is guaranteed by Lemma 5.1. Let
ω′

1 and ω′
2 be the first two cluster functions corresponding to the pair (z, g). Note

that ω1 and ω′
1 satisfy the same equation

z=ω1 − z2A(z, g); z=ω′
1 − z2A(z, g).

Therefore, ω1 =ω′
1. The functions ω2 and ω′

2 also satisfy the same equation

g(x)= ω2(x)

z2
− zB(z, g)(x); g(x)= ω′

2(x)

z2
− zB(z, g)(x); for x �=0.

Thus, ω2(x)=ω′
2(x) for x �=0. The fact that ω2(0)=ω′

2(0) follows from

ω2(0)=−ω2
1 =−ω′

1
2 =ω′

2(0).

Thus, it remains to prove Lemma 5.1. The proof will be based on the fact that for
small z0 the operator Q:D→D is a contraction in an appropriate metric. Define

dz0(z1, z2)= h|z1 − z2|
z0

.

The value of the constant h will be specified later. Now the metric on D is given
by

ρ((z1, g1), (z2, g2))=dz0(z1, z2)+d(g1, g2).

Lemma 5.1 clearly follows from the contracting mapping principle and the follow-
ing lemma

LEMMA 5.2. Let 0< r < 1 be a constant. There exist positive constants a1 < 1,
a2>1, and c<1 such that for all sufficiently small z0 the operator Q acts from the
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domain D into itself and is uniformly contracting in the metric ρ for some value of
h>0, provided that ω1 = z0, ω2(0)=−z2

0, and
∑
x �=0 |ω2(x)|� rz2

0.

Proof. Take c= r+2
3 , a1 =

√
2r
r+1 , a2 = 2. We shall need certain estimates on the

values of A(z, g) and B(z, g) for (z, g)∈D. Namely, there exist universal constants
u1, . . . , u6, such that for sufficiently small z0 we have

sup
(z,g)∈D

|A(z, g)|�u1. (14)

sup
(z,g)∈D

∑

x �=0

|B(z, g)(x)|�u2. (15)

sup
(z1,g),(z2,g)∈D

|A(z1, g)−A(z2, g)|�u3|z1 − z2|. (16)

sup
(z,g1),(z,g2)∈D

|A(z, g1)−A(z, g2)|�u4d(g1, g2). (17)

sup
(z1,g),(z2,g)∈D

∑

x �=0

|B(z1, g)(x)−B(z2, g)(x)|�u5|z1 − z2|. (18)

sup
(z,g1),(z,g2)∈D

∑

x �=0

|B(z, g1)(x)−B(z, g2)(x)|�u6d(g1, g2). (19)

These estimates follow from Lemma 6.1 below. For now, assuming that they are
true, we continue with the proof of Lemma 5.2. The fact that QD⊆D is guaran-
teed by the inequalities

z0 + (a2z0)
2u1 �a2z0, (20)

z0 − (a2z0)
2u1 �a1z0, (21)

rz2
0

(a1z0)
2

+a2z0u2 � c. (22)

It is clear that (20)–(22) hold for sufficiently small z0. Let us now demonstrate that
for some h and for all sufficiently small z0 we have

ρ(Q(z1, g1),Q(z2, g2))� 1
2ρ((z1, g1), (z2, g2)) if (z1, g1), (z2, g2)∈D. (23)

First, taking (14), (16), and (17) into account, we note that

dz0(z
2
1A(z1, g1), z

2
2A(z2, g2))

�dz0(z
2
1A(z1, g1), z

2
2A(z1, g1))+

+dz0(z
2
2A(z1, g1), z

2
2A(z2, g1))+dz0(z

2
2A(z2, g1), z

2
2A(z2, g2))

�
u1h|z2

1 − z2
2|

z0
+ u3h(a2z0)

2|z1 − z2|
z0

+ u4h(a2z0)
2d(g1, g2)

z0
.

If h is fixed, the right-hand side of this inequality can be estimated from above,
for all sufficiently small z0, by 1

6 (dz0(z1, z2)+d(g1, g2)). Similarly,
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∑

x �=0

|z1B(z1, g1)(x)− z2B(z2, g2)(x)|

�
∑

x �=0

|z1B(z1, g1)(x)− z2B(z1, g1)(x)|+

+
∑

x �=0

|z2B(z1, g1)(x)− z2B(z2, g1)(x)|+

+
∑

x �=0

|z2B(z2, g1)(x)− z2B(z2, g2)(x)|

�u2|z1 − z2|+u5a2z0|z1 − z2|+u6a2z0d(g1, g2).

Again, if h is fixed, the right-hand side of this inequality can be estimated from
above, for all sufficiently small z0, by 1

6 (dz0(z1, z2)+d(g1, g2)). Finally,

∑

x �=0

∣
∣
∣
∣
∣

ω2(x)

z2
1

− ω2(x)

z2
2

∣
∣
∣
∣
∣
� rz2

0

∣
∣
∣
∣
∣

1

z2
1

− 1

z2
2

∣
∣
∣
∣
∣
� 2a2|z1 − z2|

a4
1z0

.

We can now take h = 12a2
a4

1
, which implies that the right-hand side of the last

inequality can be estimated from above by 1
6dz0(z1, z2). We have thus demonstrated

the validity of (23), which means that the operator Q is uniformly contracting.
This completes the proof of the lemma.

6. Estimates on the Ursell Functions

In this section, we shall derive certain estimates on the Ursell functions, which, in
particular, will imply the inequalities (14)–(19).

LEMMA 6.1. Suppose that the functions g1(x) and g2(x) satisfy (2) with c<1. Let
ϕk = (ϕkm(x1, . . . , xm))m�0, k=1,2 be the corresponding Ursell functions. Then there
exist constants q1 and q2 such that

∑

y1,...,yn∈Zd

|ϕk1+n(0, y1, . . . , yn)|�n!qn+1
1 , k=1,2,

∑

y1,...,yn∈Zd

|ϕ1
1+n(0, y1, . . . , yn)−ϕ2

1+n(0, y1, . . . , yn)|�n!qn+1
2 ||g1 −g2||.

Note that the inequalities (14)–(19) immediately follow from this lemma and the
definitions of A(z, g) and B(z, g)(x).

Recall that in Section 3 we introduced the functions ϕ̃X(Y ), which were closely
related to the Ursell functions. Given g1(x) and g2(x) which satisfy (2) with c<1,
we now define
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rk(m,n)= sup
(x1,...,xm)

∑

y1,...,yn∈Zd

|ϕ̃k(x1,...,xm)
(y1, . . . , yn)|, k=1,2,

d(m,n)= sup
(x1,...,xm)

∑

y1,...,yn∈Zd

|ϕ̃1
(x1,...,xm)

(y1, . . . , yn)− ϕ̃2
(x1,...,xm)

(y1, . . . , yn)|.

We shall prove the following lemma.

LEMMA 6.2. Suppose that the functions g1(x) and g2(x) satisfy (2) with c < 1.
Then there exist constants q1 and q2 such that

rk(m,n)�n!qm+n
1 , k=1,2, (24)

d(m,n)�n!qm+n
2 ||g1 −g2||. (25)

Since we can express the Ursell functions in terms of ϕ̃X(Y ) via (6), Lemma 6.2
immediately implies Lemma 6.1. It remains to prove Lemma 6.2.

Proof of Lemma 6.2. The estimate (24) follows from (4.27) of [7], and thus we
shall not prove it here. We proceed with the proof of (25).

In the definition of d(m,n), we can take the supremum over a restricted set of
sequences (x1, . . . xm), namely those sequences, for which all xi are distinct. Indeed,
if xi =xj for i �= j , then ϕ̃1

(x1,...,xm)
(y1, . . . , yn)= ϕ̃2

(x1,...,xm)
(y1, . . . , yn)=0, as follows

from the definition of ϕ̃X(Y ).
Let fk(x)= e−�k(x)=gk(x)+1 , k=1,2. We shall need the fact that if X is any

set, which does not contain x1, then

∏

x∈X
fk(x−x1)� exp

(
∑

x∈X
ln(gk(x−x1)+1)

)

� exp

(
∑

x∈X
gk(x−x1)

)

� ec.

The proof of (25) will proceed via an induction on m+n. Assume that x1, . . . , xm

are all distinct. From the recurrence relation (7) it follows that

∑

y1,...,yn∈Zd

|ϕ̃1
(x1,...,xm)

(y1, . . . , yn)− ϕ̃2
(x1,...,xm)

(y1, . . . , yn)|

=
∑

y1,...,yn∈Zd

∣
∣
∣
∣
∣
∣

m∏

i=2

f1(xi −x1)
∑

S⊆Y

∏

j,yj∈S
g1(yj −x1)ϕ̃

1
S∪X\x1

(Y\S)−

−
m∏

i=2

f2(xi −x1)
∑

S⊆Y

∏

j,yj∈S
g2(yj −x1)ϕ̃

2
S∪X\x1

(Y\S)
∣
∣
∣
∣
∣
∣
� I1 + I2,
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where

I1 =
∑

y1,...,yn∈Zd

∑

S⊆Y

∣
∣
∣
∣
∣
∣

m∏

i=2

f1(xi−x1)
∏

j,yj∈S
g1(yj −x1)(ϕ̃

1
S∪X\x1

(Y\S)−ϕ̃2
S∪X\x1

(Y\S))
∣
∣
∣
∣
∣
∣
,

I2 =
∑

y1,...,yn∈Zd

∑

S⊆Y

∣
∣
∣
∣
∣
∣




m∏

i=2

f1(xi −x1)
∏

j,yj∈S
g1(yj −x1)−

−
m∏

i=2

f2(xi −x1)
∏

j,yj∈S
g2(yj −x1)



 ϕ̃2
S∪X\x1

(Y\S)
∣
∣
∣
∣
∣
∣
.

Note that there are n!
s!(n−s)! subsequences S of the sequence Y , which are of length

s. Rearranging the sum, so that to take it over all possible values of s, we see that

I1 �
n∑

s=0

n!
s!(n− s)!

∑

y1,...,ys∈Zd

∣
∣
∣
∣
∣
∣

m∏

i=2

f1(xi −x1)

s∏

j=1

g1(yj −x1)

∣
∣
∣
∣
∣
∣
d(m+ s−1, n− s)

�
n∑

s=0

n!
s!(n− s)!e

c(1+ c)sd(m+ s−1, n− s).

Similarly,

I2 �
n∑

s=0

n!
s!(n− s)!

∑

y1,...,ys∈Zd

∣
∣
∣
∣
∣
∣

m∏

i=2

f1(xi −x1)

s∏

j=1

g1(yj −x1)−

−
m∏

i=2

f2(xi −x1)

s∏

j=1

g2(yj −x1)

∣
∣
∣
∣
∣
∣
r(m+ s−1, n− s).

Let

F
a,b
k =

b∏

i=a
|fk(xi −x1)|, where 2�a�b�m and k=1,2,

G
a,b
k =

b∏

i=a
|gk(yi −x1)|, where 1�a�b� s and k=1,2.

Note that

F
a,b
k � ec, (26)
∑

ya,...,yb∈Zd

G
a,b
k � (1+ c)b−a+1. (27)
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Then,

∑

y1,...,ys∈Zd

∣
∣
∣
∣
∣
∣

m∏

i=2

f1(xi −x1)

s∏

j=1

g1(yj −x1)−
m∏

i=2

f2(xi −x1)

s∏

j=1

g2(yj −x1)

∣
∣
∣
∣
∣
∣

�
∑

y1,...,ys∈Zd

[|f1(x2 −x1)−f2(x2 −x1)|F 3,m
1 G

1,s
1 +

+F 2,2
2 |f1(x3 −x1)−f2(x3 −x1)|F 4,m

1 G
1,s
1 +· · ·+F 2,m−1

2 |f1(xm−x1)−f2(xm−x1)|G1,s
1 +

+F 2,m
2 |g1(y1 −x1)−g2(y1 −x1)|G2,s

1 +· · ·+F 2,m
2 G

1,s−1
2 |g1(ys −x1)−g2(ys −x1)|].

There are m+ s terms inside the square brackets. In addition to (26) and (27) we
use the fact that

|f1(xi −x1)−f2(xi −x1)|� ||g1 −g2||, 2� i�m,
∑

yi∈Zd

|g1(yi −x1)−g2(yi −x1)|� ||g1 −g2||, 1� i�n.

Therefore, the entire sum can be estimated from above by

(m+ s)e2c(1+ c)s ||g1 −g2||.
Therefore,

I2 �
n∑

s=0

n!
s!(n− s)! (m+ s)e2c(1+ c)s ||g1 −g2||r(m+ s−1, n− s)

� ||g1 −g2||(m+n)e2cn!qm+n−1
1

n∑

s=0

(1+ c)s
s!

� ||g1 −g2||(m+n)e1+3cn!qm+n−1
1 .

Combining this with the estimate on I1 we see that

d(m,n)�
n∑

s=0

n!
s!(n− s)!e

c(1+ c)sd(m+ s−1, n− s)+

+||g1 −g2||(m+n)e1+3cn!qm+n−1
1 .

Let us use induction on m+n to prove that

d(m,n)�n!qm+n
2 ||g1 −g2||(m+n) (28)

for some value of q2. The statement is obviously true for m+n=0. Assuming that
the induction hypothesis holds for all m′, n′ with m′ +n′ �m+n−1, we obtain

d(m,n)�
n∑

s=0

n!
s!(n− s)!e

c(1+ c)s(n− s)!qm+n−1
2 ||g1 −g2||(m+n−1)+

+||g1 −g2||(m+n)e1+3cn!qm+n−1
1

� ||g1 −g2||(m+n)e1+3cn!(qm+n−1
1 +qm+n−1

2 ).
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The expression in the right-hand side of this inequality is estimated from above by
the right-hand side of (28) if q2 = 2e1+3c max(1, q1). Thus, (28) holds for all m,n
with this choice of q2. Note that we can get rid of the factor (m+n) in the right
hand side of (28) by taking a larger value of q2. This completes the proof of (25)
and of Lemma 6.2.
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