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Introduction

This Letter should be regarded as an extended introduction to a paper by

Bertelson and Gromov ([1]) where a ‘dynamical’ version of the Morse inequality

jCritðfÞjP SBðMÞ ¼
P

i dimHiðM;FÞ was introduced, in the spirit of a program

due to Gromov. ‘Dynamical’ refers to the fact that the spaces involved are en-

dowed with an action of a countable discrete group C and that the quantities

considered are some kind of entropy functions measuring the (exponential) rate of

growth of certain topological invariants, such as ranks of certain homology groups

associated with the action.

1. First Ingredient: Morse Theory

Let us briefly recall the elements of Morse Theory that will be needed hereafter. Let

M be a smooth connected manifold endowed with a smooth function f : M ! R: One

distinguishes two cases:

� If M is open, then f may have few critical points regardless of the overall

topology of M. In fact, an open M always admits a function without critical

points at all. (Maps between manifolds without critical points are called sub-

mersions. See [5] for existence theorems for such maps.)

� If M is closed, then f must have a minimum number of critical points, prescribed

by the topology of M as follows:

jCritðfÞjP
SBðMÞ ¼

P
i

dimHiðM;FÞ; if all critical points are nondegenerate;

catðMÞP clðMÞ; otherwise;

(
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where F is a field, where catðMÞ denotes the category of M, that is the minimum

number of contractible (within M) closed subsets necessary to cover M and where

clðMÞ denotes the cup length of M, that is

clðMÞ ¼ sup k ; 9 ring R & a1; . . . ; ak�1 2 H�ðM;RÞwith a1 ^ � � � ^ ak�1 6¼ 0f g:

We will now provide an explanation for the (‘nondegenerate’) Morse inequality

suitable to our purpose. Suppose, in addition to the previous hypotheses, that M is

closed and orientable. If O is an open subset of M, define

H�ðOÞ ¼
n
a 2 H�ðM;FÞ; supp a � O

o
;

where supp a � O (‘the class a is supported in O’) means that ajO0 ¼ 0 for some open

subset O0 with O [O0 ¼ M. Let c 2 R, d > 0 and define

uc;d : H� f�1ð�1;cþdÞ
� �

! Hom½H� f�1ðc�d;þ1Þ
� �

; H� f�1ðc�d;cþdÞ
� �

�;
a b 7! a^b

bc;d¼ rankuc;d

bc¼ lim
d!0

bc;d

Note. bc;d is also the ‘rank of the set’

a 2 H� f�1ð�1; cþ dÞ
� �

; 9 b 2 H� f�1ðc� d;þ1Þ
� �

with a ^ b 6¼ 0
� �

(meaning the maximal dimension of a subspace contained in the set in question

union f0g).

PROPOSITION (Nondegenerate Morse inequality).

(a)
P

c bc ¼ SBðMÞ,
(b) bcOjCritðfÞ \ f�1ðcÞj.

Idea of the proof. (a) For all a 2 H�ðM;FÞ define ca, the level of a, as follows:

ca ¼ inffc ; supp a � f�1ð�1; cÞg. (Observe that ca coincides with the minimax of f

along the isotopy-invariant family F ¼ O open ; supp a � Of g.) Thus

ajf�1ðca�d;þ1Þ 6¼ 0. Hence, by Poincaré duality, there exists a class b in

H�ðf�1ðca � d;þ1ÞÞ with a ^ b 6¼ 0. Since this holds for any d > 0, the class a

provides a contribution to bca .
This argument is not yet a proof in particular because two independent classes a

and a0 having the same level could admit a linear combination kaþ k0a0 having a

strictly lower level, that is ckaþk0a0 < ca; so that a and a0 do not generate a two-

dimensional subspace of classes contributing to bca .
(b) Let 0 6¼ a 2 H�ðM;FÞ; then ca is a critical value of f otherwise f�1ð�1; ca þ dÞ

would be isotopic to f�1ð�1; ca � dÞ and a would be supported in f�1ð�1; ca � dÞ.
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If bcO1 for all c, we are done. Otherwise, a precise proof requires showing that if

two classes a and a0 have same level c and if that level contains only one critical

point, then ca00 < c for some linear combination a00 ¼ kaþ k0a0.
We refer to ½1� for a more rigorous treatment.

Note. The invariant bc is thus a measure of the number of ‘cohomologically

detectable’ critical points of f at level c.

2. Second Ingredient: Classical Statistical Mechanics

This section is essentially a rough summary of the first section of Lanford’s paper ½4�.

2.1. HEURISTIC

Classical statistical mechanics investigates macroscopic properties of matters con-

sisting of a very large number of particles on the basis of the behavior of the

individual elements (atoms, molecules, etc) of which it is composed. The basic model

is thus a large-dimensional phase space endowed with a Hamiltonian function. One

would like to find some type of explanation for the empirical observation that the

macroscopic behavior of, say, a gas consisting of one type of atoms, despite the fact

that it is composed of a huge number of elements, depends only on a few parameters

(density and energy, for instance). More so when the number of particles increases.

So one expects that, for large systems with a given density, any observable of a

certain type achieves approximately the same value at all points of a fixed energy

surface. This can be reformulated as follows: the probability distribution of such an

observable with respect to normalized Lebesgue measure on a fixed energy surface

approaches a delta measure as the number of particles tends to infinity in such a way

as to approach a given density.

2.2 DEFINITION OF OBSERVABLES

The observables considered hereafter, called finite-range observables (FROs), are

those who ‘test correlations between particles which are not too far apart’. They are

of the following type:

f :
a1
n¼1

Rmð Þn! R : ðz1; . . . ; znÞ ¼ ðq1; p1; . . . ; qn; pnÞ 7! fðz1; . . . ; znÞ;

(where m ¼ 2l is the dimension of the phase space of a single particle) and satisfy the

following properties:

(i) Symmetry: fðzrð1Þ; . . . ; zrðnÞÞ ¼ fðz1; . . . ; znÞ for any permutation r,
(ii) Translation� invariance: fðq1 þ a; p1; . . . ; qn þ a; pnÞ ¼ fðq1; . . . ; pnÞ for any a

in Rl,

(iii) Finite� range: there exists NP 0 such that if jqi � q0jj > N for all i; j; then

fðz1; . . . ; zn; z01; . . . ; z0mÞ ¼ fðz1; . . . ; znÞ þ fðz01; . . . ; z0mÞ:
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(Two more properties are usually required which do not play an important role in

our picture, namely continuity of the functions fðz1; :::; znÞ and normalization, that is

fðz1Þ ¼ 0.) The smallest number N for which (iii) is satisfied is called the range of the

observable f.

This definition is motivated by consideration of the potential energy, which should

indeed be a function of any number of particles; in other words, a function on‘1
n¼1ðRmÞ. Moreover, in the case where far-apart particles do not interact, as is the

case for a gas, it should behave additively on distant clusters of particles. This is

expressed by the third property.

EXAMPLE (Finite-range two-body potential)

fðz1; :::; znÞ ¼
X
i6¼j

Uðqi � qjÞ;

where U is a continuous function with compact support.

2.3. CONSTRUCTION OF THE ENTROPY

Fix an interaction U, that is a finite range observable, and consider another such

observable f. Let Kn � Rm be an increasing family of regions with [nKn ¼ Rm and
n

VolðKnÞ
� q (the density).

In ðKnÞn, the phase space for n particles in Kn, we consider the thickened surface of

energy per particles in Ie (a small interval of size e)

ðKnÞn � Sn
Ie
¼ ðz1; . . . ; znÞ ;

1

n
Uðz1; . . . ; znÞ 2 Ie

� �
:

Let J ¼ ða; bÞ � R be any interval and introduce the quantity

mðKn; n; f; JÞ ¼ lLeb ðz1; . . . ; znÞ 2 Sn
Ie
;
1

n
fðz1; . . . ; znÞ 2 J

� �
:

The probability distribution of f=n with respect to the normalized Lebesgue measure

on Sn
Ie
is given by

J ! mðKn; n; f; JÞ
mðKn; n; f;RÞ

¼ mðKn; n; f; JÞ
lLebðSn

Ie Þ
:

One then proves that the sequence

1

n
ln mðKn; n; f; JÞð Þ; ð1Þ

approaches a limit, the asymptotic exponential growth of mðKn; n; f; JÞ, as n goes to

infinity in such a way that n=VolðKnÞ ! q. It is essentially implied by the lemma
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below (which is itself a direct consequence of Fubini’s theorem). The limit is called

the entropy of the function f and is denoted by sðq; f; JÞ.

LEMMA. Let f be an observable with finite range N. Consider K and K0 two bounded

subsets of Rm at distance at least N from one another. Let n; n0 2 No and let J; J
0 � R be

two intervals. Then

m
�
K [ K0; nþ n0; f;

n

nþ n0
Jþ n0

nþ n0
J0
�
P m

�
K; n; f; J

�
	 m

�
K0; n0; f; J0

�
: ð2Þ

In other words mðK; n; f; JÞ is supermultiplicative with respect to n.

2.4. IMPLICATIONS OF THE LEMMA

On the one hand, this lemma provides existence of the limit of the sequence (1) since

it implies that the sequence ln mðKn; n; f; JÞ is superadditive and, on the other hand,

concavity of the entropy, or rather of the function sðq; f; xÞ, also called entropy and

defined as follows :

sðq; f; xÞ ¼ inf
J3x

sðq; f; JÞ ¼ inf
J3x

lim
n!1

1

n
ln
�
mðK; n; f; JÞ

�
(sðq; f; JÞ can be recovered as the supremum over all x in J of sðq; f; xÞ). Indeed,
inequality (2) with n ¼ n0 and K0 ¼ KþD, where D is sufficiently large for

dðK;K0Þ > R yields

1

2n
ln m

�
K [ K0; nþ n0; f;

n

nþ n0
Jþ n0

nþ n0
J0
�

P
1

2

1

n
ln m

�
K; n; f; J

�
þ 1

2

1

n
ln m

�
K0; n0; f; J0

�
;

which implies that, after taking limits over appropriate sequences of regions Kn,

sðq; f; 12 Jþ 1
2 J

0ÞP 1
2 sðq; f; JÞ þ 1

2 sðq; f; J
0Þ

and that

sðq; f; 12 xþ 1
2 x

0ÞP 1
2 sðq; f; xÞ þ 1

2 sðq; f; x
0Þ:

So concavity is ensured for dyadic rationals and therefore, by a continuity argument,

for all real numbers.

Remark. To establish convergence of the sequence (1), one needs to be more

specific about the way in which the sets Kn become large: the sequence ðKnÞ should
increase ‘in the sense of Van Hove’, that is, for all r > 0,

lLebð@rKnÞ
lLebðKnÞ

�!
n!1

0;

where @rKn denotes the set of points lying at a distance less than or equal to r of the

boundary of Kn. (Such ðKnÞ are called Foelner sets in mathematics literature.)

Moreover, the sequence needs to be ‘approximable by rectangles’, meaning that for

suitably chosen rectangles K̂n � Kn, one has lim infn!1 VolðKnÞ=VolðK̂nÞ 6¼ 0.
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2.5. CONSEQUENCE

The function x ! sðq; f; xÞ is continuous (on the interior of the set where it is finite)

and achieves its maximum value either never, once, or on a closed interval.

Coming back to our investigation of the probability distribution of f
n, let us

interpret the case where sðq; f; xÞ achieves its maximum once. Recall that the dis-

tribution in question is given by

J ! mðKn; n; f; JÞ
mðKn; n; f;RÞ

� en½sðq;f;JÞ�sðq;f;RÞ�

and thus has the following asymptotic behavior as n tends to infinity:

mðKn; n; f; JÞ
mðKn; n; f;RÞ

�!
n!1

1 if xo 2 J,
0 otherwise.

�
This makes it reasonable to say that the distribution of f=n approaches a delta

measure as n becomes large.

2.6. NOTE ABOUT THE OTHER CASES

For similar reasons, if sðq; f; xÞ does not achieve its supremum value, then f=n ap-

proaches a delta measure concentrated around þ1. On the other hand, the case

where sðq; f; xÞ achieves its maximum value on an entire interval ½xo; x0o� does not

have a clear interpretation. The distribution of f=n is more and more concentrated in

the interval ½xo; x0o�. What goes on there is uncertain. It could still happen that the

distribution of f=n approaches (‘slowly’) a delta measure. This case is sometimes

considered as corresponding to a phase transition, see [4, p. 57].

3. Homological Entropy of Discrete Group Actions: A Mix of the First and

Second Ingredients

The construction described hereafter can be motivated as belonging to one of

Gromov’s programs exposed in [2] and briefly described below:

3.1. PHILOSOPHY

Consider some category of spaces X and maps as well as some invariant, property or

theory of this category denoted Inv. Let C be a group. The aim is to extend Inv to a

class of C-spaces (spaces endowed with an action of C) that would include

� XC ¼ MapðC;XÞ with the canonical C-action,
� ‘subshift of finite type’ in XC, which are a certain type of C-invariant subspaces of

XC,

� certain quotients by C-invariant equivalence relations, namely XC=FixðCÞ, in a

‘dynamical way’, that is, so as to obtain the following equalities:

InvCX
C ¼ Inv

�
XC=FixðCÞ

�
¼ InvX:
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EXAMPLES (1) Consider the category of topological spaces and continuous maps.

Suppose there is a topological obstruction to the existence of an embedding X,!Y

(for instance, X ¼ RP2 and Y ¼ R3 or even X ¼ f0; 1g and Y ¼ f0g). Does this

obstruction induce a ‘dynamical obstruction’ to the existence of a C-equivariant
embedding

XC=FixðCÞ,!YC=FixðCÞ?
Note that an embedding XC,!YC induces an embedding X ’ FixðCÞ � XC,!Y ’
FixðCÞ � YC which explains the presence of the quotient.

(2) In [2], a dynamical version of the topological dimension of a compact metric

space is considered. It is denoted by dimðX : CÞ. Recall that the topological

dimension of X is defined as follows:

dimX ¼ lim�!0dim�X ¼ lim�!0inf
n
k ; 9 e-embedding X,!½0; 1�k

o
;

where a map X ! ½0; 1�k is an e-embedding provided the diameter of the inverse

image of a point is less than or equal to e. Its dynamical version satisfies

- if X,!Y is a C-equivariant embedding, then dimðX : CÞO dimðY : CÞ,
- dimðXC : CÞ ¼ dimðXC=FixðCÞ : CÞ ¼ dimX.

This yields nonembedding results XC=FixðCÞ,!YC=FixðCÞ when dimX > dimY.

The purpose of [1] is to develop a dynamical version of Morse Theory. It is done in

the spirit of classical statistical mechanics.

3.2. SETTING

Suppose the following data as given:

� a compact topological space X endowed with an action of a countable (discrete)

group C:

q : C	 X ! X : ðc;xÞ ! c � x;

� a left-invariant metric on the group C, e.g. the word metric relative to a (finite or

not finite) set of generators,

� some continuous function f : X ! R.

MAIN EXAMPLES (Products). The space X is MapðC;MÞ ¼ MC, the product of

C copies of a compact manifold M with the product topology and f is some

function MC ! R, for instance, fððxcÞc2CÞ ¼ fðxd1 ; :::; xddÞ, where fd1; :::; ddg is a

set of generators for the group. As a subexample, consider X ¼ MZ with

fððxiÞi2ZÞ ¼ foðx0; x1Þ.

MAIN IDEA. Define the (co)homological entropy of the function f by replacing

the Lebesgue measure (of thickened level sets) by the cohomological measure,

i.e. by
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rank

"
uc;d:H

�
�
f�1ð�1; cþ dÞ

�

! Hom
h
H�

�
f�1ðc� d;þ1Þ

�
;H�

�
f�1ðc� d; cþ dÞ

�i#
: ð3Þ

This is of course motivated by the description of the Morse inequality

jCritðfÞjP SBðMÞ ¼
P

i dim HiðM;FÞ presented in Section 1. One wishes to

construct a ‘dynamical’ homological lower bound for the ‘dynamical’ number of

critical points of f (cf. Remark: Dynamical Morse inequality). More precisely, we

will translate the construction of Section 2 of the entropy by means of the following

dictionary. We first introduce some notations. Let us denote by FðCÞ the set of finite
subsets of C. The cardinality of one of its elements X is denoted byjXj. Given such a

subset X, the average of f over X is the function

fX:X ! R: x 7! 1

jXj
X
c2X

fðc�1xÞ:

Classical entropy Homological entropy
� n � X or jXj
� f

n

� �
nP1

f
n : ðR

mÞn ! R FRO � fXð ÞX2FðCÞ fX : X ! R

� ðKnÞn � AX ¼ Algh
c2Xc�Ai
with n

VolðKnÞ
�!
½n!1�

q with jXj
ln rank AX ½jXj ! 1�

							!� ln

rank A (cf. Remark about A)
� m K; n; f; ðc� d; cþ dÞð Þ � bA;X;c;d ¼ rank uA;X;c;d


 �
¼ ln

Leb
f
n

� ��1

ðc� d; cþ dÞ \ ðKnÞn
� 

¼ rank
h
uA;X;c;d : H

�
AX

f�1
X ð�1; cþ

�
dÞÞ: ! . . .

i
ðcf: ð4Þ belowÞ

Remark about A.Note that the limitation to Kn ensured that the Lebesgue measure

m
�
K; n; f; ðc� d; cþ dÞ

�
is finite. Similarly, we restrict our attention to cohomology

classes belonging to some finite-dimensional subalgebra A � H�ðX;FÞ to ensure that

the cohomological measure is finite. The map uA;X;c;d is defined as follows:

uA;X;c;d: H
�
AX

�
f�1
X ð�1; cþ dÞ

�
! Hom

h
H�

AX

�
f�1ðc� d;þ1Þ

�
;H�

AX

�
f�1ðc� d; cþ dÞ

�i
; ð4Þ

where the index AX means that only classes in AX are being considered, that is,

H�
AX

¼ H� \ AX.

Since we are interested in the exponential growth of a quantity bounded above by

rankAX, the latter should itself have at least exponential growth in order to obtain a
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nontrivial quantity (i.e. rankAX ’ ðrankAÞjXj). This holds in the product case, at

least for certain subalgebras, namely those of the type A ¼ p�Xo
H�ðMXoÞ; where

pXo
: MC ! MXo is the canonical projection, since then AX ¼ p�X�Xo

H�ðMX�XoÞ and

thus,

rankAX ¼
�
rank H�ðMÞ

�X�Xo

grows exponentially with X. In order to obtain a nontrivial entropy and in fact a

well-defined exponential growth for the cohomological measure, we need to impose a

cohomological assumption on the group action. Heuristically speaking, it guarantees

richness of the multiplicative structure on cohomology.

ASSUMPTION. There exists a subalgebra A � H�ðM;FÞ for which any finite-

dimensional subalgebra A � A admits a number N ¼ NðAÞP 0 such that if

X;X0 2 FðXÞ satisfy dðX;X0ÞPNðAÞ, then the following map is injective :

AX � AX0 ,!AX[X0 : a� a0 7!a [ a0: ð�Þ

DEFINITION. The (co)homological entropy of f is the function

sðcÞ ¼ sup
A

lim
d!0

lim
i!1

1

jXij
ln bA;Xi;c;d;

where X1 � X2 � ::: is a sequence of finite subsets exhausting C.
The limit is guaranteed to exist under some restrictive assumptions on C and

ðXiÞiP 1, namely C is a tileable amenable group (cf. [1]) and ðXiÞiP 1 is an amenable

sequence (the boundary of Xi is asymptotically negligible compared to the all set Xi).

Similarly to the thermodynamic entropy, the proof relies essentially on the lemma

below, which also yields concavity of s.

LEMMA (Supermultiplicativity of the cohomological measure). Let A � A be a

finite-dimensional algebra. Let X;X0 2 FðCÞ with dðX;X0ÞPNðAÞ. Let c; c0 2 R. Set

a ¼ jXj
jX[X0j (so 1� a ¼ jX0 j

jX[X0 j). Then

bA;X[X0;acþð1�aÞc0;d P bA;X;c;d � bA;X0;c0;d:

Proof. The essential point in summarized in the implication below: consider

- a; b 2 AX with a ^ b 6¼ 0 and supp a � f�1
X ð�1; cþ dÞ, supp b � f�1

X ðc� d;þ1Þ,
- a0; b0 2 AX0 with a0 ^ b0 6¼ 0 and supp a0 � f�1

X0 ð�1; c0 þ dÞ, supp b0 �
f�1
X0 ðc0 � d;þ1Þ.

Then

- ða ^ a0Þ ^ ðb ^ b0Þ ¼ ða ^ bÞ ^ ða0 ^ b0Þ 6¼ 0 (because assumption (?) above is

supposed to hold),
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- suppða^ a0Þ � f�1
X ð�1; cþ dÞ \ f�1

X0 ð�1; c0 þ dÞ
� f�1

X\X0 ð�1;acþ ð1� aÞc0 þ dÞ,
- suppðb ^ b0Þ � f�1

X ðc� d;þ1Þ \ f�1
X0 ðc0 � d;þ1Þ

� f�1
X\X0 ðacþ ð1� aÞc0 � d;þ1Þ. h

Remark (Dynamical Morse inequality). Of course, in the present context the

notion of critical point of a function on X is not defined. But in the case of a product

X ¼ MZ with a two-point function fððxiÞi2ZÞ ¼ foðx0; x1Þ (or more generally a

function depending on finitely-many variables only), since fX is ‘morally’ defined on

MX (in fact on MX0
, where X0 is a small extension of X), talking about the critical

points of fX makes perfectly good sense. Moreover, the nondegenerate Morse

inequality implies that bA;X;c;d is a lower bound for jCrit ðfXÞ \ f�1
X ðc� d; cþ dÞj (at

least when the subalgebra A contains the subalgebra p�f0gH
�ðM;FÞ). Hence, if we

define CðcÞ to be the exponential growth of the number of critical points of fX at level

c, that is

CðcÞ ¼ lim
d!0

lim
i!1

1

jXij
ln
���CritðfXi

Þ \ f�1
Xi
ðc� d; cþ dÞ

���;
then we obtain the following inequality: CðcÞP sðcÞ:

PROPOSITION (Nontriviality of the entropy). In the product case, the function f

achieves a strictly positive value.

The proof is a consequence of Poincaré duality for M. In fact, MC admits some

version of Poincaré duality (see [1] Section 11 for a precise statement) that is

inherited from M. More generally, any C-space X satisfying the assumption (�)
above and that version of Poincaré duality will admit a well-defined and nontrivial

homological entropy. Projective limits [3] of projective algebraic varieties are

examples of such spaces (cf. [1]).
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