
DOI 10.1007/s11005-005-0027-5
Letters in Mathematical Physics (2005) 74:181–199 © Springer 2005

Automorphisms of the Weyl Algebra

ALEXEI BELOV-KANEL1 and MAXIM KONTSEVICH2

1Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel.
e-mail: kanel@mccme.ru
2IHES, 35 route de Chartres, F-91440, Bures-sur-Yvette, France. e-mail: maxim@ihes.fr

(Received: 25 October 2005)

Abstract. We discuss a conjecture which says that the automorphism group of the Weyl
algebra in characteristic zero is canonically isomorphic to the automorphism group of the
corresponding Poisson algebra of classical polynomial symbols. Several arguments in favor
of this conjecture are presented, all based on the consideration of the reduction of the
Weyl algebra to positive characteristic.
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1. Introduction

This paper is devoted to the following surprising conjecture.

CONJECTURE 1. The automorphism group of the Weyl algebra of index n over
C is isomorphic to the group of the polynomial symplectomorphisms of a 2n-dimen-
sional affine space

Aut(An,C)�Aut(Pn,C).

Here for an integer n�1, denote by An,C the Weyl algebra of index n over C

C〈x̂1, . . . , x̂2n〉/
(
relations[x̂i , x̂j ]=ωij , ∀i, j 1�i, j�2n

)

where (ωij )1�i,j�2n is the standard skew-symmetric matrix:

ωij = δi,n+j − δi+n,j ,
and by Pn,C the Poisson algebra over C which is the usual polynomial algebra
C[x1, . . . , x2n]�O(A2n

C
) endowed with the Poisson bracket:

{xi, xj }=ωij , 1�i, j�2n.

The algebra An,C is isomorphic to the algebra D(An
C
) of polynomial differential

operators in n variables x1, . . . , xn:

x̂i �→xi, x̂i+n �→∂i :=∂/∂xi, 1�i�n.
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The conjecture becomes even more surprising if one takes into account the fact
that the Lie algebras of derivations of An,C and Pn,C are not isomorphic to each
other (see Section 3). Conjecture 1 is closely related to a question raised by one of
us few years ago (see Section 4.1, Question 4 in [4]), the motivation at that time
came from the theory of deformation quantization for algebraic varieties.

One of main results of the present paper is Theorem 1 which says that the sub-
groups of Aut(An,C) and Aut(Pn,C) consisting of the so-called tame automorphisms,
are naturally isomorphic to each other. Another result is Theorem 2 from Section 6.3,
which allows to propose a (hypothetical) specific candidate for the isomorphism
between two automorphism groups as above. The key idea is to use reduction to
finite characteristic and the fact that the Weyl algebra in finite characteristic has
a huge center isomorphic to the polynomial algebra. Another application of this
idea is a proof of a stable equivalence between the Jacobian and Dixmier conjec-
tures, see [1]. This paper is an extended version of the talk given by one of us (see
[5]) on Arbeitstagung 2005 (Bonn).

We finish the introduction with

1.1. FIRST POSITIVE EVIDENCE: CASE n=1

The structure of the group Aut(P1,C) has been known since the work of
H. W. E. Jung (see [3]). This group contains the group G1=SL(2,C)�C

2 of special
affine transformations, and the solvable group G2 of polynomial transformations of
the form

(x1, x2) �→ (λx1+F(x2), λ
−1x2), λ∈C

×, F ∈C[x].

The group Aut(P1,C) is equal to the amalgamated product of G1 and G2 over
their intersection. Dixmier in [2] and later Makar-Limanov in [6] proved that if one
replaces the commuting variables x1, x2 by noncommuting variables x̂1, x̂2 in the
formulas above, one obtains the description of the group Aut(A1,C). Hence, in the
case n=1 the two automorphism groups are isomorphic.

2. Automorphism Groups as ind-Schemes

For an arbitrary commutative ring R one can define the Weyl algebra An,R over
R, by just replacing C by R in the definition. We denote the algebra An,Z simply
by An, hence An,R=An⊗R. The algebra An,R considered as an R-module is free
with basis

x̂α := x̂α1
1 · · · x̂α2n

2n , α= (α1, . . . , α2n)∈Z
2n
�0.

We define an increasing filtration (the Bernstein filtration) on the algebra An,R by

A
�N
n,R :=

{
∑

α

cαx̂
α | cα ∈R, cα=0 for |α| :=α1+· · ·+α2n >N

}

.
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This filtration induces a filtration on the automorphism group:

Aut�N An,R :={f ∈Aut(An,R)|f (x̂i), f−1(x̂i)∈A�N
n,R ∀i=1, . . . ,2n} .

The following functor on commutative rings:

R �→Aut�N(An,R),

is representable by an affine scheme of finite type over Z. We denote this scheme by

Aut�N(An).

The ring of functions O(Aut�N(An)) is generated by the variables

(ci,α, c
′
i,α)1�i�2n,|α|�N

which are the coefficients of the elements f (x̂i), f−1(x̂i) in the standard basis (x̂α)
of the Weyl algebra.

The obvious inclusions Aut�N(An) ↪→Aut�(N+1)(An) are closed embeddings, the
inductive limit over N of schemes Aut�N(An) is an ind-affine scheme over Z. We
denote it by Aut(An), it is a group-like object in the category of ind-affine schemes.

Similarly, one can define all the above notions for the Poisson algebra Pn, in
particular we have an affine scheme Aut�N(Pn) of finite type, and a group ind-
affine scheme Aut(Pn).

Later it will be convenient to use the notation

Aut�N(An,R) :=Aut�N(An)×Spec Z SpecR

(here R is an arbitrary commutative ring), for a scheme over SpecR obtained by
the extension of scalars, similarly we will have schemes Aut�N(Pn,R) for the case
of Poisson algebras.

There is also another sequence of closed embeddings (stabilization)

Aut�N(An) ↪→Aut�N(An+1), Aut�N(Pn) ↪→Aut�N(Pn+1)

corresponding to the addition of two new generators and extending the automor-
phisms by the trivial automorphism on the additional generators.

Conjecture 1 says that groups of points Aut(An)(C) and Aut(Pn)(C) are isomor-
phic. We expect that the isomorphism should preserve the filtration by degrees,
compatible with stabilization embeddings, and should be a constructible map for
any given term of filtration, defined over Q:

CONJECTURE 2. There exists a family φn,N of constructible one-to-one maps

φn,N : Aut�N(An,Q)→Aut�N(Pn,Q)

compatible with the inclusions increasing indices N and n, and with the group structure.

Obviously, this conjecture implies Conjecture 1, and moreover it implies that the
isomorphism exists if one replaces C by an arbitrary field of characteristic zero.
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3. Negative Evidence

For any group object G in the category of ind-affine schemes over Q, one can
associate its Lie algebra Lie(G), by considering points of G with coefficients in the
algebra of dual numbers Q[t ]/(t2). The Lie algebras

Lie(Aut(An,Q)), Lie(Aut(Pn,Q))

are by definition the algebras of derivations of An,Q and Pn,Q, respectively. The
following fact is well known:

LEMMA 1. All derivations of the Weyl algebra are inner:

Der(An,Q)�An,Q/Q ·1An,Q , f ∈An,Q �→ [f, · ]∈Der(An,Q).

Proof. Outer derivations of any algebra A coincide with the first Hochschild
cohomology

H 1(A,A)=Ext1
A-mod-A(A,A).

We claim that for A=An,Q the whole Hochschild cohomology is a 1-dimensional
space in degree zero. Namely, it is easy to see that there exists an isomorphism
A⊗Aop�D(A2n

Q
) such that the diagonal bimodule A is isomorphic to O(A2n

Q
). The

result follows from a standard property of D-modules:

Ext∗DX-mod(OX,OX)=H ∗de Rham(X)
which holds for any smooth variety X.

Derivations of Pn,Q are polynomial Hamiltonian vector fields:

Der(Pn,Q)�Pn,Q/Q ·1Pn,Q , f ∈Pn,Q �→ {f, · }∈Der(Pn,Q).

We see that both Lie algebras of derivations are of the “same” size, each of
them has a basis labeled by the set Z

2n
�0 \ {(0, . . . ,0)}. Nevertheless, these two Lie

algebras are not isomorphic. Namely, Der(Pn,Q) has many nontrivial Lie subal-
gebras of finite codimension (e.g. Hamiltonian vector fields vanishing at a given
point in Q

2n), whereas the algebra Der(An,Q) has no such subalgebras.
The conclusion is that the hypothetical constructible isomorphism φn,N cannot

be a scheme map.

4. Positive Evidence: Tame Automorphisms

Obviously, the symplectic group Sp(2n,C) acts by automorphisms of An,C and Pn,C,
by symplectic linear transformations of the variables x̂1, . . . , x̂2n and x1, . . . , x2n,
respectively. Also, for any polynomial F ∈C[x1, . . . , xn] we define “transvections”

T AF ∈Aut(An,C), T PF ∈Aut(Pn,C)
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by the formulas

T PF (xi)=xi, T PF (xn+i )=xn+i +∂iF (x1, . . . , xn), 1�i�n,
T AF (x̂i)= x̂i , T AF (x̂n+i )= x̂n+i +∂iF (x̂1, . . . , x̂n), 1�i�n.

The last formula makes sense, as we substitute the commuting variables x̂1, . . . , x̂n

in place of x1, . . . , xn in the polynomial ∂iF := ∂F/∂xi . A straightforward check
shows that these maps are well defined, i.e. T PF preserves the Poisson bracket and
T AF preserves the commutation relations between the generators. The automor-
phism T AF is in a sense the conjugation by a nonalgebraic element
exp(F (x̂1, . . . , x̂n)).

The correspondence F �→ T AF (resp. F �→ T PF ) gives a group homomorphism
C[x1, . . . , xn]/C ·1→Aut(An,C) (resp. to Aut(Pn,C)).

Let us denote by Gn the free product of Sp(2n,C) with the abelian group
C[x1, . . . , xn]/C · 1. We obtain two homomorphisms ρAn and ρPn from Gn to
Aut(An,C) and Aut(Pn,C) respectively. The automorphisms which belong to the
image of ρAn (resp. ρPn ) are called tame.

THEOREM 1. In the above notation, KerρAn =KerρPn .

As an immediate corollary, we obtain that the groups of tame automorphisms
of An,C and Pn,C are canonically isomorphic. It is quite possible that all of the
automorphisms of An,C and Pn,C become tame after stabilization, i.e. after adding
several dummy variables and increasing the parameter n. If this is the case, then
we obtain Conjecture 1 (and, in fact, Conjecture 2 as well).

Remark 1. We expect that the canonical isomorphism in Conjecture 2 coincides
with the above isomorphism on subgroups of tame elements.

The proof of Theorem 1 will be given in Section 7.

Remark 2. Shafarevich in [9] introduced a notion of a Lie algebra for an infi-
nite-dimensional algebraic group (in fact, his notion of a group is a bit obscure
as he does not use the language of ind-schemes). It is known that the Lie
algebra associated with the group of all of the automorphisms of a polyno-
mial ring coincides with the Lie algebra of the group of tame automorphisms.
The same is true for the automorphisms of the Weyl algebra and polynomial
symplectomorphisms. However, Shestakov and Umirbaev [10] have shown that the
Nagata automorphism is wild. Hence, we have an infinite-dimensional effect: A
proper subgroup can have the same Lie algebra as the whole group. Our Con-
jecture indicates that further pathologies are possible, the same group has two
different Lie algebras when interpreted as an ind-scheme in two different ways.
Presumably, it means that at least one of our automorphism groups is singular
everywhere.
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5. The Weyl Algebra in Finite Characteristic

Here we introduce the main tool which allows us to relate the algebras An,R and
Pn,R (and their automorphisms).

5.1. THE WEYL ALGEBRA AS AN AZUMAYA ALGEBRA

Let R be a commutative ring in characteristic p> 0, i.e. p · 1R = 0∈R. It is well
known that in this case the Weyl algebra An,R has a big center, and moreover, it
is an Azumaya algebra of rank pn (see [8]).

PROPOSITION 1. For any commutative ring R⊃Z/pZ the center Cn,R of An,R is
isomorphic as an R-algebra to the polynomial algebra R[y1, . . . , y2n], where the vari-
able yi, i=1, . . . ,2n, corresponds to x̂pi . The algebra An,R is a free Cn,R-module of
rank p2n, and it is an Azumaya algebra of rank pn over Cn,R.

Proof. First of all, a straightforward check shows that the elements (x̂pi )1�i�2n
are central and generate over R the polynomial algebra. The algebra An,R is the
algebra over R[y1, . . . , y2n] with generators x̂1, . . . , x̂2n and relations

[x̂i , x̂j ]=ωij , x̂pi =yi, 1�i, j�2n.

After the extension of scalars from R[y1, . . . , y2n] to C′n,R :=R[y1/p
1 , . . . , y

1/p
2n ] the

pullback of the Weyl algebra can be described as an algebra over C′n,R with gen-

erators x̂′i := x̂i −y1/p
i and relations

[x̂′i , x̂
′
j ]=ωij , (x̂′i )p=0, 1�i, j�2n.

It is well known that the algebra over Z/pZ with two generators x̂1, x̂2 and
defining relations [x̂1, x̂2] = 1, x̂p1 = x̂p2 = 0 is isomorphic to the matrix algebra
Mat(p × p,Z/pZ) (consider operators x and d/dx in the truncated polynomial
ring Z/pZ[x]/(xp)). Hence, after the faithfully flat finitely generated extension from
R[y1, . . . , y2n] to C′n,R, we obtain the matrix algebra Mat(pn×pn,C′n,R). Then the
proposition follows from standard properties of Azumaya algebras.

5.2. POISSON BRACKET ON THE CENTER OF THE WEYL ALGEBRA

The next observation is that for any commutative ring R flat over any prime
p ∈Spec Z one can define a Poisson bracket on Cn,R/pR in an intrinsic manner.
Namely, for such R and any two elements a, b ∈ Cn,R/pR we define the element
{a, b}∈Cn,R/pR by the formula

{a, b} := [ã, b̃]
p

(mod pR),

where ã, b̃∈An,R are arbitrary lifts of

a, b∈Cn,R/pR⊂An,R/pR=An,R (mod pR).
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A straightforward check shows that the operation (a, b) �→{a, b} is well defined,
takes values in Cn,R/pR ⊂ An,R/pR, satisfies the Leibniz rule with respect to the
product on Cn,R/pR, and the Jacobi identity.

Morally, our construction of the bracket is analogous to the well-known coun-
terpart in deformation quantization. If one has a one-parameter family of asso-
ciative algebras Ah (flat over the algebra of functions of –h), then on the center
of A0 one has a canonical Poisson bracket given by the “same” formula as
above:

{a0, b0} := [ah, bh]
–h
+O(–h),

where ah, bh ∈Ah are arbitrary extensions of elements

a0, b0 ∈Center(A0)⊂A0.

The prime number p plays the role of Planck constant –h.
The following lemma shows that the canonical Poisson bracket on Cn,R/pR coin-

cides (up to sign) with the standard one:

LEMMA 2. In the above notation, one has

{yi, yj }=−ωij .
Proof. It is enough to make the calculation in the case of one variable. The follow-

ing elementary identity holds in the algebra of differential operators with coefficients
in Z:

[(d/dx)p, xp]=
p−1∑

i=0

(p!)2

(i!)2(p− i)!x
i(d/dx)i .

The r.h.s. is divisible by p, and is equal to −p modulo p2.

In the above considerations one can make a weaker assumption, it is enough to
consider the coefficient ring R flat over Z/p2

Z. The corollary is that for any auto-
morphism of the Weyl algebra in characteristic p which admits a lift mod p2, the
induced automorphism of the center preserves the canonical Poisson bracket. The
condition of the existence of the lift is necessary. For example, the automorphism
of A2,Z/pZ given by

x̂1 �→ x̂1+ x̂p2 x̂p−1
3 , x̂i �→ x̂i , i=2,3,4

acts on the center by

y1 �→y1+yp2 yp−1
3 −y2, yi �→yi, i=2,3,4.

The above map does not preserve the Poisson bracket.
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6. Correspondence Between Automorphisms in Finite Characteristic

6.1. RINGS AT INFINITE PRIME

It will be convenient to introduce the following notation (“reduction modulo infi-
nite prime”) for an arbitrary commutative ring R:

R∞ := lim−→
f.g.R′⊂R




∏

primes p

R′ ⊗Z/pZ
/ ⊕

primes p

R′ ⊗Z/pZ



 .

Here the inductive limit is taken over the filtered system consisting of all finitely
generated subrings of R, the index p runs over primes 2,3,5, . . . .

It is easy to see that the ring R∞ is defined over Q (all primes are invertible in
R∞), and the obvious map R �→R∞ gives an inclusion i :R⊗Q ↪→R∞. Also, there
is a universal Frobenius endomorphism Fr :R∞→R∞ given by

Fr(ap)primes p := (app)primes p.

Finally, if R has no nilpotents then Fr ◦i gives another inclusion of R⊗Q into
R∞.

Remark 3. Maybe a better notation would be R (mod ∞) instead of R∞ as one
can also imitate p-adic completion:

lim−→
f.g.R′⊂R

lim←−
n�1




∏

primes p

R′ ⊗Z/pnZ
/ ⊕

primes p

R′ ⊗Z/pnZ



 .

This larger ring has a canonical element “infinite prime” P which is the class of
sequence ap=p ∀ prime p. Our “reduction modulo infinite prime” is literally the
reduction of the larger ring modulo P .

6.2. THE HOMOMORPHISM ψR

It follows from the previous section that one has a canonical group homomorphism

ψR : Aut(An)(R)→Aut(Pn)(R∞).

Namely, if f ∈ Aut(An)(R) is an automorphism of An,R then it belongs to a
certain term of filtration Aut�N(An)(R) and moreover, is defined over a finitely
generated ring R′ ⊂R. For any prime p, the automorphism f gives an automor-
phism fp of An,R′/pR′ , and hence an automorphism f centr

p of the center Cn,R′/pR′ �
R′/pR′[y1, . . . , y2n].

LEMMA 3. For any f ∈Aut�N(An)(R) and any i=1, . . . ,2n, the element f centr
p (yi)∈

Cn,R′/pR′ is a polynomial in y1, . . . , y2n of degree �N .
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Proof. One has f centr
p (yi)=fp(x̂pi )= (fp(x̂i))p. The element fp(x̂i)∈An,R′/pR′ has

degree �N by our assumption. Hence, fp(x̂
p
i ) has degree �pN . We know that the

last element is in fact a polynomial in the commuting variables x̂p1 , . . . , x̂
p

2n. Then
it is a polynomial of degree �N in these variables, as it follows immediately from
the fact that (x̂α)

α∈Z2n
�0

is a R′/pR′ basis of An,R′/pR′ .

Any finitely generated commutative ring is flat over all sufficiently large primes.
Hence, we obtain polynomial symplectomorphisms f centr

p for p�1 of degree (and
the degree of the inverse automorphism) uniformly bounded by N from above.
We define ψR(f ) to be the collection (f centr

p )p�1 of automorphisms of Pn,R′/pR′
where we identify the variables yi ∈Cn,R′/pR′ with xi ∈Pn,R′/pR′ , considered asymp-
totically in p. It is easy to see that ψR(f ) is an element of Aut�N(Pn)(R∞) and
it does not depend on the choice of a finitely generated ring R′ ⊂R over which
f is defined. Hence we obtain a canonical map ψR which is obviously a group
homomorphism.

6.3. UNTWISTING THE FROBENIUS ENDOMORPHISM

THEOREM 2. Let R be a finitely generated ring such that SpecR is smooth over
Spec Z. Then for any f ∈Aut(An,R) the corresponding symplectomorphism f centr

p ∈
Aut(Pn,R/pR) is defined over (R/pR)p for sufficiently large p.

Proof. First of all, notice that the subring (R/pR)p⊂R/pR coincides with the
set of elements annihilated by all derivations of R/pR over Z/pZ because R/pR
is smooth over Z/pZ. Let us choose a finite collection

δi ∈Der(R), i ∈ I, |I |<∞
of derivations of R over Z such that for all sufficiently large p, the elements δi
(mod p) span the tangent bundle TSpec (R/pR)/Spec (Z/pZ). We have to prove that

δi(f
centr
p (yj ))=0∈Cn,R/pR⊂An,R/pR

for all i ∈ I, j ∈ {1, . . . ,2n} and almost all prime numbers p. Let us (for given
i, j,p) introduce the following notation:

a :=fp(x̂j ), b := δi(fp(x̂j ))= δi(a).
Applying the Leibniz rule to the last expression in the next line

δi(f
centr
p (yj ))= δi(fp(x̂pj ))= δi((fp(x̂j ))p)= δi(ap),

we conclude that we have to prove the equality

bap−1+abap−2+· · ·+ap−1b=0.

Notice that x̂j is a locally ad-nilpotent element of An,R, i.e. for any u∈An,R there
exists D=D(u)>0 such that
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(ad(x̂j ))k(u)=0

for k�D(u). Namely, one can take D(u)= deg(u)+ 1 where deg(u) is the degree
of u in the Bernstein filtration. Using the assumption that f is an automorphism,
we conclude that f (x̂j ) is again a locally ad-nilpotent element. In particular, there
exists an integer D�0 such that

(ad(f (x̂j )))D(δi(f (x̂j )))=0

for all i, j .
Finally, if the prime p is sufficiently large, p−1�D, then

0= (ad(a))p−1(b)=
p−1∑

i=0

(−1)i
(
p−1
i

)
aib ap−1−i =

p−1∑

i=0

aib ap−1−i (mod p).

This finishes the proof.

The conclusion is that for a finitely generated algebra R smooth over Z there
exists a unique homomorphism

φR : Aut(An)(R)→Aut(Pn)(R∞)

such that ψR = Fr∗ ◦φR. Here Fr∗ : Aut(Pn)(R∞) → Aut(Pn)(R∞) is the
group homomorphism induced by the endomorphism Fr : R∞ → R∞ of the
coefficient ring.

CONJECTURE 3. In the above notation the image of φR belongs to

Aut(Pn)(i(R)⊗Q),

where i :R→R∞ is the tautological inclusion (see Section 6.1). In other words, there
exists a unique homomorphism

φcanR : Aut(Pn)(R)→Aut(Pn)(R⊗Q)

such that ψR=Fr∗ ◦i∗ ◦φcanR .

If we assume that the above conjecture holds then we can define a constructible
map

φcann,N : Aut�N(An,Q)→Aut�N(Pn,Q)

for arbitrary integers n,N�1 in the following way. Let us decompose the scheme
Aut�N(An,Q) into a finite union

⊔
i∈I SpecRi, |I |<∞ of closed affine schemes

of finite type smooth over SpecQ. Then choose a model SpecR′i smooth over
Z of each scheme SpecRi such that R′i is a finitely generated ring. The universal
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automorphism ui of An defined over SpecR′i maps under φcanR to a certain ele-
ment vi of Aut�N(Pn)(Ri). Taking the union of vi, i ∈ I we obtain a constructible
map φcann,N . It is easy to see that this map does not depend on the choices made,
and the correspondence (n,N) �→ φcann,N is compatible with inclusions in the indi-
ces n,N . Moreover, the limiting map φcann is compatible with the group structure.
This is the (conjectured) canonical isomorphism between the two automorphism
groups.

6.4. CONTINUOUS CONSTRUCTIBLE MAPS

If we do not assume Conjecture 3, still the results of the previous section imply
that for any n,N�1 there exists p0(n,N)�1 such that for any prime p>p0(n,N)

we have a canonically defined constructible map

φcann,N,p : Aut�N(An,Z/pZ) ↪→Aut�N(Pn,Z/pZ)

defined by the property

Fr∗ ◦φcann,N,p(f )=f centr, ∀f ∈Aut�N(An)(k)

for any field k with char(k)=p.
This map is an embedding because of the following lemma.

LEMMA 4. For any field k of characteristic p the map

Aut(An,k)→Aut(A2n
k ), f �→f centr

is an inclusion.
Proof. The above map is a group homomorphism, hence it is enough to prove

that any element f ∈Aut(An,k) which is mapped to the identity map is the identity
itself. Let us assume that f centr= Id

A2n
k

and f �= IdAn,k . We consider two cases.

First case. There exists N�2 such that f (x̂i) has degree �N for all i, and equal
to N for some i. In this case the same will hold for f centr, as the correspondence
f �→ f centr preserves the filtration by degree (see Lemma 3) and is equal to the
Frobenius map on the principal symbols with respect to the filtration. Hence we
get a contradiction with the assumption f centr= Id

A2n
k

.

Second case. The degree of f (x̂i) is equal to 1 for all i, 1�i�2n. In this case
f is an affine symplectic map, and a direct calculation shows that the correspond-
ing map f centr is also affine symplectic with coefficients equal to the pth power
of those of f (it follows immediately from the results of the next section). Hence
f centr= Id

A2n
k

implies f = IdAn,k , and we again get a contradiction.

CONJECTURE 4. For any n,N there exists p1(n,N)�p0(n,N) such that for any
prime p>p1(n,N), the constructible map φcann,N,p is a bijection.
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Obviously, Conjectures 3 and 4 together imply Conjecture 2.
It is easy to see that the map φcann,N,p is continuous for the Zariski topology. It

follows immediately from the fact that the correspondence f �→f centr is a regular
map (hence continuous) and that the Frobenius endomorphism of any scheme of
finite type in characteristic p>0 is a homeomorphism. It leads to a natural ques-
tion whether the hypothetical canonical isomorphism φcann,N is in fact a homeomor-
phism for the Zariski topology.

There exists a general notion of seminormalization +S for a reduced scheme S
(see [12]). One of possible definitions (in the affine Noetherian case) is that a func-
tion f on +S is a reduced closed subscheme Zf of S×A

1 which projects bijective-
ly to S. Seminormalization is a tautological operation for smooth S, it coincides
with the normalization for integral S. The above question (Conjecture 4) about the
bijectivity of φcann,N,p can be strengthened as follows:

Are seminormalizations of the reduced schemes
(
Aut�N(An,Z/pZ)

)red and
(
Aut�N

(Pn,Z/pZ)
)red isomorphic?

7. Correspondence for Tame Automorphisms

Here we give a proof of Theorem 1. Moreover, we will show that the map φcann is
well defined on the tame automorphisms of An,C, and it takes values in the group
of tame automorphisms of Pn,C.

First of all, we calculate the action of elementary tame automorphisms of the
Weyl algebra in finite characteristic on its center.

PROPOSITION 2. Let k be a field of characteristic p>2 and f ∈Aut(An,k) be an
automorphism given by a linear symplectic mapping on generators

f (x̂i)=
2n∑

j=1

aij x̂j , aij ∈k.

Then the corresponding automorphism of the center Cn,k � k[y1, . . . , y2n] = k[x̂p1 ,
. . . , x̂

p

2n] is given by

f centr(yi)=
2n∑

j=1

(aij )
pyj .

Proof. The symplectic group Sp(2n,k) is generated by transvections

x̂1 �→ x̂1+ax̂n+1, a∈k, ξi �→ ξi for i�2

and by the Weyl group (Coxeter group Cn). The correspondence is obvious for ele-
ments of the Weyl group, and follows from the next Proposition for generalized
transvections applied to a polynomial of degree 2.
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PROPOSITION 3. Let k be a field of characteristic p and f =T AF ∈Aut(An,k) be an
automorphism corresponding to the polynomial F ∈k[x1, . . . , xn] (as in Section 4):

T AF (x̂i)= x̂i , T AF (x̂n+i )= x̂n+i +∂iF (x̂1, . . . , x̂n), 1�i�n.

Then one has

f centr(yi)=yi, f centr(yn+i )=yn+i +Fr∗(∂iF )(y1, . . . , yn), 1�i�n,

where the polynomial Fr∗(∂iF ) ∈ k[y1, . . . , yn] is obtained from ∂iF by raising all
coefficients to the p-th power and by replacing the variable xj by yj , 1�j�n.

Proof. Let us prove the following identity for the case of one variable:
(

d
dx
+g′

)p
=
(

d
dx

)p
+ (g′)p (mod p),

where R is an arbitrary ring over Z/pZ, and g ∈ R[x] is any polynomial, g′ :=
dg/dx.

A straightforward calculation over Z (replace the prime p by an integer and use
induction) gives

(
d

dx
+g′

)p
=

∑

i�0;a1,...,ap�0

i+∑j jaj=p

p!

i!
∏p

j=1 (j !)aj
∏p

j=1 aj !

p∏

j=1

(
g(j)(x)

)aj
(

d
dx

)i
.

Here g(j)(x) denotes the j th derivative of the polynomial g. All the coefficients
above are divisible by p, except for three terms:

(
d

dx
+g′(x)

)p
=
(

d
dx

)p
+ (g′(x))p+g(p)(x) (mod p).

The last term vanishes because g(p)= (d/dx)p(g)=0 in characteristic p.
For a given i, 1�i�n we apply the above identity to

R :=k[x̂1, . . . , x̂i−1, x̂i+1, . . . , x̂n], g(x) :=F(x̂1, . . . , x̂i−1, x, x̂i+1, . . . , x̂n) ,

and get the statement of the proposition.

It follows immediately from Propositions 2 and 3 that φcan is well defined on
symplectic linear transformations and transvections T AF , and hence on all tame
automorphisms of An,C. Also it is clear that the following inclusion holds

KerρAn ⊂KerρPn

(with the notation introduced in Section 4). Namely, let us assume that the com-
position of a sequence of elementary tame automorphisms of An,C is the iden-
tity morphism. The corresponding transformation of centers of the Weyl algebra
in large finite characteristics is the composition (twisted by Frobenius) of the same
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elementary tame automorphisms applied to Pn. Hence, the composition of elemen-
tary tame automorphisms of Pn,C is an identity.

Conversely, let us assume that a composition of elementary tame transforma-
tions of Pn,C is not an identity. Then applying Lemma 4 we obtain that the cor-
responding composition in Aut(An,C) is not an identity. Thus,

KerρPn ⊂KerρAn .

Theorem 1 is proven. �

It is an interesting challenge to find a different proof of Theorem 1, without
arguments coming from finite characteristic.

8. Conjecture for the Inverse Map

Up to now we talked only about a homomorphism from Aut(An,C) to Aut(Pn,C),
and never about the inverse map. Here we propose a hypothetical construction
which produces an automorphism of the Weyl algebra starting from a polynomial
symplectomorphism.

8.1. BRAUER GROUP AND 1-FORMS

It is well known that for any Noetherian scheme S in characteristic p > 0 there
exists a canonical map

α :
1
abs(S)/dO(S)→Br(S)

where 
1
abs(S) :=�(S,
S/Spec Z/pZ) is the space of global absolute Kähler differ-

entials on S. Let us assume for simplicity that S is affine. For any two functions
f, g∈O(S) we define an associative algebra Af,g over S by generators and relations

Af,g :=O(S)〈ξ, η〉/ (relations [ξ, η]=1, ξp=f, ηp=g) .
It is easy to see that Af,g is an Azumaya algebra of rank p. The correspondence

α is given by

α

(
∑

i

fi dgi

)

:=
∑

i

[
Afi,gi

]= [⊗iAfi ,gi
]
,

where
[
Afi,gi

]∈Br(S) is the class of algebra Afi,gi in the Brauer group, which is
by definition the set of equivalence classes of Azumaya algebras over S, modulo
Morita equivalences identical over centers �O(S).

It follows directly from the definitions that for any commutative ring R

over Z/pZ one has an isomorphism of algebras over Cn,R = Center(An,R) �
R[y1, . . . , y2n]:

An,R�⊗Cn,RAyi,yn+i .
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Hence the class [An,R]∈Br(Cn,R) is given by 1-form

βn :=
n∑

i=1

yi dyn+i (mod dCn,R).

The correctness of the definition of the map α follows from the existence of cer-
tain bimodules establishing the Morita equivalences.

8.1.1. Explicit Morita Equivalences

One can construct explicitly the following isomorphisms of O(S)-algebras:

• Af,0�A0,g�Mat(p×p,O(S))
• Af,g�Ag,−f (Fourier transform)
• Af1+f2,g⊗O(S)Mat(p×p,O(S))�Af1,g⊗O(S) Af2,g

• Af,g1+g2 ⊗O(S)Mat(p×p,O(S))�Af,g1⊗O(S) Af,g2

• Af,gh⊗O(S) Ag,hf ⊗O(S) Afh,g�Mat(p3×p3,O(S))
• A1,f �Mat(p×p,O(S))
corresponding to basic identities in 
1

abs(S)/dO(S):
• f d(0)=0 dg=0
• f dg=g d(−f )∈
1

abs(S)/dO(S)
• (f1+f2)dg=f1dg+f2dg
• f d(g1+g2)=f dg1+f dg2

• f d(gh)+g d(hf )+hd(fg)=0
• 1 df =0∈
1

abs(S)/dO(S)
It is convenient to replace the matrix algebra Mat(p × p,O(S)) by the alge-

bra A0,0. For example, the isomorphism between the algebras A0,0 and Af,0, ξp=
0, ηp= 0, [ξ, η]= 1 and ξ ′p=f, η′p= 0, [ξ ′, η′]= 1 corresponding to the pairs (f,0)
and (0,0), is given by the formula ξ ′→ξ−f ηp−1, η′→η. Similarly, the more com-
plicated fifth isomorphism in the above list

Af,gh⊗O(S) Ag,hf ⊗O(S) Ah,fg
�Af,0⊗O(S) Ag,0⊗O(S) Ah,0(�Mat(p3n×p3n,O(S)))

(here we use isomorphisms A0,0�Af,0 etc.) is given by the formula

ξ ′1= ξ1, η
′
1=η1− ξ2ξ3 , ξ

′
2= ξ2, η

′
2=η2− ξ3ξ1 , ξ

′
3= ξ3, η

′
3=η3− ξ1ξ2 .

We leave to the interested reader the construction of other isomorphisms as an
exercise.

8.2. PULLBACK OF THE AZUMAYA ALGEBRA UNDER A SYMPLECTOMORPHISM

Let R be a finitely generated smooth commutative algebra over Z, and g ∈
Aut(Pn,R) be a symplectomorphism defined over R. Our goal is to construct an
automorphism f ∈Aut(An,R⊗Q) such that φcan

R (f )=g.
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By definition, we have

g(ω)=ω
where ω=dβn=

∑n
i=1 dxi ∧dxi+n is the standard symplectic form on A

2n
R . Hence

there exists a polynomial P ∈Q⊗R[x1, . . . , x2n] such that

g(βn)=βn+dP ∈
1
Q⊗R[x1,...,x2n]/Q⊗R ,

the reason is that H 1
de Rham(A

2n
R⊗Q

)=0. We can add to R inverses of finitely many
primes and assume that P ∈R[x1, . . . , x2n].

For any prime p let us consider the symplectomorphism Fr∗(g)∈Aut(Pn,R/pR)
which is obtained from gp := g (mod p) ∈ Aut(Pn,R/pR) by raising to the pth
power all the coefficients (in other words, by applying the Frobenius endomor-
phism R/pR→R/pR).

We claim that Fr∗(gp) preserves the class of βn in


1
abs (R/pR[x1, . . . , x2n]) /d (R/pR[x1, . . . , x2n]) .

Obviously, we have an identity

Fr∗(gp)(βn,p)=βn,p+d Fr∗(Pp) ∈
1
R/pR[x1,...,x2n]/(R/pR)

in the space of relative 1-forms over R/pR, where βn,p := βn (mod p), Pp := P
(mod p). The same identity holds in absolute 1-forms because all the coefficients
of the transformation Fr∗(gp) and of the polynomial Fr∗(Pp) belong to the image
of the Frobenius map Fr(R/pR)= (R/pR)p ⊂R/pR, and hence behave like con-
stants for absolute 1-forms:

d(apb)=apdb∈
1
abs (R/pR[x1, . . . , x2n]) , ∀a∈R/pR, b∈ (R/pR[x1, . . . , x2n]).

The conclusion is that the pullback of the algebra An,R/pR under the symplecto-
morphism Fr∗(gp) has the same class in Br(A2n

R/pR) as the algebra An,R/pR itself.
Therefore, there exists a Morita equivalence between these two algebras, identical
on the center. In other words, we proved that there exists a Morita autoequivalence
of An,R/pR inducing an automorphism Fr∗(gp) of the center.

Let us denote by Mg,p any bimodule over An,R/pR corresponding to the above
Morita autoequivalence. The following result shows that this bimodule is essen-
tially unique, its isomorphism class is uniquely determined by g.

LEMMA 5. Any bimodule over An,R/pR inducing Morita autoequivalence identical
on the center Cn,R/nR is isomorphic to the diagonal bimodule. Any automorphism of
the diagonal bimodule is given by multiplication by a constant in (R/pR)×.

Proof. It is easy to see that isomorphism classes of such bimodules form a
torsor over H 1

ét
(A2n

R/pR,Gm)� 0. Similarly, symmetries of any such modules are
H 0
ét
(A2n

R/pR,Gm)� (R/pR)×.
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8.3. A REFORMULATION OF THE CONJECTURES

In the notation introduced above, the bimodule Mg,p is a finitely generated pro-
jective left An,R/pR-module. It corresponds to an automorphism of the algebra
An,R/pR iff it is a free rank one module. Moreover, the corresponding automor-
phism is uniquely defined because all invertible elements of An,R/pR are central.

Conjecture 4 is equivalent to the following

CONJECTURE 5. For any finitely generated smooth commutative algebra R over Z

and any g ∈Aut(Pn,R) for all sufficiently large p, the bimodule Mg,p is a free rank
one left An,R/pR-module.

There is no clear evidence for this conjecture as there are examples (see [11])
of projective finitely generated modules over the Weyl algebra A1 in characteris-
tic zero, which are in a sense of rank 1 and not free. In other words, an analogue
of the Serre conjecture for Weyl algebras is false.

If Conjectures 4 and 5 fail to be true, it is still quite feasible that the following
weaker version of Conjecture 1 holds:

CONJECTURE 6. The group of Morita autoequivalences of the algebra An,C is iso-
morphic to the group of polynomial symplectomorphisms Aut(Pn,C).

Its equivalence to Conjecture 1 depends on the answer to the following question:
Does any Morita autoequivalence of An,C come from an automorphism?

8.4. ADDING THE PLANCK CONSTANT

It follows from Conjecture 1 that there exist a mysterious nontrivial action of C
×

by outer automorphisms of the group Aut(An,C):

C
×→Out(Aut(An,C))

corresponding to the conjugation by the dilations

(x1, . . . , x2n)→ (x1, . . . , xn, λxn+1, . . . , λx2n), λ∈C
×

acting by automorphisms of Aut(Pn,C)⊂Aut(C[x1, . . . , xn])=Aut(A2n
C
). Alterna-

tively, one can say that there is a one-parameter family of hypothetical isomorphisms
between Aut(An,C) and Aut(Pn,C).

In general, it makes sense to introduce a new central variable –h (“Planck
constant” parameterizing the above family of isomorphisms), and define the
algebra Ah

n,R as an associative algebra over the commutative ring R[–h] given by
generators x̂1, . . . , x̂2n and defining relations

[x̂i , x̂j ]=–hωij .

We propose the following
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CONJECTURE 7. For any finitely generated smooth commutative algebra R over Z

and any symplectomorphism g ∈Aut(Pn,R) there exists a positive integer M and an
automorphism g̃∈Aut(A

–h
n,R(M−1)[–h]

) over R(M−1)[–h] such that

• g̃ (mod –h)=g,
• for all sufficiently large p the automorphism g̃ (mod p) preserves the subalgebra
R/pR[yp1 , . . . , y

p

2n].

This conjecture seems to be the best one, one can easily see that it implies all
the conjectures previously made in the present paper.

9. On the Extensions of the Conjecture to Other Algebras

The Weyl algebra is isomorphic to the algebra of differential operators on the
affine space. It has a natural generalization, the algebra D(X) of differential oper-
ators on a smooth affine algebraic variety X/k, char(k)= 0. The corresponding
Poisson counterpart is the algebra of functions on the cotangent bundle T ∗X
endowed with the natural Poisson bracket. One may ask what happens with our
conjectures for such algebras. Unfortunately, one of our key results (Theorem 2)
relies heavily on the local ad-nilpotence property of the generators of An,k=D(Ank)
which does not hold in general. Moreover, it is easy to see that there are counter-
examples to the naive extension of Conjecture 1. In particular, for X=A

1
k \{0} with

invertible coordinate x, the automorphism of D(X) given by

x �→x, ∂/∂x �→∂/∂x+ c/x
does not seem to correspond to any particular symplectomorphism of T ∗X, as the
corresponding transformation of the center in characteristic p>0 is

xp �→xp, (∂/∂x)p �→ (∂/∂x)p+ (cp− c)/xp.
The constant (cp−c) does not belong to the image of the Frobenius map in general.

One can try to generalize Conjecture 1 in a different direction. Any automorphism
f of An,k gives a bimodule, which can be interpreted as a holonomic module M(f )

over A2n,k. Similarly, any symplectomorphism g∈Aut(Pn,k) gives a Lagrangian sub-
manifold L(g) ⊂A

4n
k (the graph of g). The idea is to establish a correspondence

between holonomic D-modules and Lagrangian subvarieties (a version of the Hitchin
correspondence).

In general, any holonomic module M over D(X) defined over a finitely gener-
ated smooth ring R⊂C, gives a family of coherent sheaves Mp over Fr∗p(T ∗X) by
considering reductions modulo p as modules over the centers of algebras of differ-
ential operators. One expects (in analogy with the theory of characteristic varieties)
that the support of Mp is a Lagrangian subvariety Lp of the twisted by Frobenius
cotangent space, at least for large p (see the recent preprint [7] where the analog
of the Hitchin correspondence was studied for a fixed prime p). The subvariety
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Lp can be singular and not necessarily conical. Moreover, its dependence on p in
general seems to be chaotic.

Nevertheless, we expect that in certain circumstances there is a canonical corre-
spondence in characteristic zero. Namely, we believe that for any closed Lagrang-
ian subvariety L of T ∗X such that L is smooth and H 1(L(C),Z)=0, there exists
a canonical holonomic D(X)-module ML such that (ML)p is supported on Frp(L)
and moreover, is locally isomorphic to the sum of pdimX copies of OFrp(L). This
would imply Conjecture 6.
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2. Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. France 96, 209–242 (1968)
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