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Abstract. We establish an algebraic criterion which ensures the strict positivity of the
entropy production in quantum models consisting of a small system coupled to thermal
reservoirs at different temperatures.

Mathematics Subject Classifications (2000). 46L05, 81Q10, 82C10, 82C70.

Key words. Non-equilibrium steady state, entropy production, weak coupling theory.

1. Introduction

When a small quantum system is coupled to two ideal infinitely extended heat res-
ervoirs at different temperatures, physically one would expect to have a non-zero
steady state energy flux directed from the hot to the cold reservoir. To establish
such a property on the basis of a microscopic Hamiltonian, including the ther-
mal reservoirs, is not so obvious, since, in principle, the energy flux could vanish
because of two obstructions:

(i) The coupling to the reservoirs may be ineffective.
(ii) Inside the small system there could be an unsurmountable energy flux barrier.

The aim of our note is to establish a manageable criterion which ensures a strictly
positive entropy production, in other words a nonvanishing energy flux.

To be more precise, we consider a small system with a finite dimensional Hilbert
space H coupled to two identical reservoirs consisting of ideal Fermi gases, with
fermionic Fock space F. The total Hamiltonian on H⊗F⊗F is of the form

H(λ)= H ⊗1⊗1+1⊗ H f ⊗1+1⊗1⊗ H f

+λ(QL ⊗ϕ(αL)⊗1+ Q R ⊗1⊗ϕ(αR)) , (1)

where H is the Hamiltonian of the small system, QL , Q R are the self-adjoint cou-
pling operators acting on H, and H f is the free-field Hamiltonian of the reser-
voir constructed from a suitable one-particle Hamiltonian. The coupling to the
reservoirs is linear in the field operators and smeared over suitable test functions
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αL , αR , cf. [6] for precise statements of the assumptions in such models. Since the
thermal reservoirs are infinitely extended, one has to take suitable limits. Such
a construction leads to non-equilibrium steady states (NESS) in the sense of [7]
within the mathematical framework of algebraic quantum statistical mechanics.
We refer to [1, 5] for a more detailed discussion. In this framework, each part of
the total system, i.e., the small system and the reservoirs, is described by a C∗-
dynamical system, i.e., a C∗-algebra of observables and a group of time evolu-
tion automorphisms on these observables. If we assume the initial conditions to
be such that both the small system and the reservoirs are in thermal equilibrium
(for example infinite temperature for the small system as in [6] and TL , TR for
the reservoirs), then the GNS-representation (w.r.t. this initial condition) allows us
to treat the C∗-dynamical system within Hilbert space formalism. In this Hilbert
space the time evolution is implemented through a unitary group generated by
a self-adjoint operator, the so called standard Liouvillian, constructed by means
of the Tomita–Takesaki modular theory of von Neumann algebras. If the sys-
tem is close to thermal equilibrium the spectral theory of the standard Liouvillian
encodes the ergodic properties of the system. In contrast, if the system is far from
equilibrium, the standard Liouvillian does not provide readily accessible infinite
volume information. However, using again the Tomita-Takesaki modular theory,
the so called C-Liouvillian is introduced in [6], a non-self-adjoint operator which
generates a non-unitary group implementing the time evolution on the Hilbert
space. Complex deformation techniques allow then for a relation between NESS
and zero-resonance eigenvectors of this C-Liouvillian.

In the generality posed to establish the existence of a non-zero steady state
energy flux seems rather intractable. However, if the coupling constant λ is small
but finite, say |λ|�λ0 with sufficiently small λ0 > 0, there has been considerable
progress recently. In particular, if the system is effectively coupled (see next sec-
tion), and under suitable assumptions, among others on the regularity of the form
factors αL , αR in (1), it has been proven in [6] that, for 0 < |λ|�λ0 the NESS is
unique, the NESS has a perturbation expansion in λ, and the NESS energy flux
is oriented from the left reservoir into the small system. In particular,

j (λ)=λ2σ0 +O(λ3) (2)

with σ0 �0. Moreover, σ0 is computable in terms of the Davies weak coupling
generator on the Hilbert space H of the small system, cf. [5, 6, 10], and (10)
below. Therefore, the issue whether j (λ) �=0 for 0< |λ|�λ0 is reduced to a much
simpler question, namely whether for the dissipative quantum dynamics of the
small system the steady state energy flux σ0 does not vanish.

In this note, our contribution is to provide a simple algebraic criterion which
ensures σ0 �= 0. Physically, the criterion expresses that the system will thermalize
at βL when coupled only to the left reservoir, and alike for βR . When coupled to
both reservoirs at different temperatures it follows that σ0 �= 0. This condition is
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expected to be sufficient only and we will confirm so for an explicit example in
the last section.

Due to the conservation of energy, the entropy production ε(λ) in the NESS is
proportional to the steady state energy flux, ε(λ)= (βR − βL) j (λ), whence with (2)

ε(λ)=λ2(βR−βL) σ0 +O(λ3). (3)

Thus, equivalently, we state a sufficient condition for the entropy production to be
strictly positive provided 0< |λ|�λ0 (for a definition of entropy production in the
microscopic model and in its weak coupling limit see [5] and [10], respectively).

For classical Hamiltonian models the same problem has been investigated in [4].
There, a rather specific form of the smearing functions αL , αR is required. But
given this restriction, the result in [4] is more general than the one proved here.
In particular, there is no condition of small coupling, thus no recourse to a weak
coupling effective dynamics.

2. The Davies Generator

In the following, we briefly explain the quantum dynamical semigroup for the
effective dynamics of the small system at weak coupling. For a more detailed
description of the weak coupling limit see [3, 10].

Let us define the Fourier transform of the time correlation functions of the res-
ervoir part of the interactions (r will always stand for the left or the right reser-
voir, r = L , R),

hr (E)=
∫ ∞

−∞
dt e−i Et ωr (ϕ(αr ) τ t

r ϕ(αr )). (4)

Here ωr denotes the thermal equilibrium state of reservoir r w.r.t. to the time
evolution τ t

r of the ideal Fermi gas at inverse temperature βr and ϕ(αr ) stems
from (1). Note that, since ωr is a (τr , βr )-KMS state, hr (E) has the property ([10,
(III.16)])

hr (−E)= e−Eβr hr (E)�0. (5)

A natural condition is to assume that the reservoirs induce transitions between any
two energy levels of the small system. Denoting by σ(A) the spectrum of the oper-
ator A, this leads to the following assumption.

ASSUMPTION (Er ) (Effective coupling)

hr (E)>0 for all E ∈σ([H, ·]).

To construct the Davies generator, let En ∈σ(H) and Pn be the corresponding
spectral projection. Then H =∑

n En Pn . Moreover, let E ∈σ([H, ·]) with [H, ·] the
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Liouvillean for H . With the help of the definition

Qr (E)=
∑

Em−En=E

Pn Qr Pm (6)

we can write the Davies generator Kr in the form

Krρ =
∑

E∈σ([H,·])
−isr (E) [Qr (E)∗Qr (E), ρ ]

+ hr (E)
([Qr (E)ρ, Qr (E)∗]+ [Qr (E), ρ Qr (E)∗]) . (7)

Here, Kr ∈L(L1(H)), i.e., Kr is a bounded operator on the trace class operators
L1(H) on H, hr is defined in (4), and sr (E) = 1/2π pv

∫ ∞
−∞ dE ′ hr (E ′)/(E ′ − E)

denotes the Hilbert transform of hr . If the small system is coupled to both res-
ervoirs the generator K in the weak coupling limit is the sum

K = KL + K R . (8)

A steady state ρ0 of the Davies generator K is determined by

Kρ0 =0. (9)

Theorem 3 in [10] asserts that if (EL) and (ER) hold, and if the commutant
{H, QL , Q R}′ = C1, then (9) has a unique solution (we denote by X ′ = {y ∈
L(H) | [y, x] = 0 for all x ∈ X} the commutant of the subset X ⊆ L(H)). In fact,
under this condition, and provided 0 < |λ|�λ0, it is proved that the full micro-
scopic model converges to a unique NESS as t →∞.

In the weak coupling approximation the change of energy is

d
dt

tr(Hρ(t))= tr(H Kρ(t)),

and, thus, the steady state flux σ0 from (2), (3) should be tr(H KLρ0). Indeed, from
[5, 6, 10],

σ0 = tr(H KLρ0). (10)

The issue is to have a condition ensuring σ0 >0 in case βR −βL >0.

3. Strict Positivity of the Entropy Production

The thermalization at coupling only to one reservoir is guaranteed by the follow-
ing assumption.

ASSUMPTION (Cr ) (Triviality of commutants)

{H, Qr }′ =C 1.

We now state our claim.
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THEOREM (Strict positivity of entropy production). Let the small system be well
coupled in the sense of (EL ), (ER), let βR >βL , and let (CL ) and (CR) hold. Then,
for sufficiently small λ, the entropy production satisfies

ε(λ)>0.

Remark. The conditions are not necessary as can be seen from the example (a)
in the last section.

COROLLARY (Non-zero steady state energy flux). Under the same conditions, if
βR >βL , the steady state energy flux satisfies

j (λ)>0.

Proof. We apply Theorem 3 from [10] for a single reservoir (see also [8, 9]). This
theorem proceeds on the assumption that the small system coupled to reservoir r
has a Davies generator Kr of the form (7). It then asserts that, if (Er ) holds, (Cr )
implies dim ker Kr = 1. Since the thermal Gibbs state ρr = e−βr H /tr(e−βr H ) is sta-
tionary (cf. [10, (III.22)]), the only density matrix ρ on H which solves Krρ =0 is
ρ =ρr .

Next, we want to take advantage of part (i) of Theorem 2 in [10] about the rela-
tion of the kernel of the Davies generator Kr and the vanishing of the entropy
production σr (ρ). In [10, (V.6)] the entropy production σr (ρ) on the state ρ of
the small system coupled to reservoir r is defined as the change of the relative
entropy w.r.t. the thermal Gibbs state along the trajectory of the time evolved
density matrix ρ. Furthermore, from [10, (V.29)] we know that σr (ρ) has the form

σr (ρ)=−βr tr(H Krρ)− tr(logρ Krρ).

Now, part (i) of Theorem 2 in [10] asserts that σr (ρ) is nonnegative, and, under
(Er), the entropy production σr (ρ) vanishes only for ρ =ρr . Furthermore, due to
(8), the total entropy production σ(ρ), i.e., the entropy production if the small sys-
tem is coupled to both reservoirs, can be written as

σ(ρ)=σL(ρ)+σR(ρ).

Since the temperatures of the two reservoirs are different, ρL �=ρR . By (CL) and
(CR), {H, QL , Q R}′ = C1 and we can again apply Theorem 3 from [10] which
implies that dim ker K =1, Kρ0 =0. Therefore, the total entropy production σ(ρ0)

is strictly positive,

σ(ρ0)>0.

Furthermore, it is of the form σ(ρ0) = −βL tr(H KLρ0) − βR tr(H K Rρ0), since, by
stationarity of ρ0, the contribution tr(logρ0 Kρ0) vanishes. Finally, σ0 in (2), (3)
is given by σ(ρ0)= (βR −βL)σ0.
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4. Applications

As an illustration, we discuss two simple examples for the small system.

4.1. A SINGLE SPIN

Let the small system consist of a single spin 1/2 with Hilbert space H = C
2 and

Pauli matrices σ1, σ2, σ3. Then, the condition (Cr ) is equivalent to [H, Qr ] �=0. Our
theorem hence implies e.g., that the single spin with H =σ3 and QL = Q R =σ1 has
strictly positive entropy production which is also established in [5, 6].

4.2. TWO XY COUPLED SPINS

We consider the two-spin Hamiltonian of XY type (γ1, γ2 ∈R),

H = 1
2

(σ3 ⊗1+1⊗σ3 +γ1 σ1 ⊗σ1 +γ2 σ2 ⊗σ2) .

The coupling operators QL , Q R are chosen to be of the form

QL =σ1 ⊗1, Q R =1⊗σ1.

We want to discuss three choices for the parameters γ1, γ2.

(a) γ1=γ2=1. In this case,

1⊗σ1 +σ1 ⊗σ3 ∈{H, QL}′, σ1 ⊗1+σ3 ⊗σ1 ∈{H, Q R}′.
Hence, the assumptions (CL) and (CR) do not hold. By direct computation
we find that dim ker Kr = 2, imposing only (5). Nevertheless, the commutant
{H, QL , Q R}′ is trivial and the Davies generator K has a unique stationary state
ρ0 which turns out to look like

ρ0 = 1
4

(
1⊗1− sinh(βL+βR)

2 coshβL coshβR
H

)
,

independent of the choice for hr and sr . Calculating its entropy production we
find

σ(ρ0)= (βR−βL)
sinh(βR−βL)

coshβL coshβR
>0,

which is stricly positive. This example shows that, in general, the conditions of our
theorem are not necessary.

(b) Anisotropic XY Coupling. If we set γ1 = 1 +γ and γ2 = 1 −γ , then γ1 =γ2 = 1
corresponds to γ =0. For γ �=0, the anisotropic XY coupling, the commutants are
trivial, i.e., (CL ) and (CR) hold. Hence, our theorem is applicable.
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Remark. The existence of a non-zero energy flux through the infinite XY chain
can be proved using scattering theory on the one particle Hilbert space of the free
Fermion system arising from the XY chain under a Jordan–Wigner transforma-
tion, cf. [2].

(c) XY Chain Cut Apart, γ1 =γ2 =0. The right and left system are uncoupled and,
clearly, there is no heat flux at any λ. To see how our theorem fails, one notes
that (Cr) does not hold. {H, QL , Q R}′ =C1 is in force, and there is a unique sta-
tionary state ρ0 of K given by (2 cosh(βL/2)2 cosh(βR/2))−1e−(βL/2)σ3 ⊗ e−(βR/2)σ3 .
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1. Aschbacher, W.H. Jakšić, V. Pautrat, Y. Pillet, C.-A.: Topics in non-equilibrium
quantum statistical mechanics, Springer lecture notes in mathematics, (to appear),
mp arc 05-207

2. Aschbacher, W.H. Pillet, C.-A.: Non-equilibrium steady states of the XY chain,
J. Stat. Phys. 112, 1153 (2003)

3. Davies, E.B.: Markovian master equations. Comm. Math. Phys. 39, 91 (1974)
4. Eckmann, J.-P.: Pillet, C.-A.: Rey-Bellet, L.: Entropy production in non-linear, ther-

mally driven Hamiltronian systems, J. Stat. Phys. 95, 305 (1999)
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