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Abstract. We survey the many instances of derived bracket construction in differential
geometry, Lie algebroid and Courant algebroid theories, and their properties. We recall and
compare the constructions of Buttin and of Vinogradov, and we prove that the Vinogradov
bracket is the skew-symmetrization of a derived bracket. Odd (resp., even) Poisson brackets
on supermanifolds are derived brackets of canonical even (resp., odd) Poisson brackets on
their cotangent bundle (resp., parity-reversed cotangent bundle). Lie algebras have analo-
gous properties, and the theory of Lie algebroids unifies the results valid for manifolds on
the one hand, and for Lie algebras on the other. We outline the role of derived brackets
in the theory of ‘Poisson structures with background’.
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Introduction

On any graded differential Lie algebra, (A,[ , ],D), with bracket of degree n, one
can consider the bilinear map,

(a, b) ∈ A × A �→ (−1)n+|a|+1[Da,b] ∈ A,

where |a| is the degree of a. This is what is called the derived bracket of [ , ] by
D (see [26]). It is not in general a graded Lie bracket because it is not, in gen-
eral, skew-symmetric. However, it does satisfy the Jacobi identity in the form (1.1)
below, therefore A with a derived bracket is a graded version of what Loday calls a
Leibniz algebra, which we prefer to call a Loday algebra. Since the derivation D is
odd, passing from the original bracket to the derived bracket turns an even (resp.,
odd) Lie bracket into an odd (resp., even) Loday bracket.

�This Letter is the revised version of a lecture given at the Euroconference, Poisson Geome-
try, Deformation Quantization and Group Representations (PQR 2003) at the Université Libre de
Bruxelles, 18–22 June 2003.
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In applications, D will most often be the interior derivation by an odd element,
d ∈A, of square 0, [d, d]=0. The derived bracket can then be written simply as

(a, b)∈A×A �→ [[a, d], b]∈A.

Whenever (A, [ , ]) is Abelian, the derived bracket is a genuine graded Lie bracket,
and this property is essential for the applications that we shall describe.

Instances of derived brackets, though they do not bear that name, appeared in
various contexts: in an article on formal noncommutative geometry by Gel’fand,
Daletskii and Tsygan [18], in papers by physicists on the BRST quantization,
which are too numerous to be exhaustively cited here, see [4], in the 1974 arti-
cle by Buttin [7], in early work of Vinogradov [55] who introduced a very power-
ful tool under the unfortunate term of ‘lievization’, in unpublished papers of Ted
Voronov, and certainly in other sources of which I am not aware. The notion was
formalized in unpublished notes of Koszul dating from 1990 [33], which he com-
municated to me in 1994. There followed the article [26] where I placed Koszul’s
construction in the framework of graded Loday algebras, proved the main proper-
ties of the general construction, and gave examples from Poisson geometry and Lie
bialgebra theory. Related results were obtained independently by Daletskii and
Kushnirevitch [13]. Articles [27] and [28] contain a summary of results and
describe applications to gauge Lie algebras in various field theories.

After briefly reviewing the general notion, I shall try to describe enough old
and new examples of derived brackets to convince the reader of their ubiquity and
importance. The following discussion may seem very formal, but the general results
on the derived brackets of Lie brackets briefly recalled in Section 1 of this survey,
and more generally of Loday brackets, are powerful tools for proving nontrivial
properties of brackets and derivations.

1. Derived Brackets

1.1. LODAY BRACKETS

Loday algebras were introduced (in the ungraded case) by Jean-Louis Loday under
the name Leibniz algebras [39]. We define a Loday algebra of degree n as a graded
vector space V over a field R of characterisitic �=2 (or just a module over a com-
mutative ring), equipped with an R-bilinear map, [ , ] :V ⊗V →V , satisfying the
Jacobi identity in the form,

[a, [b, c]]= [[a, b], c]+ (−1)(n+|a|)(n+|b|)[b, [a, c]], (1.1)

for all a, b and c∈V , where |a| denotes the degree of a∈V . Whenever the bracket
[ , ] is graded skew-symmetric, a Loday algebra is just a graded Lie algebra. In
what follows, we shall often omit the word ‘graded’.
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1.2. DEFINITION OF DERIVED BRACKETS

In [26] (see also [27,28]), we defined a general notion of derived brackets of Loday
brackets, and we proved some simple properties that have far-reaching conse-
quences. This construction turns an even Loday bracket into an odd one, and con-
versely. Here, for simplicity, we describe this construction in the case of derived
brackets of Lie brackets, and, in Theorems 1.1 and 1.2 below, we recall those prop-
erties that are most useful in applications.

DEFINITION 1.1. If
(
V, [ , ],D

)
is a graded differential Lie algebra over R with

bracket of degree n, we define the bilinear map [ , ](D) :V ⊗V →V by

[a, b](D)= (−1)n+|a|+1[Da,b], (1.2)

for a and b∈V , and we call it the derived bracket of [ , ] by D.

THEOREM 1.1.

(i) The derived bracket of a Lie bracket of degree n is a Loday bracket of degree
n+1.

(ii) The map D is a morphism of Loday algebras from
(
V, [ , ](D)

)
to

(
V, [ , ]

)
.

(iii) The map D is a derivation of the Loday bracket [ , ](D).
(iv) The restriction of the derived bracket to any Abelian subalgebra, V0, of(

V, [ , ]
)
, such that [DV0, V0]⊂V0, is a Lie bracket of degree n+1.

(v) The bracket [ , ](D) induces a Lie bracket of degree n+1 on the quotient space
of V by the image of V under D, V/D(V ).

More generally, we can consider the derived bracket by any derivation of odd
degree and of square 0.

EXAMPLE. The problem of extending the Poisson bracket of functions into an
even bracket on the algebra of all differential forms was a long-standing prob-
lem until the mid-nineties. In [26], we proved that such an extension can be eas-
ily defined, but only as a Loday bracket. Let P be a Poisson bivector on a
smooth manifold M, and let [ , ]P be the Koszul bracket of differential forms
[32]. The derived bracket of [ , ]P by the de Rham differential is an even Loday
bracket which extends the Poisson bracket of functions. We observed that one of
the brackets defined on symplectic manifolds by Michor in [41], denoted there by
{ , }2, coincides with this derived bracket. Shortly after that, Grabowski proved
that an extension as an even graded Lie bracket can be defined, but this bracket
is not a biderivation of the algebra [20].
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1.3. THE CASE OF AN INTERIOR DERIVATION

In many applications, the derivation D is an interior derivation of (V , [ , ]),
a �→ [d, a], where d is an element of square 0 in (V , [ , ]).

NOTATION. If D is the interior derivation by an element d in the Lie algebra V ,
we denote the corresponding derived bracket simply by [ , ]d .

THEOREM 1.2. If D is the interior derivation of
(
V, [ , ]

)
by an element d ∈ V

such that |d|+n is odd and [d, d]=0, the derived bracket is

[a, b]d = [[a, d], b], (1.3)

for a and b ∈V . Both a �→ [d, a] and a �→ [a, d] are morphisms from (V , [ , ]d) to(
V, [ , ]

)
.

The proof is obtained by a simple calculation.

EXAMPLE. Let P and [ , ]P be as in the Example of Section 1.2. Assume that
P is nondegenerate, with inverse symplectic form ω. Then the de Rham differen-
tial is the interior derivation [ω, · ]P , as was proved in, e.g., [30]. Therefore, in this
case, the derived bracket of forms α and β is equal to [[α,ω]P ,β]P .

1.4. SKEW-SYMMETRIZATION OF DERIVED BRACKETS

The skew-symmetrization of the derived bracket [ , ](D), which we denote by
[ , ]−(D), can be expressed as

[a, b]−(D)= 1
2

(
[a,Db]− (−1)n+|a|[Da,b]

)
, (1.4)

while, in the case of an interior derivation, it satisfies

[a, b]−d = 1
2

(
[[a, d], b]− (−1)|b|[a, [b, d]]

)
. (1.5)

In general, this bracket, obtained by skew-symmetrizing a Loday bracket, no
longer satisfies the Jacobi identity (1.1): a defect in the Jacobi identity appears, so
the skew-symmetrized bracket is not a Lie bracket. We shall give examples below.

1.5. NOTATIONS

When dealing with the geometric objects defined on a smooth manifold or super-
manifold, we shall assume all fields to be smooth, and we shall often abbreviate
vector field and multivector field to vector and multivector, respectively, and differ-
ential form to form. If M is a manifold, we denote the exterior algebra of multi-
vector fields by

V •(M)=
⊕
p�0

V p(M)=�

⊕

p�0

∧p
(TM)


 ,
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so that V 1(M) is the space of vector fields, and we denote the exterior algebra of
differential forms by

�•(M)=
⊕
q�0

�q(M)=�

⊕

q�0

∧q
(T ∗M)


 ,

so that �1(M) is the space of differential 1-forms. (If E is a vector bundle over
M, we denote the space of sections of E by �E.) Because the Schouten–Nijenhuis
bracket of multivectors [42, 43, 51] (or Schouten bracket for short) is the prototyp-
ical example of a Gerstenhaber bracket, we also use the term Schouten algebra to
designate a Gerstenhaber algebra, i.e., an associative, graded commutative algebra
with an odd Poisson bracket.

Henceforth, the notation [ , ] stands for the graded commutator of graded en-
domorphisms of a graded module, unless specified otherwise.

2. The Cartan Formulas and their Generalizations

2.1. THE CARTAN FORMULAS

Everyone is familiar with the formulas to be found in, e.g., Henri Cartan’s cele-
brated communication presented in Brussels half a century ago [9],

[d,d]=0, [ix, iy ]=0, Lx = [ix,d], [Lx,d]=0, [Lx, iy ]= i[x,y]. (2.1)

Here x and y are vector fields on a manifold, d is the de Rham differential, ix is
the interior product by x and Lx is the Lie derivation by x, each of these being a
derivation of the algebra of differential forms, while [ , ] is the graded commuta-
tor of graded endomorphisms of the space of differential forms, but [x, y] in the
last formula denotes the Lie bracket of vector fields.

2.2. (A, D)-STRUCTURES

Motivated by the extension of the usual differential calculus to the calculus of vari-
ations (see [19]), Gel’fand, Daletskii and Tsygan [18], working with multigraded vec-
tor spaces, present the general theory of an (A,D)-structure, a graded Lie algebra
A⊕g0 ⊕D, where A is an Abelian Lie algebra, generalizing the space of the ix ’s, and
where D is a space generated by several commuting elements of square 0, general-
izing the one-dimensional vector space generated by the de Rham differential, while
g0 generalizes the Lie algebra of Lie derivations. For any d ∈D, they let

[a, b]d = [[a, d], b],

for a, b∈A, and they formulate their Theorem 1, stating that this formula defines
a graded Lie bracket on A, and that the map a �→ [a, d] is a morphism of graded
Lie algebras, from A with bracket [ , ]d to g0 with the original Lie bracket. It is
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clear that these statements are special cases of the results summarized in Theorems
1.1 and 1.2 above.

In addition, Gel’fand, Daletskii and Tsygan state a property which is equivalent
to the compatibility of the brackets [ , ]d1 and [ , ]d2 on A, for a pair of commu-
ting differentials d1 and d2, in the sense that the bracket [ , ]d1 + [ , ]d2 is a graded
Lie bracket on A. Since

[a, b]d1 + [a, b]d2 = [a, b]d1+d2 ,

this compatibility follows from the assumptions [d1, d1] = [d2, d2] = [d1, d2] = 0,
which imply that [d1 +d2, d1 +d2]=0.

2.3. THE CARTAN FORMULA FOR MULTIVECTORS

The last of the above-mentioned Cartan equations (2.1), which can be written

i[x,y] = [[ix,d], iy ], (2.2)

expresses the fact that the Lie bracket of vector fields is a derived bracket.
It is well known [10,45,53] that Equation (2.2) is valid more generally for multi-

vectors, when the bracket on the left-hand side is the Schouten–Nijenhuis bracket,
showing that the Schouten–Nijenhuis bracket of multivectors is a derived bracket.

In the sequel of their paper [18], Gel’fand, Daletskii and Tsygan show that
Equation (2.2) is valid in the more general case where x and y are elements of the
associative, graded commutative algebra generated by A, and the bracket on the
left-hand side is extended by the bi-derivation property. This generalizes the pre-
ceding statement concerning multivectors on manifolds to the case of (A,D)-struc-
tures. In [18], further applications are made to the Gerstenhaber algebra structure
of the Hochschild cohomology of an associative superalgebra.

2.4. SOME HISTORICAL COMMENTS

The theory of (A,D)-structures, which was formulated around 1987, is closely
related to that of complexes over Lie algebras, developed around 1980 by Gel’fand
and Dorfman [19], as an abstract framework for the variational calculus and the
theory of integrable systems. In a complex over a Lie algebra, the Cartan formulas
(2.1) are taken as the defining properties.

Remark. It is easily seen that there is a complex over a Lie algebra associated to
any Lie algebroid, the complex being the algebra of sections of the exterior alge-
bra of the dual vector bundle, equipped with the Lie algebroid differential (see e.g.,
Section 4.3 below). The same conclusion is valid for a Lie–Rinehart algebra. These
are particular cases of complexes over Lie algebras, since no associative multipli-
cation is assumed on the total space of the complex in general.

In a 1986 preprint, Ted Courant and Alan Weinstein introduced the notion of
Dirac structure on a manifold, by imposing an integrability condition on a field of
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Dirac structures at each point of the manifold, defined as totally isotropic sub-
spaces in the direct sum of the tangent and the cotangent bundle. Their study
was pubished in [12]. Later, Courant proved in [11] that this integrability condition
amounts to a closure condition under a bracket on �(TM ⊕ T ∗M), this bracket
that now bears his name being skew-symmetric but not satisfying the Jacobi iden-
tity. The theory was later developed by Zhang-Jiu Liu, Weinstein and Ping Xu,
who introduced the more general notion of Courant algebroid, and of Dirac struc-
tures as integrable subbundles of Courant algebroids [38]. See Section 5 below.

Meanwhile, inspired by the finite-dimensional structures first considered by Cou-
rant and Weinstein in 1986, Irene Dorfman introduced [14,15] a general notion of
Dirac structure in the algebraic framework of complexes over Lie algebras. In both
cases the motivation was to unify the pre-symplectic and Poisson structures (called
Hamiltonian structures in the infinite-dimensional case). The equivalence of the defi-
nitions in the case of the de Rham complex over the Lie algebra of vector fields on a
smooth manifold is not explicit in the literature, but is not hard to prove.

3. The Brackets of Buttin, Vinogradov and Courant

3.1. THE BUTTIN BRACKETS

In [7], an article developed by Pierre Molino from the notes left by Claudette But-
tin (1935–1972), we find a study of the differential operators of all orders on the
exterior algebra of a module. Buttin calls the order the ‘type’, to distinguish it
from the order in the usual sense when the exterior algebra is the algebra of forms
on a smooth manifold, and we shall follow this convention. Recall that an endo-
morphism of a graded associative algebra is called a differential operator of type 0
if it commutes (in the graded sense) with the left multiplication by any element in
the algebra, and of type �k if its graded commutator with the left multiplication
by any element in the algebra is of type �k−1.

Buttin first defines a composition law extending the Nijenhuis–Richardson
bracket on the space

∧•
E∗ ⊗E of vector-valued forms on a module E [44] to a

graded Lie bracket on the space of all multivector-valued forms,
∧•

E∗ ⊗∧•
E.

This bracket is defined by considering the embedding, i, of
∧•

E∗ ⊗∧•
E into

the graded Lie algebra of all differential operators on
∧•

E∗ equipped with the
graded commutator. Let ix be the interior product of forms by a vector x ∈E.
For a decomposable multivector, x=x1 ∧ . . .∧xp ∈∧p

E, we set ix = ix1 . . . ixp . The
operator ix is of type p.

DEFINITION 3.1. The embedding i of
∧•

E∗ ⊗∧•
E into the vector space of all

differential operators on
∧•

E∗ is defined on decomposable elements by

iξ⊗x(α)= ξ ∧ ixα, (3.1)

for x ∈∧•
E, ξ and α∈∧•

E∗.
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This embedding restricts to the interior product of forms by multivectors on
the one hand, and to the exterior product by forms on the other hand. We shall
use this definition in what follows, sometimes reverting to the notation eξ instead
of iξ when ξ is a form acting on forms by exterior product. In this notation,
iξ⊗x = eξ ◦ ix . The operator iξ⊗x is of degree |ξ |− |x|, and of type |x|.

We introduce the notation [ , ]0B for Buttin’s algebraic bracket, in which her defi-
nition becomes

DEFINITION 3.2. For X and Y ∈ ∧•
E∗ ⊗ ∧•

E, the bracket [X,Y ]0B is the ele-
ment in

∧•
E∗ ⊗∧•

E such that i[X,Y ]0B
is the term of highest type in [iX, iY ].

For X∈∧q
E∗ ⊗∧p

E, Y ∈∧q ′
E∗ ⊗∧p′

E, the bracket [X,Y ]0B is an element of∧q+q ′−1
E∗ ⊗∧p+p′−1

E. We wish to compare this little-known construction with
the well-known notion of the big bracket [31,36,24]. The big bracket is the canon-
ical Poisson structure on

∧•
(E⊕E∗), the even Poisson bracket on the cotangent

bundle of the odd supermanifold obtained from E (or E∗) by a change of parity
(see Section 4.2). For the properties of the big bracket, see [24,3]. Here and below,
we denote it by { , }. The fact that Buttin’s bracket, [ , ]0B, coincides with the big
bracket is a consequence of the following result.

THEOREM 3.1. For any X and Y ∈ ∧•
E∗ ⊗ ∧•

E, i{X,Y } is the term of highest
type in [iX, iY ].

Proof. Both {X,Y } and [iX, iY ] are 0 when both arguments X and Y belong to∧•
E, or to

∧•
E∗. If X∈E, Y ∈E∗, then both i{X,Y } and [iX, iY ] are multiplication

by the scalar 〈Y,X〉, obtained from the duality of E∗ with E. It is now enough to
remark that both expressions are derivations with respect to X and Y . On the one
hand, we know that the big bracket satisfies, for X,Y and Z∈∧•

E∗ ⊗∧•
E,

{X,Y ∧Z}={X,Y }∧Z+ (−1)|X||Y |Y ∧{X,Z}.

On the other hand, it follows from the properties of the graded commutators that

[iX, iY∧Z]= [iX, iY ]◦ iZ + (−1)|X||Y |iY ◦ [iX, iZ] .

Since the term of highest type of the composition of two differential operators is
the composition of the terms of highest type, the theorem follows.

COROLLARY 3.1. In all cases, [ , ]0B coincides with the big bracket.

In particular, if p=p′ =1, [iX, iY ] has only terms of highest type and therefore

i[X,Y ]0B
= [iX, iY ]. (3.2)
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This property also follows from the fact that the restriction of the big bracket to
the vector-valued 1-forms is equal to the Nijenhuis–Richardson bracket. The same
is true of bracket [ , ]0B by Corollary 3.1. Therefore, Equation (3.2) reduces to the
defining property of the Nijenhuis–Richardson bracket [44]: the embedding i maps
the Nijenhuis–Richardson bracket on

∧•
E∗ ⊗E to the commutator of operators

on
∧•

E∗.

Remark. Contrary to a statement in [7], relation (3.2) does not hold in all gen-
erality, as can be shown by the calculation of [ix∧y, eξ ], where x and y are vectors,
and ξ is a form of degree �2. In this case

[ix∧y, eξ ]= eiyξ ix + (−1)|ξ |eixξ iy − (−1)|ξ |eix∧yξ ,

which is the sum of a term of type 1 and a term of type 0. Identifying X with iX,
one can write,

[x∧y, ξ ]= iyξ ⊗x+ (−1)|ξ |ixξ ⊗y− (−1)|ξ |ix∧yξ,

while only the first two terms constitute [x∧y, ξ ]0B.
Another example is the Buttin algebraic bracket of two bivector-valued 1-forms,

which shows that, in this case also, the result is the sum of the term of highest
type (which is 3 in this example) and of terms of lower type. Explicitly,

[ξ1 ⊗x1 ∧y1, ξ2 ⊗x2 ∧y2]

= (−1)|ξ2| ξ1 ∧ ix1ξ2 ⊗y1 ∧x2 ∧y2 + ξ1 ∧ iy1ξ2 ⊗x1 ∧x2 ∧y2 −
−(−1)(|ξ1|+1)(|ξ2|+1)(ξ2 ∧ ix2ξ1 ⊗y2 ∧x1 ∧y1+(−1)|ξ1|ξ2 ∧ iy2ξ1 ⊗x2 ∧x1 ∧y1)+
+(−1)|ξ2|+1(ξ1 ∧ ix1∧y1ξ2 ⊗x2 ∧y2 + (−1)|ξ1|(|ξ2|+1)ξ2 ∧ ix2∧y2ξ1 ⊗x1 ∧y1).

We observe that the expression of the term of highest type coincides with the
explicit formula for the big bracket given in [3].

Buttin then considers the case of differential operators on the exterior algebra,
�•(M)=�(⊕q�0

∧q
(T ∗M)), of all differential forms on a smooth manifold, M.

If d is the de Rham differential, and if X and Y are multivector-valued differen-
tial forms on M, i.e., tensors skew-symmetric in both their contravariant and their
covariant indices, one can consider the expression, [[iX,d], [iY ,d]]. She proves that
there exists a differential operator, {X,Y }B, called the generalized differential con-
comitant of the first kind, such that

[{X,Y }B,d]= [[iX,d], [iY ,d]], (3.3)

which is well-defined when an additional condition is imposed on its symbol. In
addition, she shows that, only in certain cases, there exists a tensor [X,Y ]B such
that

[i[X,Y ]B ,d]= [[iX,d], [iY ,d]]. (3.4)
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These cases are
(0) X is a differential form, and in this case, [X,Y ]B is not a true differential

concommitant since it does not involve partial derivatives of the components of Y ,
(1) X and Y are multivector fields, and in this case [ , ]B is the Schouten–

Nijenhuis bracket as it is now usually defined (differing from Lichnerowicz’s defi-
nition [37] by a sign),

(2) X and Y are vector-valued differential forms, and in this case [ , ]B coincides
with the Frölicher–Nijenhuis bracket [17,16]. In fact, setting LX = [iX,d], formula
(3.4) becomes

L[X,Y ]B = [LX,LY ], (3.5)

and the Frölicher–Nijenhuis bracket is a solution of this equation. Because, in this
case, iX, iY and d are derivations of �•(M), we know that this solution is unique.

The brackets of cases (1) and (2), each extending the Lie bracket of vector fields,
are thus seen as particular cases of a more general construction.

Remark. The embedding i can be considered as an embedding of
∧•

E∗ ⊗∧•
E

into the vector space of all differential operators on
∧•

E∗ ⊗ ∧•
E, defined on

decomposable elements by

iξ⊗x(η⊗y)= iξ⊗xη⊗y= ξ ∧ ixη⊗y, (3.6)

for x and y ∈ ∧•
E, ξ and η ∈ ∧•

E∗. Similarly, there is an embedding j of the
space

∧•
E⊗∧•

E∗ into the space of all differential operators on
∧•

E⊗∧•
E∗,

defined on decomposable elements by

jx⊗ξ (y⊗η)=x∧ iξ y⊗η. (3.7)

In an earlier note [6], Buttin had obtained the Schouten–Nijenhuis bracket
of multivectors by a construction involving an auxiliary torsionless linear con-
nection, ∇. For any decomposable element x in V p(M) such that x = u ∧ v,
u∈V p−1(M), v ∈V 1(M), set ∇xy=u∧∇vy, for all y ∈V •(M). To a multivector x
of degree p, Buttin associated the derivation of degree p−1 of the algebra of mul-
tivectors defined by

x̃(y)=∇xy− j∇xy, (3.8)

for y ∈ V •(M), where j is the map defined by (3.7). The Schouten–Nijenhuis
bracket of multivectors x and y is then obtained by letting the derivation x̃ act
on y.

3.2. THE VINOGRADOV BRACKET

Vinogradov [55,8] introduced a bilinear operation on the vector space of all graded
endomorphisms of the space of differential forms on a smooth manifold. (Actually
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his general construction is given for any complex.) If a and b are endomorphisms
of the space of differential forms, �•(M), he sets

[a, b]V = 1
2

(
[[a,d], b]− (−1)|b|[a, [b,d]]

)
. (3.9)

This bilinear bracket is skew-symmetric but does not satisfy the Jacobi identity. See
[55] for the explicit trilinear expression of the defect in the Jacobi identity. The
vector space of all multivector-valued forms embeds into this space of endomor-
phisms, but it is not closed under this bracket. However, the following properties,
which will be proved in Section 3.4, are valid.

(A) The space of multivectors is closed under the Vinogradov bracket. Its
restriction to the space of multivectors is a graded Lie bracket, which is
the Schouten–Nijenhuis bracket.

(B) The restriction of the Vinogradov bracket to the space of vector-valued
forms is equal to the Frölicher–Nijenhuis bracket, up to a derivation of
�•(M) of the form [iZ,d], where Z is a vector-valued form.

(C) The direct sum of the space of vector fields and the space of differential
forms is closed under the Vinogradov bracket. The restriction of the bracket
[ , ]V to this space was not considered by Vinogradov. It is skew-symmetric
by definition, but it does not satisfy the Jacobi identity.

• Case of 1-forms: We shall show in Section 3.4 that, when the Vinogradov
bracket is further restricted to the direct sum of the space of vector fields
and the space of differential 1-forms, it is nothing other than the bracket
of Courant [11].

• Case of p-forms: In fact, the formula for the Courant bracket (3.25)
below also makes sense in the more general case of a vector and a form
of arbitrary degree. This was observed by Wade in [57] and independently
by Hitchin in [22]. The calculation in Section 3.4 shows that the bracket
defined by this formula is the restriction of the Vinogradov bracket.

3.3. UNIFICATION THEOREMS

In Buttin and in Vinogradov, we find two ‘unification theorems’, namely construc-
tions of which both the Schouten–Nijenhuis bracket and the Frölicher–Nijenhuis
bracket are, in some sense, particular cases. These constructions are described in
different settings: Buttin introduces a skew-symmetric bilinear map from pairs of
multivector-valued forms to differential operators on the space, �•(M), of differ-
ential forms, the generalized differential concomitant of the first kind, and she
shows that the image of a pair corresponds to a multivector-valued form only
in the case of a pair of multivectors or in the case of a pair of vector-valued
forms. For his part, Vinogradov constructs a skew-symmetric bracket, which does
not satisfy the graded Jacobi identity, defined on pairs of differential operators on
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�•(M), with values in the space of differential operators, which restricts to the
Schouten–Nijenhuis bracket on multivectors, and also has the property of restric-
ting to the Frölicher–Nijenhuis bracket on vector-valued forms, but only modulo
generalized Lie derivatives.

Using the graded Jacobi identity for the graded commutator, we find the follow-
ing relation: for any endomorphisms, a and b, of �•(M),

[[a, b]V,d]= [[a,d], [b,d]]. (3.10)

Therefore, whenever a= iX, b= iY , for X and Y multivector-valued forms, by (3.3),

[{a, b}B,d]= [[a, b]V,d] (3.11)

and, in particular, if both X and Y are multivectors, or if both are vector-valued
forms,

[i[X,Y ]B ,d]= [[iX, iY ]V,d]. (3.12)

We claim that the situation can be clarified by the consideration of nonskew-
symmetric brackets.

3.4. LODAY BRACKETS ON FORMS AND MULTIVECTORS

We shall show that the Vinogradov bracket is the skew-symmetrization of a Loday
bracket, which is a derived bracket of the graded commutator of graded endo-
morphisms. In case (A) of Section 3.2, the derived bracket is skew-symmetric and
therefore the Vinogradov bracket coincides with it, while in cases (B) and (C), the
derived bracket is not skew-symmetric. The skew-symmetrization then yields the
Vinogradov bracket.

Again let End(�•(M)) be the algebra of graded endomorphisms of �•(M), and
let [ , ] be the graded commutator. Let d be the de Rham differential. The derived
bracket of a, b∈End(�•(M)) is defined by formula (1.3) of Section 1,

[a, b]d = [[a,d], b]. (3.13)

Below we set, for X ∈�•(M)⊗V 1(M), LX = [iX,d], where iX is defined by (3.6),
and is considered as an endomorphism of �•(M)⊗V 1(M).

THEOREM 3.2.

(i) The derived bracket [ , ]d defines an odd Loday algebra structure on
End(�•(M)).

(ii) The space V •(M) is closed under the derived bracket [ , ]d. Its restriction to
this subspace of End(�•(M)) is skew-symmetric; it is the Schouten–Nijenhuis
bracket.
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(iii) The algebraic part of the restricition of [ , ]d to the subspace �•(M)⊗V 1(M)

of End(�•(M)) is the Frölicher–Nijenhuis bracket. More precisely,

[iX, iY ]d = i[X,Y ]FN − (−1)q(q
′−1)LiYX , (3.14)

where [X,Y ]FN denotes the Frölicher–Nijenhuis bracket of vector-valued forms
X∈�q(M)⊗V 1(M) and Y ∈�q ′

(M)⊗V 1(M).
(iv) The derived brackets of a vector field x and a differential form ξ are

[x, ξ ]d =Lxξ (3.15)

and

[ξ, x]d =−ixdξ, (3.16)

and the restriction of [ , ]d to the direct sum of the space of vector fields and
the space of differential forms is given by

[x+ ξ, y+η]d = [x, y]+Lxη− iydξ, (3.17)

for all vector fields x and y, and for all differential forms ξ and η, where [x, y]
is the Lie bracket of x and y.

Proof. Part (i) is a corollary of Theorem 1.1 above. Part (ii) is a restatement of
the Cartan formula (2.2) for multivector fields.

To prove part (iii), we observe that, for vector-valued forms, X and Y ,

[[iX, iY ]d,d]= [i[X,Y ]FN ,d],

because both expressions are equal to [[iX,d], [iY ,d]], the first by the Jacobi
identity and the second by definition. This implies that the algebraic parts of
[iX, iY ]d and i[X,Y ]FN are equal. It follows from formula 5.15 of [17] that the
Frölicher–Nijenhuis bracket satisfies, for X= ξ ⊗x, Y =η⊗y,

[X,Y ]FN = ξ ∧η⊗ [x, y]+ (ξ ∧Lxη+ (−1)|ξ |dξ ∧ ixη)⊗y−
−(−1)|ξ ||η|(η∧Lyξ + (−1)|η|dη∧ iyξ)⊗x. (3.18)

Using iξ⊗x = eξ ◦ ix and [iξ⊗x,d]= ξ ∧Lx + (−1)|ξ |dξ ∧ ix , this formula also implies
the expression

[X,Y ]FN = ξ ∧η⊗ [x, y]+LXη⊗y− (−1)|ξ ||η|LY ξ ⊗x. (3.19)

to be found in, e.g., [35,21].
On the other hand, a direct computation shows that

[iξ⊗x, iη⊗y ]d = [[iξ⊗x,d], iη⊗y ] (3.20)

= ξ ∧η∧ i[x,y] + (ξ ∧Lxη+ (−1)|ξ |dξ ∧ ixη)∧ iy +
+(−1)|ξ ||η|+1η∧ iydξ ∧ ix + (−1)|ξ ||η|+|ξ |+1η∧ iyξ ∧Lx.
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Therefore, we find from (3.18) and (3.20),

(−1)|ξ ||η|+|ξ |+1([iξ⊗x, iη⊗y ]d − i[ξ⊗x,η⊗y]FN

)

=η∧ iyξ ∧Lx − (−1)|ξ |+|η|d(η∧ iyξ)∧ ix = [iη∧iyξ⊗x,d]= [iiY X,d]=LiYX,

which proves (3.14).
To prove part (iv), we first observe that, on V 1(M), the derived bracket restricts

to the Lie bracket of vector fields: this follows from the Cartan formula (2.2).
If ξ is a differential form of degree |ξ |,

[eξ ,d]= (−1)|ξ |+1edξ . (3.21)

Since any two exterior products by forms commute, the derived bracket vanishes
if both arguments are differential forms.

If x is a vector field and ξ a differential form of degree |ξ |,
[ix, eξ ]d = [[ix,d], eξ ]=Lxeξ − eξLx = eLxξ , (3.22)

and

[eξ , ix ]d = [[eξ ,d], ix ]= (−1)|ξ |+1[edξ , ix ]=−eixdξ . (3.23)

Therefore, identifying vectors and forms with their image under the embedding i,
we obtain formulas (3.15) and (3.16).

To summarize, [ , ]d extends the Lie bracket of vector fields, vanishes on pairs
of differential forms and satisfies (3.15) and (3.16), and therefore (3.17) follows.

Remark. The space V •(M) ⊗ �•(M) ⊂ End(�•(M)) is not closed under the
derived bracket [ , ]d unless the manifold is of dimension � 1. To prove this, let
us show that, on manifolds of dimension �2, there exist multivector fields, x and
y, and differential 1-forms, ξ and η, such that the operator [[ix⊗ξ ,d], iy⊗η] is not
C∞(M)-linear. For any differential form α,

[[iξ⊗x,d], iη⊗y ](α)

= ξ ∧Lxd(η∧ iyα)− (−1)|x|+|ξ |dξ ∧ ix(η∧ iyα)+
+(−1)|x|+|y|+|ξ |+|η|η∧ iy(ξ ∧Lxdα)− (−1)|y|+|η|η∧ iy(dξ ∧ ixα).

If x and y are bivectors, for a 1-form α and a function f ,

[[iξ⊗x,d], iη⊗y ](f α)−f [[iξ⊗x,d], iη⊗y ](α)

=
(
iy(ξ ∧ ix(df ∧dα))− (−1)|x|(ixdα)iy(ξ ∧df )

)
η.

If dα=β∧γ , this expression is
(
ix(β∧df )iy(ξ ∧γ )− ix(γ ∧df )iy(ξ ∧β))η,

which does not vanish in general, as can be proved by using local coordinates.
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THEOREM 3.3.

(i) The skew-symmetrization of the derived bracket [ , ]d is the Vinogradov
bracket.

(ii) The skew-symmetrized derived bracket of a vector x and a form ξ is

[x, ξ ]−d =Lxξ − 1
2 dixξ, (3.24)

and the restriction of the skew-symmetrization of [ , ]d to the direct sum of
the space of vector fields and the space of differential forms is given by

[x+ ξ, y+η]−d = [x, y]+Lxη−Lyξ − 1
2 d(ixη− iyξ), (3.25)

for all vector fields x and y, and all differential forms ξ and η.
(iii) The restriction of the skew-symmetrization of [ , ]d to the direct sum of

the space of vector fields and the space of differential 1-forms is the Courant
bracket.

Proof. Part (i) follows from equations (1.5) and (3.9). Part (ii) follows immediately
from part (iv) of Theorem 3.2. On V 1(M)⊕�1(M), formula (3.25) is precisely the
Courant bracket as defined in [11] and used in [38], proving part (iii).

Remark. If we consider the restriction of the skew-symmetrized derived bracket
to the vector-valued forms, we find

[iX, iY ]V = [iX, iY ]−d = i[X,Y ]FN + 1
2 (−1)pL

iXY+(−1)(p−1)(p′−1)iY X
.

It is clear that �•(M)⊗V 1(M) is not closed under the derived bracket nor under
its skew-symmetrization, because neither [iξ⊗x, iη⊗y ]d nor [iξ⊗x, iη⊗y ]−d vanishes on
functions. In fact,

[iξ⊗x, iη⊗y ]df =η∧ iyξLxf.

The explicit expression (3.17) of the derived bracket for the case of 1-forms
appears in Dorfman (see [14,15]), in her study of the properties of Dirac struc-
tures on complexes over Lie algebras. However, that expression does not appear
as a derived bracket and its properties are not spelled out.

The relationship of the derived bracket with the Vinogradov bracket was shown
in [26], but its relationship with the Courant bracket was observed later, indepen-
dently by myself (in an e-mail letter to Alan Weinstein, 1998), Pavol Ševera and
Ping Xu (all unpublished, see [52]). It is the nonskew-symmetric bracket which is
now used in the theory of Courant algebroids [48,49,52].

4. Odd and Even Brackets on Supermanifolds

In the interpretation of the brackets of differential geometry in terms of super-
manifolds, the odd brackets are obtained as derived brackets of even brackets and
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conversely. This was shown in all generality by Voronov in [56]. See also the article
by Batalin and Marnelius [4]. The main examples are

(1) the Schouten–Nijenhuis bracket of multivectors on a manifold, as a derived
bracket of the canonical Poisson bracket on the cotangent bundle of the
manifold,

(2) the Poisson bracket of functions on a manifold, M, as a derived bracket
of the canonical Schouten–Nijenhuis bracket on the cotangent bundle of M
with reversed parity (see [26]),

(3) the algebraic Schouten bracket on the exterior algebra of a Lie alge-
bra (E,µ), as the derived bracket of the canonical Poisson structure on∧
(E⊕E∗) (see [24]).

All these instances are particular cases of the general construction on Lie alge-
broids which we shall describe in Section 4.3.

Below, a function on T ∗M, where M is a supermanifold, is called a Hamiltonian
on M, and a bracket on the vector space C∞(M) is sometimes called a bracket
on M. If E→M is a vector bundle, 
E denotes the supermanifold obtained by
reversing the parity of the fibers.

4.1. ODD AND EVEN POISSON BRACKETS ON SUPERMANIFOLDS ARE DERIVED

BRACKETS

The following theorems are due to Voronov [56] (see also [4]).

THEOREM 4.1. Any odd Poisson bracket on a supermanifold, M, is a derived
bracket of the canonical Poisson bracket { , } on T ∗M. More precisely, for any odd
Poisson bracket on M, [ , ] , there exists a quadratic function S on T ∗M such that

[f, g]={{f,S}, g}, (4.1)

for all f, g ∈C∞(M). (On the right-hand side of (4.1), f and g are identified with
their pull-backs to T ∗M, i.e., are considered as functions on the vector bundle T ∗M,
that are constant on the fibers.)

Formula (4.1) defines a derived bracket [ , ]={ , }S which is not only a Loday
bracket but is a true Lie bracket, i.e., it is skew-symmetric, because C∞(M) is an
Abelian subalgebra of the Poisson algebra of T ∗M.

In coordinates, if (xα) are local coordinates on M and (xα,pα) the asssociated
local cordinates on T ∗M, then S= 1

2S
αβ(x)pαpβ , where Sαβ = [xα, xβ ].

EXAMPLE. As an exercise, let us illustrate this theorem when M =
T ∗N , for
N a manifold of dimension n. The Schouten–Nijenhuis bracket of fields of multi-
vectors is a canonically defined odd Poisson bracket, [ , ]SN, on M. What is the
corresponding quadratic Hamiltonian? We seek its expression in local coordinates.
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Let(yi, ỹi ) be adapted local coordinates on M=
T ∗N (yi is even and ỹi is odd).
Then

[yi, yj ]SN =0, [yi, ỹj ]SN = δij and [ỹi , ỹj ]SN =0.

Let (yi, ỹi , pi, p̃i) be associated local coordinates on T ∗M. The canonical Pois-
son bracket satisfies, {yi,pj } = δij , {ỹi , p̃j } = δ

j
i , while all other brackets vanish.

The quadratic Hamiltonian S = −pip̃i ∈ C∞(T ∗(
T ∗N)) satisfies Equation (4.1)
above in the form [f, g]SN ={{f,S}, g}. The Hamiltonian S can be also defined in
an invariant way. For each ϕ∈T ∗M, S(ϕ)=−〈p∗


T ∗Nϕ,p
∗

TN(κϕ)〉, where p∗


T ∗N
maps T ∗(
T ∗N) to 
T ∗N , and p∗


TN maps T ∗(
TN) to 
TN , while κ is the
canonical isomorphism [56] from T ∗(
T ∗N) to T ∗(
TN).

In the same manner, we can describe every even Poisson bracket on M as a
derived bracket. Let P be the even Poisson bivector defining an even Poisson
bracket { , } on M. Then {f, g}= [[f,P ], g], where the bracket on the right-hand
side is the Schouten–Nijenhuis bracket of multivector fields on M, and f and g

are considered as multivector fields of degree 0. See formula (3.5) of [26] for the
case of ordinary manifolds, and [56] for supermanifolds. Since a multivector field
on M is a function on 
T ∗M, this property can be reformulated in the language
of supermanifolds, making it ‘dual’ to Theorem 4.1.

THEOREM 4.2. Any even Poisson bracket on M is a derived bracket of the canoni-
cal Schouten–Nijenhuis bracket [ , ] on 
T ∗M. More precisely, for any even Poisson
bracket on M, { , }, there exists a quadratic function P on 
T ∗M such that

{f, g}= [[f,P ], g], (4.2)

for all f, g∈C∞(M). (On the right-hand side, f and g are identified with their pull-
backs to 
T ∗M, i.e., are considered as functions on the vector bundle 
T ∗M, that
are constant on the fibers.)

The quadratic function P on 
T ∗M is nothing but the Poisson bivector giving
rise to the given even Poisson bracket. In local coordinates (xα, p̃α) on 
T ∗M,
P = 1

2P
αβ(x)p̃βp̃α, where Pαβ ={xα, xβ}.

4.2. DERIVED BRACKETS AND LIE ALGEBRAS

Let E be a finite-dimensional vector space over a field of characteristic 0. For
simplicity, we consider the ungraded (purely even) case, but the properties below
extend to the case where the vector space E is itself graded, see [56]. The follow-
ing structures are equivalent:

• a Lie algebra structure on E,
• a Lie co-algebra structure on E∗,
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• a linear Schouten structure on 
E∗, i.e., a Schouten algebra structure on
C∞(
E∗)=∧•

E such that E is closed under the bracket,
• a linear Poisson structure on E∗, i.e., a Poisson algebra structure on C∞(E∗)

such that E is closed under the bracket, i.e., a linear bivector field on E∗,
• a linear-quadratic Hamiltonian of Poisson square 0 on 
E∗, i.e., an element
µ∈C∞(T ∗(
E∗))=C∞(
E∗ ⊕
E)= ∧•

(E⊕E∗) such that µ∈ ∧2
E∗ ⊗E

and {µ,µ}=0, also denoted by H ,
• a quadratic homological vector field on 
E, i.e., a quadratic differential on
C∞(
E)=∧•

E∗, often denoted by d, or dµ, or Q.

The canonical Poisson bracket on C∞(T ∗(
E∗))=∧•
(E⊕E∗) was first defined

in [31] and considered in [36]. It was an esential tool in [24], where we first called
it the big bracket. Here, we have denoted the big bracket by { , }.

The bracket on C∞(
E∗)= ∧•
E is called the algebraic Schouten bracket of

the Lie algebra. The differential on C∞(
E)= ∧•
E∗, corresponding to the Lie

algebra structure on E, is the Chevalley–Eilenberg differential on the scalar-valued
cochains on E.

Let (ei) be a basis of E, with coordinates (xi), and set µ(ei, ej )=Ckij ek. Let
(ξ̃i ) be the coordinates in the dual basis on 
E∗, and let (ξ̃i , x̃i ) be the associ-
ated coordinates on T ∗(
E∗)=
E∗ ⊕
E. The Hamiltonian on 
E∗, which is a
function on T ∗(
E∗), may be written H = 1

2C
k
ij ξ̃kx̃

i x̃j , while the vector field on

E may be written Q= 1

2 x̃
j x̃iCkij∂/∂x̃

k.

Since Lie algebra structures on E are Poisson (resp., Schouten) structures on E∗

(resp., 
E∗), Theorems 4.1 and 4.2 apply. They take the following form in the case
of Lie algebras.

COROLLARY 4.1. Given a Lie algebra structure µ ∈ ∧2
E∗ ⊗ E on a vector

space, E,

(i) the Schouten bracket on C∞(
E∗)=∧•
E is given by the derived bracket for-

mula,

[x, y]µ={{x,µ}, y} , (4.3)

where { , } denotes the canonical Poisson bracket (big bracket) on T ∗(
E∗),
µ is considered as a Hamiltonian on 
E∗, i.e., as a function on T ∗(
E∗), and
x and y are considered as functions on T ∗(
E∗) that are constant on 
E,

(ii) the Poisson bracket of f and g in C∞(E∗) is given by the derived bracket for-
mula,

{f, g}µ= [[f,µ], g], (4.4)

where [ , ] denotes the canonical Schouten–Nijenhuis bracket of multivector
fields on E∗, µ is considered as a bivector field on E∗, and f and g are con-
sidered as multivector fields of degree 0 on E∗.
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Part (i) of the corollary was observed in [47] as well as in [24], where it was used
to prove various properties of Lie bialgebras and Poisson Lie groups. As an appli-
cation, we now recall how to derive the condition for an r-matrix to define a co-
boundary Lie bialgebra.

EXAMPLE. Let g = (E,µ) be a Lie algebra. If r ∈ ∧2 g, by (4.3), the algebraic
Schouten bracket, [r, r]µ, satisfies [r, r]µ = {{r,µ}, r}, where { , } denotes the big
bracket. Let dµr be the Chevalley–Eilenberg coboundary of r. In order for dµr to
be a Lie cobracket on E it is necessary and sufficient that {dµr, dµr}=0. Using the
relations dµr={µ, r} and {µ,µ}=0, the Jacobi identity and (4.3), we obtain

{dµr, dµr}={{µ, r}, {µ, r}}={µ, {{r,µ}, r}}={µ, [r, r]µ}=dµ[r, r]µ.

Therefore dµr is a Lie cobracket on E if and only if [r, r]µ is ad-invariant. Since
the Drinfeld bracket, 〈r, r〉, coincides with the algebraic Schouten bracket up to a
factor − 1

2 , the above computation is a short proof of the fact that (E,µ, dµr) is a
coboundary Lie bialgebra if and only if r satisfies the generalized classical Yang–
Baxter equation, i.e., the ad-invariance of the Drinfeld bracket 〈r, r〉.

We now state another derived bracket formula in the theory of Lie algebras (see
[56]). We can consider x ∈E as a constant vector field on 
E. Let i :x ∈E �→ ix ∈
V 1(
E)=Der(C∞(
E))=Der(

∧•
E∗) be the canonical embedding. With the pre-

ceding notations, for x and y in E,

i[x,y]µ = [[ix, dµ], iy ], (4.5)

where the bracket on the right-hand side is the graded commutator. If, for exam-
ple, α is a 1-form on E, this formula reduces to

(dµα)(x, y)=−α([x, y]µ).

More generally, for x ∈ ∧•
E, let ix ∈ End(

∧•
E∗) be the interior product by x.

Formula (4.5) is then valid for x and y in
∧•

E, where the bracket on the left-
hand side is the algebraic Schouten bracket.

The axioms of Lie bialgebras and generalizations thereof can be easily formu-
lated in this framework, as shown in [36,24,48,50,56].

In conclusion, we can state: just as the Lie bracket of vector fields is a derived
bracket according to the Cartan relation (2.2), the Lie bracket on any Lie alge-
bra is a derived bracket according to equation (4.5). We observe that the de
Rham differential and the Chevalley–Eilenberg cohomology operator play analo-
gous roles. The Lie algebroid framework which we shall now describe unifies these
two theories.

4.3. DERIVED BRACKETS AND LIE ALGEBROIDS

The approach to Lie algebroids in terms of supermanifolds is due to Vaintrob [54],
and was developed by Roytenberg [48–50] and by Voronov [56]. See also [2] and [46].



80 YVETTE KOSMANN-SCHWARZBACH

Let A→M be a vector bundle. A Lie algebroid structure on A can be defined in
several equivalent ways:

• a Lie algebroid structure on A, i.e., a Lie algebra structure on �A and a mor-
phism of vector bundles, ρ :A→TM, called the anchor, satisfying the Leibniz
rule,

[u,f v]=f [u, v]+ (ρ(u)f )v. (4.6)

for all u and v∈�A, f ∈C∞(M),
• a linear Schouten structure on 
A∗, i.e., a Schouten algebra structure on
C∞(
A∗)=�(∧•

A) such that �A is closed under the bracket,
• a linear Poisson structure on A∗, i.e., a Poisson algebra structure on C∞(A∗)

such that �A is closed under the bracket.

Remark. The fact that the anchor maps the bracket on �A to the Lie bracket on
�TM, which is usually listed in the axioms of a Lie algebroid, is actually a conse-
quence of the Jacobi identity (1.1) for the bracket on �A together with the Leibniz
rule, as we show by computing [u, [v, fw]] in two ways (see [30]).

A Lie algebroid structure on A can also be defined by a homological vector field
on 
A, i.e., a differential on C∞(
A)=�(

∧•
A∗), the Lie algebroid differential,

often denoted by Q, or d, or dA. Let (xα) be local coordinates on M, let (ei) be
a local basis of �A, and let (xα, yi) be the corresponding local coordinates on A.
Let

ρ(ei)=aαi (x)
∂

∂xα
and [ei, ej ]=Ckij (x)ek.

Then the vector field, Q, on the vector bundle 
A, equipped with the local coor-
dinates (xα, ỹi), has the local expression,

Q= ỹiaαi (x)
∂

∂xα
+ 1

2 ỹ
j ỹiCkij (x)

∂

∂ỹk
.

A Lie algebroid structure on A can also be viewed as a quadratic Hamiltonian
on 
A∗, of Poisson square 0, denoted by H . If (xα, η̃i) are the local coordinates
on 
A∗ dual to (xα, ỹi), and (xα, η̃i , pα, θ̃

i) are the associated local coordinates
on T ∗(
A∗), then

H =aαi (x)pαθ̃ i + 1
2 η̃kC

k
ij (x)θ̃

j θ̃ i .

The structure can also be viewed as a bivector field on A∗, defining the lin-
ear Poisson structure, denoted by P . Its local expression in the local coordinates
(xα, ηi) on A∗ is

P =aαi (x)
∂

∂xα
∂

∂ηi
+ 1

2ηkC
k
ij (x)

∂

∂ηj

∂

∂ηi
.

There are several derived brackets in this theory.
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THEOREM 4.3. Given a Lie algebroid structure on the vector bundle A,

(i) if H is the Hamiltonian of the Lie algebroid, then the Schouten bracket of u
and v∈C∞(
A∗)=�(∧•

A) is the derived bracket,

[u, v]A={{u,H }, v}, (4.7)

where { , } is the canonical Poisson bracket of T ∗(
A∗), and u and v are con-
sidered as functions on T ∗(
A∗) that are constant on the fibers,

(ii) if P is the bivector field on A∗ of the Lie algebroid, then the Poisson bracket
of ϕ and ψ ∈C∞(A∗) is the derived bracket,

{ϕ,ψ}A= [[ϕ,P ],ψ ], (4.8)

where [ , ] is the canonical Schouten–Nijenhuis bracket of multivector fields on
A∗, and ϕ and ψ are considered as multivectors of degree 0.

In particular, formula (4.7) is valid for u and v sections of A, showing that any
Lie algebroid bracket is a derived bracket of a canonical Poisson bracket by a qua-
dratic Hamiltonian.

In terms of endomorphisms of C∞(
A)=�(∧•
A∗),

i[u,v]A = [[iu, dA], iv], (4.9)

where u and v are functions on 
A∗, dA is the Lie algebroid differential, and i is
the interior product. When u and v are sections of A, relation (4.9) is an equality
of derivations of �(

∧•
A∗).

As a particular case of (4.9), we see once more that the Lie algebroid bracket
is a derived bracket. Moreover, if u ∈ �A and f ∈ C∞(M), [u,f ]A is the func-
tion [[iu, dA], f ]=ρ(u)f . Thus, the action of the anchor also appears as a derived
bracket.

Also, on a Lie algebroid, A, a Frölicher–Nijenhuis bracket, [ , ]FN , can be
defined [16] [21] on vector-valued forms, i.e., sections of

∧•
A∗ ⊗A, in such a way

that it satisfies

[i[X,Y ]FN , dA]= [[iX, dA], [iY , dA]]. (4.10)

In fact, this generalized Frölicher–Nijenhuis bracket is defined by means of equa-
tion (3.18), in which the de Rham differential and the Lie derivation are replaced
by their Lie algebroid generalizations.

Obviously, the formulas for brackets on Lie algebroids admit two particular
cases of interest:

• Lie algebras. When the base manifold is a point, we recover the case of a Lie
algebra. Formula (4.7) reduces to formula (4.3), and formula (4.8) reduces to
formula (4.4), while formula (4.9) reduces to (4.5).
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• Manifolds. When the Lie algebroid A is a tangent bundle, we recover the case
of a manifold. The differential dA is the de Rham differential. Formula (4.7)
reduces to formula (4.1), and formula (4.8) reduces to formula (4.2), while for-
mula (4.9) reduces to the Cartan formula (2.2).

As an application of the general formulas, we mention the case A=T ∗M, when
M is a Poisson manifold with Poisson bivector P . Then it is known (see [30]) that
dA is the Lichnerowicz–Poisson differential, dP = [P, · ]SN, where [ , ]SN is the
Schouten–Nijenhuis bracket of multivectors. If [ , ]P denotes the Koszul bracket
of differential forms, then, by formula (4.9),

i[α,β]P = [[iα, dP ], iβ ], (4.11)

for any forms α and β. This formula was first proved by Krasilsh’chilk in [34]. (See
also [26].) It appears once more that Poisson structures play a role dual to that
of differential structures on manifolds: in this sense, formula (4.11) is dual to the
Cartan formula (2.2).

5. Derived Brackets and Courant Algebroids

Courant algebroids were introduced by Liu, Weinstein and Xu in [38], as a gen-
eralization of the bracket defined by Courant [11] on the sections of TM⊕T ∗M.
As we pointed out in Sections 3.2 and 3.4, the Courant bracket is skew-symmet-
ric but does not satisfy the Jacobi identity. The definition of Courant algebroids
was later re-formulated [48,50,52] in terms of Loday brackets. An in-depth study
of the role of derived brackets in the general theory of Courant algebroids can be
found in the article by Roytenberg [50], in terms of cubic Hamiltonians on graded
supermanifolds, and in the forthcoming study by Alekseev and Xu [1], in terms of
Clifford modules and compatible connections. Here we shall be content with exhib-
iting one more instance of a derived bracket construction.

5.1. COURANT ALGEBROIDS

The vector bundle TM ⊕ T ∗M, for any manifold M, with the field of nondegen-
erate symmetric bilinear forms defined by the conditions that TM and T ∗M be
isotropic and (x|ξ)= 〈x, ξ〉, for x a tangent vector and ξ a 1-form at a point in
M, with the bracket (3.17) and anchor the projection onto TM, is the prototyp-
ical exemple of a Courant algebroid. As shown in [38], this construction can be
generalized to the case of A⊕A∗, where (A,A∗) is a Lie bialgebroid, i.e., a pair
of Lie algebroids in duality satisfying a compatibility condition [40,25,49]: taking
into account the bracket of A∗, formula (3.17) can be extended to the sections of
A⊕A∗, and together with the sum of the anchors of A and A∗, it defines a Cou-
rant algebroid structure on A⊕A∗.
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5.2. COURANT BRACKET WITH BACKGROUND AS A DERIVED BRACKET

As an example, let us find an explicit deriving operator for the Courant alge-
broid associated to a Poisson structure with background in the sense of Ševera and
Weinstein [52], i.e., a WZW–Poisson structure in the sense of Klimčı́k and Strobl
[23].

Let ψ be an arbitrary form of odd degree on a manifold M. We consider the
operator on �•(M), dψ =d + eψ . Then [dψ,dψ ]= edψ . So, whenever ψ is a closed
form of odd degree, we can consider the derived bracket on End(�•(M)), [ , ]dψ ,
arising from the graded commutator and the odd interior derivation of square 0
defined by dψ . For vector fields x and y,

[ix, iy ]dψ = [[ix,dψ ], iy ]= i[x,y] + eix∧yψ ,

where [x, y] is the Lie bracket of x and y. The first nontrivial case is when ψ is of
degree 3. We see that V 1(M)⊕�1(M) is closed under the derived bracket [ , ]dψ
if and only if ψ is a form of degree 3. Therefore, let ψ be a closed 3-form. We
define

[x+ ξ, y+η]dψ = [[x+ ξ,dψ ], y+η].

for vector fields x and y, and 1-forms ξ and η, and we find the following gener-
alization of (3.17),

[x+ ξ, y+η]dψ = [x, y]+Lxη− iydξ + ix∧yψ. (5.1)

In particular, the bracket of any two differential 1-forms remains 0, but the bracket
of two vector fields has both a component in the space of vector fields and a com-
ponent in the space of differential 1-forms.

This bracket, together with the field of symmetric bilinear forms recalled above,
and, for anchor, the projection onto TM, turn TM ⊕ T ∗M into a Courant alge-
broid, called the Courant algebroid with background ψ [52]. We have just shown
that it is a derived bracket by a modified differential.

PROPOSITION 5.1. The Courant bracket with background ψ on TM⊕T ∗M is the
derived bracket of the commutator of endomorphisms of �•(M) by d + eψ .

5.3. PROPERTIES OF COURANT BRACKETS WITH BACKGROUND

To conclude, we list a few properties of the Courant algebroids with background,
following mainly [52]. Now let P be a bivector on M, and let P � be the mapping
from T ∗M to TM, defined by P �ξ = iξP . We shall determine the condition for the
graph of P � to be a ψ-Dirac structure, i.e., to be maximally isotropic and closed
under the bracket [ , ]dψ . Let ξ and η be 1-forms. Then
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[P �ξ + ξ,P �η+η]dψ = [P �ξ,P �η]+LP�ξη− iP �ηdξ + iP �ξ∧P �ηψ
= [P �ξ,P �η]+LP�ξη−LP�ηξ −d(P (ξ, η))+ iP �ξ∧P �ηψ
= [P �ξ,P �η]+ [ξ, η]P + iP �ξ∧P �ηψ,

and therefore the condition for the graph of P � to be closed under the derived
bracket is that

P �([ξ, η]P + iP �ξ∧P �ηψ)− [P �ξ,P �η]=0.

This condition is equivalent to

1
2 [P,P ]SN = (∧3P �)(ψ), (5.2)

where [P,P ]SN is the Schouten–Nijenhuis bracket of P with itself. If the graph of
P � is a ψ-Dirac structure, i.e., if condition (5.2) is satisfied, P is called a Poisson
structure with background ψ .

We set

[ξ, η]P,ψ = [ξ, η]P + iP �ξ∧P �ηψ. (5.3)

Formula (5.3) defines a skew-symmetric bracket on T ∗M with anchor P �. (The Lie
bracket of 1-forms defined by a Poisson bivector is recovered as the special case
ψ=0.)

The corresponding derivation dP,ψ on V •(M) coincides with dP on C∞(M), and
satisfies

(dP,ψx)(ξ, η)=P �ξ〈η, x〉− P �η〈ξ, x〉−〈[ξ, η]P,ψ , x〉,

for all x ∈V 1(M), ξ, η∈�1(M). Let us define (∧2P �)(ψ) to be the bivector-valued
1-form such that (∧2P �)(ψ)(x)(ξ, η)=ψ(P �ξ,P �η, x), for any vector field x and
for any 1-forms ξ and η. Then there is a concise expression (see [52]) for the der-
ivation dP,ψ which we now prove.

PROPOSITION 5.2. Let dP = [P, · ]SN, where [ , ]SN is the Schouten–Nijenhuis
bracket. The derivation dP,ψ on V •(M) is

dP,ψ =dP + i(∧2P �)(ψ) . (5.4)

Proof. Writing P for P �, we compute, for any vector field x, and any 1-forms
ξ , η,

(dP,ψx)(ξ, η)+ψ(Pξ,Pη, x)
=LPξ 〈η, x〉−LPη〈ξ, x〉−〈LPξη, x〉+ dξ(Pη, x)

=〈η,LPξx〉−Lx〈ξ,Pη〉−〈ξ,LPηx〉=−〈η,LxP ξ〉−〈Lxξ,Pη〉
=−Lx〈η,P ξ〉+〈Lxη,P ξ〉−〈Lxξ,Pη〉=−(LxP )(ξ, η)= (dP (x))(ξ, η).
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Moreover, i(∧2P �)(ψ) is a derivation of V •(M) which vanishes on V 0(M) and coin-
cides with x �→ψ(P � · , P � · , x) for x ∈ V 1(M). We have thus proved formula
(5.4).

Computing [dP,ψ , dP,ψ ], we see that this derivation vanishes if and only if con-
dition (5.2) is satisfied. Thus, bracket [ , ]P,ψ is a Lie algebroid bracket if and only
if P defines a Poisson structure with background ψ . The operator dP,ψ is then the
differential of the Lie algebroid (T ∗M, [ , ]P,ψ). (See [52].)

In addition, the following morphism property of P � is easily proved [29].

PROPOSITION 5.3. The relation

P �[ξ, η]P,ψ = [P �ξ,P �η] (5.5)

is equivalent to condition (5.2).

Further properties of the Poisson structures with background and their gauge
equivalence are studied in several recent articles, including [5,29,49,52].
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V. K. Dobrev, J.-D. Hennig and W. Lücke (eds.), Quantum Theory and Symmetries,
World Scientific, Singapore, 2000, pp. 565–571.

29. Kosmann-Schwarzbach, Y.: Quasi, twisted and all that. . . in Poisson geometry and Lie
algebroid theory, In: J. E. Marsden and T. S. Ratiu (eds), The Breadth of Symplectic
and Poisson Geometry, Progr. in Math., Birkhäuser, Boston, 2004.
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