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Abstract. We describe a computable analytical criterion for separability of bipartite mixed
states in arbitrary dimension. The criterion stipulates that a certain norm on the state
space (the computable cross-norm) is bounded by 1 for separable states. The criterion is
shown to be independent of the well-known positive partial transpose (PPT) criterion. In
other words, the criterion detects some bound entangled states but fails for some free
entangled states.
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1. Introduction

Quantum entanglement is one of the most fascinating features of quantum the-
ory. Its study is an important area of research that has received much attention
in the development of quantum information theory. Mathematically, entanglement
is a complex property of quantum states defined on tensor product Hilbert spaces.
Physically, the role of entanglement in quantum information processing is mani-
fold. Quantum entanglement has been identified as an essential resource in many
applications of quantum information processing. In recent years considerable pro-
gress has been made towards developing a general theory of quantum entangle-
ment, [1,3] and references therein. In particular, criteria to decide whether or not
a given quantum state is entangled are of high theoretical and practical interest.
Such criteria are called separability criteria. In this Letter we focus on analytical
separability criteria. The case of pure bipartite quantum states (wavefunctions) is
well understood and there are several necessary and sufficient separability crite-
ria for them. For bipartite mixed quantum systems a number of important com-
putable criteria have been found. For a review see, e.g., [1]. However, despite all
the progress, theoretically our understanding of mixed state entanglement remains
incomplete.

A key objective in the theory of entanglement is the complete characterization
and classification of entangled states. By now several mathematically necessary and
sufficient characterizations for separability of mixed states have been identified,
e.g., [5,12]. One of these characterization in terms of positive maps was shown in
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[5] to provide an operational necessary and sufficient condition for separability in
dimension 2×2 and 2×3. This condition is the well-known positive partial trans-
pose (PPT) criterion that was first found by Peres [11]. In arbitrary dimension,
however, we are lacking a complete set of operational and mutually independent
analytical separability criteria.

In the present paper we present a powerful computable analytical separability
criterion that is independent of the PPT criterion. In other words the criterion
detects some bound entangled states� but fails for some free entangled states. The
criterion stipulates that a certain norm (that we call the computable cross-norm) is
bounded by 1 for separable states. We shall call this criterion the computable cross-
norm (CCN) criterion. The cross property of a norm will be explained below.

The CCN criterion first appeared in the second part of the unpublished pre-
print [13]. To the best of this authors knowledge it is the first analytical criterion
that can be proven to be independent of the PPT criterion while still matching
its power and versatility. After [13] appeared, the CCN criterion reappeared in [2]
under the name realignment criterion. In this reference the criterion and its proof
were rewritten using a matrix representation for operators rather than the equiva-
lent Dirac bra–ket notation that was used in [13]. Otherwise the criterion presented
in [2] and subsequent results, including examples, are identical to the results in [13].
Based on the CCN criterion the Horodecki family [6] subsequently developed a
linear contractions approach to characterize entanglement that complements their
earlier widely studied positive-maps approach. Moreover, they applied the CCN
criterion and its generalization (index permutation criteria) to multipartite entan-
glement, an area where only few systematic results are known, and showed that
the CCN criterion detects very subtle forms of multipartite bound entanglement
for which previously there was no analytical test known. Recently further proper-
ties of the CCN criterion were studied in [14] and it was studied in [7] how the
CCN criterion (or more generally linear contraction tests for entanglement) can in
principle be implemented experimentally.

Throughout the Letter we adopt the following conventions and notation: all
Hilbert spaces are assumed to be complex and finite-dimensional. We further
assume that in each Hilbert space H a canonical real basis has been chosen and
thus identify each Hilbert space H with C

d where d= dim H. The canonical real
basis of C

d is denoted by (|i〉)d
i=1. The set of linear operators on C

d (i.e., d × d
matrices) is denoted by T(Cd). A state for a d-dimensional quantum system with
Hilbert space C

d is a positive operator on C
d with trace one (i.e., a density oper-

ator). The set of all states on C
d is denoted by S(Cd). Pure states are the extreme

�A pure bipartite wavefunction |ψ〉 in C
d ⊗C

d with Schmidt decomposition |ψ〉=∑k

√
pk |χk ⊗

ηk〉 is called maximally entangled if pk =1/d for all k. Loosely speaking a bound entangled state is
an entangled state that cannot be transformed to maximally entangled pure form by local opera-
tions assisted by classical communication (LOCC operations). It is known that any entangled state
that satisfies the PPT criterion is bound entangled. Entangled states that are not bound entangled
are also called distillable or free entangled. For more details, see [8].
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points in S(Cd). It is known that pure states are exactly given by the one-dimen-
sional projectors and can thus be identified with unit vectors in C

d (i.e., wavefunc-
tions). In the present paper we will always identify a wavefunction with its cor-
responding projection operator. Throughout the Letter ‖σ‖2 denotes the Hilbert–
Schmidt norm or the Frobenius norm of an operator σ . The Hilbert–Schmidt norm
is equal to the sum of the squares of the singular values of σ . The sum of the
singular values of σ is called the trace class norm, or simply trace norm, and is
denoted by ‖σ‖1. The Hilbert–Schmidt inner product of two operators σ, τ is given
by 〈σ, τ 〉= tr(σ †τ).

2. Separability of Mixed Quantum States

Let us start with the basic definition [16].

DEFINITION 2.1. Let � be a state on C
dA ⊗ C

dB . Then � is called separable or
disentangled if it can be written as a convex combination of simple tensor states,
i.e., if it can be expressed in the form

�=
s∑
i=1

λi�
(A)
i ⊗�

(B)
i ,

where λi > 0,
∑
i λi = 1 and where �

(k)
i is a state on C

dk for all i and k =A,B.
Otherwise � is called entangled.

Let for instance |ψ〉 be a pure bipartite wavefunction in C
d ⊗ C

d and |ψ〉 =∑
k

√
pk|χk ⊗ ηk〉 be its Schmidt decomposition [4]. Let Pψ be the projector onto

the subspace spanned by |ψ〉. Then it is easy to see that the state Pψ is disen-
tangled according to Definition 2.1 if and only if |ψ〉 is a simple tensor, i.e., if
and only if |ψ〉= |a〉⊗ |b〉 for some |a〉, |b〉∈C

d . In general, it is difficult to decide
whether or not a given mixed state � is entangled. A necessary separability crite-
rion is a criterion that is passed by all separable states and violated by some entan-
gled states. Therefore, whenever a state � violates a given necessary separability cri-
terion, this indicates that � is entangled. We say that such an entangled state is
detected by the criterion in question.

In [11], Peres obtained a powerful computable necessary separability criterion,
the positive partial transpose (PPT) criterion. The PPT criterion stipulates that the
partial transpose �T2 of any separable quantum state � is again a (separable) state.

PROPOSITION 2.2 (Peres). Let � ∈ S(CdA ⊗ C
dB ) be a separable state. Then

�T2 �0.

For bipartite quantum systems a number of important and powerful criteria
have been found. For a review see, e.g., [1] and references therein.

The following way of speaking is useful in the study of separability criteria.
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DEFINITION 2.3. Let (A) and (B) be two necessary separability criteria and
denote by E(A) and E(B) the set of states detected by (A) and (B) respectively.
We say that (A) is weaker than (B) if all states that are detected by (A) are also
detected by (B), i.e., if E(A)⊆ E(B). In this case we also say that (B) is stronger
than (A). We say that (A) and (B) are independent if (A) is neither weaker nor
stronger than (B). Finally we call (A) and (B) equivalent if E(A)=E(B).

3. The Computable Cross-norm Criterion

Now let us pass to describe the CCN criterion.

DEFINITION 3.1. The computable cross-norm ‖σ‖τ of an arbitrary (not necessar-
ily positive) operator σ on C

dA ⊗C
dB is defined by

‖σ‖τ := inf

{
k∑
i=1

‖σ (A)i ‖2‖σ (B)i ‖2

∣∣∣∣∣σ =
k∑
i=1

σ
(A)
i ⊗σ (B)i

}
. (1)

Here the infimum is taken over all decompositions of σ into a finite sum of simple
tensors.

It is important to notice that the simple tensors in the decompositions of σ
appearing on the right-hand side of Equation (1) are arbitrary. In particular, if σ
is hermitean or positive, we do not require the decompositions in Equation (1) to
run over hermitean or positive simple tensors only, respectively.

Now the CCN criterion is the following.

CRITERION 3.2. Let � be a state on C
d ⊗C

d . The CCN criterion asserts that if �

is separable, then the computable cross-norm of � is less than or equal to 1. When-
ever a state � satisfies ‖�‖τ >1, this signals that � is entangled.

Proof. The Hilbert–Schmidt norm is majorized by the computable cross-norm,
i.e., ‖x‖2 �‖x‖τ for all x∈T(Cd). (This is an immediate consequence of the subad-
ditivity of the Hilbert–Schmidt norm.) Thus it follows from the definition of ‖ · ‖τ
that ‖ · ‖τ satisfies the so-called subcross property with respect to the trace norm,
which means that we have

‖σ (A)⊗σ (B)‖τ =‖σ (A)‖2‖σ (B)‖2 �‖σ (A)‖1‖σ (B)‖1,

for all simple tensors σ (A)⊗σ (B). Let �sep =∑s
i=1 λi�

(A)
i ⊗�

(B)
i be a separable state.

Then by the subadditivity and the subcross property of ‖ · ‖τ we find that

‖�sep‖τ �
s∑
i=1

λi‖�
(A)
i ⊗�

(B)
i ‖τ �

s∑
i=1

λi‖�
(A)
i ‖1‖�

(B)
i ‖1 =1.
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Next we need to justify the adjective ‘computable’ and explain how the ‘com-
putable’ cross-norm can actually be computed in practice. The key observation is
the following representation of the trace class norm. Let O : H→H an arbitrary
linear operator on a Hilbert space H. In finite dimensions O can be any linear
operator. If H is an infinite dimensional Hilbert spaces, we need to require that
O is of trace class [15]. In the present paper we assume that all Hilbert spaces are
finite-dimensional. Then

‖O‖1 = inf

{
k∑
i=1

‖ψi‖‖φi‖
∣∣∣∣∣O=

k∑
i=1

|ψi〉〈φi |
}
, (2)

where the infimum is over all decompositions of O into finite sums of rank one
operators. The proof of Equation (2) is easy [15]. By the subadditivity of the
norm, we certainly have an inequality in (2). Since the infimum is attained for the
singular value decomposition of O (see [15]), it follows that we have equality in
(2).

Now we compare the expressions in Equations (1) and (2) and recall that the set
of linear operators on a finite-dimensional Hilbert space is itself a Hilbert space
when equipped with the Hilbert–Schmidt inner product. It is then obvious that
the computable cross norm of � can be interpreted as the trace class norm of a
certain ‘re-ordered’ operator A(�). This operator A(�) is defined as follows. Let
�=∑k Ek ⊗Fk be any representation of � as finite sum of simple tensors, then
A(�) is defined as

A(�) :=
∑
k

|Ek〉 〈F ∗
k |, (3)

where ∗ denotes complex conjugation. Here we write |Ek〉 and |Fk〉 instead of just
Ek and Fk respectively to indicate that we now think of the Ek and Fk as elements
of the Hilbert–Schmidt Hilbert space T(Cd). We remark that it is a consequence of,
e.g., Proposition 11.1.8 in [10] that A(�) is well-defined independently of the partic-
ular decomposition of � chosen. Let us summarize our main result as a theorem.

THEOREM 3.3. Let � be a state on C
d ⊗C

d . Then ‖�‖τ =‖A(�)‖1.

To check whether the CCN criterion is satisfied by a given density operator �

reduces to the evaluation of the trace class norm of the operator A(�). This is
completely straightforward using standard linear algebra packages and accordingly
the CCN criterion is a computable separability criterion for density operators.
From Equation (3) it is a straightforward and trivial exercise to determine the
matrix representation for A(�) in the canonical basis. When (|i〉)d

i=1 denotes the
canonical real basis of C

d , then (Eij ≡ |i〉〈j |)d
i,j=1 denotes the canonical basis of

the Hilbert–Schmidt space T(Cd). For instance, in dimension 2 × 2 the transfor-
mation � �→ A(�) corresponds to the following ‘matrix re-ordering’ in the canon-
ical basis (where the matrices are constructed from operators using the respective
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canonical bases in binary lexicographic ordering)




�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44


 �→




�11 �12 �21 �22
�13 �14 �23 �24
�31 �32 �41 �42
�33 �34 �43 �44


 .

In higher dimensions analog formulas hold. However, the basis independent
‘invariant’ formulation of the CCN criterion in terms of the computable cross-norm
as given in Equation (1) and Theorem 3.3 is certainly mathematically more elegant.
Moreover, in practical calculation it is sometimes awkward to expand a given state
into the canonical basis. Rather, it is often simpler to expand a state into a basis
different from the canonical basis (for instance in terms of (generalized) Pauli spin
matrices as shown for an example in [14]). Therefore the basis independent formu-
lation of the CCN criterion is also more useful in practice since we can expand a
given state � (and accordingly A(�)) in terms of any suitable set of simple tensors
(these sets do not even need to form bases).

4. Examples

Finally we give three examples to demonstrate key features of the CCN criterion.
More details and further examples can be found in [13,14].

EXAMPLE 4.1. Let |ψ〉 be a pure bipartite wavefunction in C
d ⊗ C

d and
|ψ〉=∑k

√
pk|χk ⊗ηk〉 be its Schmidt decomposition [4]. Let Pψ be the projector

onto the subspace spanned by |ψ〉. Then

‖Pψ‖τ =
(∑

k

√
pk

)2

.

Therefore the CCN criterion detects all entangled pure states.

EXAMPLE 4.2 (Werner states). Werner states (first considered in [16]) are mixed
quantum states in T(Cd ⊗ C

d). They can be parametrized by a real parameter f
with −1�f �1 and are given by

�f := 1
d3 −d ((d−f )1+ (df −1)F) ,

where

F :=
∑
i,j

|i⊗ j〉〈j ⊗ i|,
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where (|i〉) is an orthonormal basis of C
d . Werner states are known to be separa-

ble if and only if f �0. A straightforward calculation gives

‖�f ‖τ =
{ 2
d

−f : for −1�f � 1
d

f : for 1�f � 1
d

.

This proves that for Werner states the CCN criterion is exact if and only if d=2.
In higher dimension d�3 there will always be inseparable Werner states (i.e., those
corresponding to f ∈ [(2/d)−1,0[) which satisfy the CCN criterion while other
inseparable Werner states (i.e., those corresponding to f ∈ [−1, (2/d)−1[) violate
it.

EXAMPLE 4.3 (bound entanglement). Consider C
3 ⊗ C

3 and let {|0〉, |1〉, |2〉} be
the canonical real basis in C

3. Consider the following family of mixed states
defined on C

3 ⊗C
3

�α := 2
7

∣∣∣	+
(3)

〉 〈
	+
(3)

∣∣∣+ α

7
σ+ + 5−α

7
σ−,

where we restrict ourselves to the parameter range 2 �α�5, and where∣∣∣	+
(3)

〉
≡ 1√

3
(|0〉|0〉+ |1〉|1〉+ |2〉|2〉) ,

σ+ ≡ 1
3
(|0〉|1〉〈0|〈1|+ |1〉|2〉〈1|〈2|+ |2〉|0〉〈2|〈0|) ,

σ− ≡ 1
3
(|1〉|0〉〈1|〈0|+ |2〉|1〉〈2|〈1|+ |0〉|2〉〈0|〈2|) .

It is known, see [9], that �α is (i) separable if and only if 2 �α�3, (ii) bound
entangled if and only if 3<α�4 and (iii) entangled and distillable [17] if and only
if 4<α�5. A straightforward calculation shows that

‖�α‖τ = 19
21

+ 2
21

√
19−15α+3α2. (4)

It is easy to see that ‖�α‖τ �1 if and only if 2 �α�3, i.e., if and only if �α is sep-
arable. This example shows that there are bound entangled states which violate the
CCN criterion.

For every new separability criterion it is important to ask how it enters the known
implication chains between separability criteria. The examples considered above
show that the CCN criterion is neither weaker nor stronger than the PPT crite-
rion. In other words both criteria are independent.
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