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Abstract
Numerical simulation of subsurface flow in porous media is crucial for various geo-
science applications. However, conducting numerical simulations for such problems,
particularly in four dimensions (x, y, z, t), presents significant computational chal-
lenges and cost. These challenges are primarily due to the highly nonlinear governing
partial differential equations (PDEs) and the need for refinedmesh discretization.Deep
learning methods offer promising alternatives to traditional simulators by leveraging
neural network models. Previous studies have demonstrated that the surrogate model
constructed using a Fourier neural operator (FNO) exhibits superior speed, accuracy,
and data efficiency in addressing three-dimensional (x, y, t) problems compared to
mainstreammachine learningmethods.However, applying the existingFNOalgorithm
to four-dimensional problems is hindered by the large number of network parameters
and high GPUmemory consumption. In this study, we propose a novel framework for
dynamically predicting four-dimensional subsurface flow properties utilizing the FNO
network and the domain decomposition method. Our approach leverages the three-
dimensional FNO and time components in the x and y directions of each z-layer. The
predicted results for subsequent time steps in four dimensions are generated by consol-
idating the results across all z-layer dimensions.We use examples of CO2 injection for
enhanced oil recovery (EOR) in compositional simulations for fracture systems and
apply the deep learning framework that is trained from physics-based simulation data
to emulate the complex flow state. Furthermore, we integrate our framework with a
multilayer perceptron (MLP) network capable of processing sequential data to predict
gas production under variable well control in a realistic reservoir. The key contribu-
tion of this work is the enhanced training and prediction efficiency of the FNOmethod
for large-scale four-dimensional heterogeneous reservoir models. Consequently, our
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approach can be further extended to expedite workflows for reservoir optimization in
closed-loop reservoir management.

Keywords Fourier neural operator · Simulation · Subsurface flow · Deep neural
network

1 Introduction

Simulation of complex physical systems described by nonlinear partial differential
equations (PDEs) is central to reservoir engineering. The governing equations for
subsurface flow in porous media involve multiphase flow equations, and they may be
coupledwith other physical laws to describe geomechanical and thermal effects (Ajayi
and Gupta 2019). Conventional numerical simulations employ finite element methods
(FEM) and finite difference methods (FDM) to solve these PDEs through discretiza-
tion (Wen and Benson 2021; Benson and Cole 2008; Benson et al. 2012). However, the
combination of discretization schemes with time-stepping iteration strategies is time-
consuming, particularly due to the multi-physics, nonlinearity, and multi-scale nature
of these problems. Large-scale reservoir development projects require extensive com-
putational effort for uncertainty quantification, history matching, and development
optimization, which requires a large number of numerical simulations. Hence, lever-
aging the latest advancements in artificial intelligence to develop surrogate models for
the oil industry (Bagheri and Riahi 2015; Rahmanifard and Plaksina 2019; Bagheri
and Rezaei 2019; Shi et al. 2020; Zare et al. 2020; Moosavi et al. 2022; Li et al. 2024)
can enhance the traditional iterative process of solving partial differential equations,
leading to a notable reduction in computational costs and a faster workflow..

The surrogatemodel, based on deep learningmethods, can achieve real-time predic-
tions once trainedwith a reasonable amount of data from full-physics simulations (Zhu
and Zabaras 2018; Mo et al. 2019; Tang et al. 2020; Wen et al. 2021). Numerous deep
learning techniques have been proposed to construct fast and accurate alternative
models for numerical reservoir simulations.

Among these techniques, pure data-driven models, based on convolutional neural
networks (CNN), focus on learning mappings in Euclidean space from traditional
numerical simulation data (Mo et al. 2019; Liu et al. 2023; Fu et al. 2023). In this
approach, surrogate models are constructed to rapidly predict pressure and satura-
tion fields, as well as wellbore flow rates. These models are employed for history
matching, well control optimizations, uncertainty quantification, and various other
applications (Tang et al. 2021; Wang et al. 2021; Huang et al. 2023; Zhong et al. 2019;
Liu et al. 2019; Kim and Durlofsky 2021). To date, this method has successfully pre-
dicted multiphase flow in three-dimensional reservoirs (Jiang et al. 2021; Tang et al.
2021; Wen et al. 2021; Wu and Qiao 2021). However, the mapping of data-driven
finite-dimensional operators between finite-dimensional spaces is prone to overfitting
and may be inconsistent with the governing physics laws (Anandkumar et al. 2020; Li
et al. 2023). It requires a substantial number of numerical simulation results as input
data, which may be unmanageable as the dimension of the problem increases (Wen
et al. 2022; Zhang et al. 2023). Additionally, the data-driven approach only produces
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valid results for specific spatial and temporalmeshes, limiting its practical applications
for reservoir simulation on an industrial grid scale of tens of millions (Li et al. 2020b;
Nasir and Durlofsky 2023; Jiang and Durlofsky 2023).

Physics-informed or physics-constrained deep learning methods embed the gov-
erning equations in the loss function of neural networks (Haghighat and Juanes 2021;
Raissi et al. 2019; Zhu et al. 2019). One popular approach is the physics-informed
neural network (PINN)method,which integrates domain knowledge andphysical prin-
ciples into the architecture, thereby transforming the traditional numerical simulation
process into an optimization task. A key advantage of this method is its ability to make
accurate predictions for PDE solutions even with limited labeled data (Raissi et al.
2019). Researchers have employed the PINN method to solve the one-dimensional
Buckley–Leverett problem involving two-phase flow in porous media (Fuks and
Tchelepi 2020), simulate the two-dimensional single-phase groundwater flow pro-
cess (Wang et al. 2021), and forecast variables such as pressure, gas saturation, the
water extraction rate in CO2 EOR (Shokouhi et al. 2020) process. However, merely
penalizing deviations from the governing physics equations or domain knowledge by
adding hard physical constraints to the loss function is not suitable for large-scale spa-
tiotemporal domain simulation problems and struggles with complex PDEs (Zhang
et al. 2022). For PINN and its extension methods, changes in the parameters of the
equations or the initial conditions require the model to be retrained. Pang et al. (2019);
Yu et al. (2022); Wu et al. (2023).

In recent years, the deep neural operator has emerged as a novel approach designed
to learn the infinite-dimensional mapping from PDE solution (Bhattacharya et al.
2021; Lu et al. 2019; Li et al. 2020c). Unlike other deep learning methods such as
CNN and PINNs, the deep neural operator is aimed at learning a family of PDEs.
The trained model can achieve better generalization under varying PDE parameters
and initial boundary conditions. The surrogate model established by this method has
demonstrated promising potential for applications in reservoir engineering. However,
due to the high cost of evaluating global neural integral operators, previously proposed
deep neural operators have not yet reached the desired computational efficiency. The
Fourier neural operator (FNO) is a new framework for solving PDEs, proposed by
NVIDIA’s machine learning group in the 2021 International Conference on Learning
Representations (ICLR) (Li et al. 2020b). FNO enhances the computational efficiency
of previous deep neural operators through two-dimensional fast Fourier transform
(FFT). Zhang et al. (2022) first evaluated the potential of the FNO surrogate model for
two-dimensional oil–water subsurface flow. Wen et al. (2022) evaluated the potential
of the FNO surrogate model for two-dimensional CO2-water flows. Yan et al. (2022a)
developed a deep learning workflow based on FNO to predict pressure distributions
andCO2 plumes during injection and post-injection periods of geological CO2 seques-
tration (GCS) operations. Kuang et al. (2023) recently compared the performance of
FNO and U-net for well rate forecasting in a two-dimensional fractured reservoir, and
observed that the FNO-based approach showed faster training speed, higher accuracy,
and more robust ability to describe fracture features.

For three-dimensional geometric systems (x, y, z), FNO suffers from high GPU
memory consumption and computational cost due to an large number of model
parameters, along with the use of computationally expensive three-dimensional FFT
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operations (Jiang et al. 2023). Wen et al. (2023) proposed a nested FNO architec-
ture, which integrates the FNO with a semi-adaptive local grid refinement (LGR)
modeling method for numerical simulations. This approach significantly reduces the
computational costs associated with data collection in simulating four-dimensional
problems. Furthermore, Yan et al. (2022b) developed a deep learning workflow that
employs FNOs alongside feature coarsening methods, which improved the prediction
accuracy of large-scale geological CO2 storage models, reducing the GPU memory
requirements and enhancing the training efficiency. Overall, however, limited work
has been done to reduce the time consumption of FNO during the training process for
subsurface flow problems when dealing with four-dimensional spatiotemporal state
variables.

In this work, to improve the computational speed of the FNO in a four-
dimensional spatiotemporal reservoir, we developed a new framework that can
simulate four-dimensional subsurface flows based on the three-dimensional FNO
network with a domain decomposition method. This new framework decomposes
the four-dimensional spatiotemporal domain in the z-dimension, trains the FNO net-
work independently in the three-dimensional spatiotemporal domain in each z-layer,
and predicts the distribution of pressure and flow fields of the four-dimensional spa-
tiotemporal domain by combining the three-dimensional domain (x, y, t) results in all
z-layers. This method employs three-dimensional FNOs along the x-axis and y-axis
and incorporates the time component, thus circumventing the substantial compu-
tational expenses associated with direct predictions of four-dimensional flow state
variables using existing FNOs. To demonstrate the applicability of our proposed
approach to large and complex reservoirs, we conducted several tests, which included
injectingCO2 into a reservoirwith complex fractures in case 2 to predict the time-series
flow state distribution. Additionally, in another real reservoir in case 3, we success-
fully established a surrogate model for well rate production under time-varying well
conditions.

The remainder of this paper is organized as follows. Section 2 describes a new
framework that extends FNO-net from the three-dimensional spatiotemporal domain
to the four-dimensional spatiotemporal domain. Section 3 describes three test cases
and discusses the corresponding results. In Sect. 4, the applications and potential
extensions of the proposed approach are discussed. Section 5 concludes this study.
The detailed loss functions for boundary conditions and initial conditions are provided
in the Appendix.

2 Methodology

In this section, firstly, we describe the subsurface flow governing equations in porous
media and the FNO-net architecture. Then, we introduce a novel methodology that
simulates four-dimensional subsurface flow based on the FNO and domain decompo-
sition method. The workflow of this new method, model training details, loss function
design, and error measurement method are also illustrated. Compositional simulation
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is used in the study, and the governing equation for each component is written as

∂

∂t

⎛
⎝φ

∑
j

(xi, jρ j S j )

⎞
⎠ + ∇

∑
j

(
xi, jρ j q j

) +
∑
j

xi, jρ j Q j = 0, (1)

where subscript i denotes the primary fluid components, j denotes the fluid phase, t
represents time, φ is the porosity, xi j is the concentration of component i in phase j ,
ρ j is the fluid phase density, S j is the phase saturation, Q j is the source term, μ j is
the viscosity of phase j , and q j is the Darcy flux of phase j . Darcy’s law for each
phase flow can be written as

q j = −k
kr j
μ j

(∇P − ρ j g∇Z), (2)

where kr j is the relative permeability of phase j that is a function of S j , P is pressure
(capillary pressure is ignored in this study), g is the gravity constant, and Z represents
depth.

Furthermore, we utilize an embedded discrete fracture model (EDFM) to simulate
the fluid flow process in heterogeneous reservoirs with complex fracture distributions.
Initially introduced by Li and Lee (2008), the EDFM has been further developed in
subsequent studies byMoinfar et al. (2014) and Ţene et al. (2017). The fluid cross-flow
between the porous matrix and fractures is described in this study by the following
equation (Zeng et al. 2019)

qm f = 2lm f (Km · n) · n
μ

∇P, (3)

where n is the normal unit vector of the fracture element, Km represents the absolute
permeability tensor in the global meshes, lm f is the length between the fracture and
meshmatrix, andμ is the fluid viscosity. In the EDFM, the fracture element andmatrix
mesh are defined in two systems, and there is no requirement to generate complex
meshes,which alleviates the computational cost for complex fracturemodeling.Within
a physics-driven reservoir simulator, the state variables such as pressure and saturation
are computed through an iterative process.

2.1 FNO Architecture

The FNO operator is a newly proposed neural operator whose main objective is to
learn the mapping between two infinite-dimensional spaces from the observed finite
input–output pairs by the Fourier transform (Li et al. 2020a). The mapping is

G : A → U, (4)

where A is the input function space, and U is the output function space. As shown
in Fig. 1, the FNO approximation of this mapping mainly includes the following
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Fig. 1 Full architecture of FNO: input PDE properties a(x) go through fully connected network P to v0(x)
and then go through the iteration in the Fourier layers to obtain vn+1(x), and finally go through Q to the
spatial dimension of the solution z(x)

three steps: (1) The input observation a(x) is lifted to a potential representation v0 in
higher-dimensional space through a simple shallow fully connected network v0(x) =
P(a(x)). (2) Iterative Fourier layers are implemented, namely v0 → v1 → v2 → · ·
· → vN . The concrete iterative process between elements of this sequence vn → vn+1
can be written as

vn+1(x) = σ(Wvn(x) + (K(a;φ)vn(x))(x)), (5)

where σ is the activation function, W is the network weight, and (K(a;φ)vn(x))(x)
is the bias. The kernel integral transformation parameterized in a neural network is
denoted as K . The FNO kernel operator can be written as

(K(a;φ)vt (x))(x) = F−1(Rφ · (Fvk))(x), (6)

where F denotes the Fourier transform and F−1 denotes the inverse Fourier transform.
The linear transform Rφ represents a restriction operator which can filter the higher
models in Fourier space. (3) After N Fourier layer iterations, the output z(x) can be
obtained by the fully connected neural network transformation Q, z(x) = Q(vN (x)).
The full architecture of the FNO is shown in Fig. 1 and is described in detail in the
original publication Li et al. (2021).

2.2 NewMethodology to Extend FNO-Net fromThree Dimensions (x, y, t) to Four
Dimensions (x, y, z, t)

In this section, to circumvent the computational burden incurred by directly predicting
four-dimensional flow state variables, our framework proposes the application of three-
dimensional FNO across the x-axis and y-axis, together with the time component.
The detailed procedure for the new framework is as follows: (1) Decompose the four-
dimensional spatiotemporal domain in the z-dimension. (2) Train multiple FNO-net
in the three-dimensional spatiotemporal domain. (3) Predict the state variables in
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Fig. 2 Framework of new methodology to extend FNO-net from three-dimensional (x, y, t) to four-
dimensional (x, y, z, t)

Fig. 3 Permeability fields kx ,ky (layer1 to layer5)

subsequent time steps for the entire three-dimensional domain. (4) Obtain the four-
dimensional spatiotemporal solution by re-coupling the three-dimensional prediction
results in the z-dimension.

The whole framework can be divided into the following three parts in Fig. 2. Part 1
(red box in Fig. 2) illustrates the solution of global governing equations. After running
numerical simulations, we obtain the simulation results for n time steps (Ml(x,y,z,t1)

,
Ml(x,y,z,t2)

,Ml(x,y,z,t3)
,...,Ml(x,y,z,tn )

). Part 2 (purple box in Fig. 2) depicts the decomposi-
tion of the simulation results acrossn time steps in the z-dimension. The decomposition
process can be expressed as

Ml(x,y,z1,t)::Ml(x,y,z1,t1), Ml(x,y,z1,t2), Ml(x,y,z1,t3), . . . , Ml(x,y,z1,tn)

Ml(x,y,z2,t)::Ml(x,y,z2,t1), Ml(x,y,z2,t2), Ml(x,y,z2,t3), . . . , Ml(x,y,z2,tn)

Ml(x,y,z3,t)::Ml(x,y,z3,t1), Ml(x,y,z3,t2), Ml(x,y,z3,t3), . . . , Ml(x,y,z3,tn)
...

Ml(x,y,zn ,t)::Ml(x,y,zn ,t1), Ml(x,y,zn ,t2), Ml(x,y,zn ,t3), . . . , Ml(x,y,zn ,tn),

(7)
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whereMl denotes the flowfield distributions of pressure, phase saturation, and compo-
nent concentration in each phase; :: denotes an operator of the domain decomposition
which can decompose the simulation results of n time steps in the z-dimension.
After domain decomposition in the z-dimension at every time step, we can obtain
a simulation results matrix R. The matrix can be written as

R =

⎡
⎢⎢⎢⎢⎢⎣

Ml(x,y,z1,t1), Ml(x,y,z1,t2), Ml(x,y,z1,t3) · · · Ml(x,y,z1,tn)

Ml(x,y,z2,t1), Ml(x,y,z2,t2), Ml(x,y,z2,t3) · · · Ml(x,y,z2,tn)

Ml(x,y,z3,t1), Ml(x,y,z3,t2), Ml(x,y,z3,t3) · · · Ml(x,y,z3,tn)
...

Ml(x,y,zn ,t1), Ml(x,y,zn ,t2), Ml(x,y,zn ,t3) · · · Ml(x,y,zn ,tn)

⎤
⎥⎥⎥⎥⎥⎦

. (8)

The first row R in Eq. 8 denotes the first-layer results for n time steps. The second
row of R contains the second-layer results for n time steps, and so on. Each column of
R contains the simulation results from time step t1 to time step tn that can be used as
input data to train a three-dimensional FNO-net and predict the subsequent time step
state variables at tn + N (N is the number of predicted time steps). The training and
prediction process can be written as

FNOi
(
R(i, :)t1−tn

) = δ
tn+N
i , (9)

where R(i, :) are the simulation results for the i th layer. In the training process, R(i, :)
is first divided into a training dataset and a test dataset. Then these datasets are used
as input data to the i th FNO-net (FNOi ) for training. Part 3 (blue box in Fig. 2) shows
the re-coupling module for reassembling the prediction results of tn + N time steps
of each layer.

After FNOpredicts the resulting state distribution at tn+N for each layer, we collect
the solutions for all layers and reconstruct the three-dimensional state distribution. The
re-coupling process is

C :
{
δ
tn+N
1 , δ

tn+N
2 , δ

tn+N
3 ...δtn+N

n

}
= δtn+N , (10)

where C represents the process of re-coupling the predicted results in z-dimension,
and δtn+N denotes the final results of four-dimensional subsurface flow distributions.
In solving physical equations to obtain the training data needed for our model (state
distribution data from previous time steps), the simulator already takes into account
both vertical and cross-flows. Therefore, hierarchical training of FNO can capture the
change of z-direction during the prediction process.

2.3 Loss Function Design and EvaluationMetrics

The total loss function employed in this study comprises three components: (1) L2-
loss, (2) boundary condition (BC) loss, and (3) initial condition (IC) loss. The total
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loss function is formulated as

Losstotal = L2(u, û) + λ1LossBC + λ2LossIC . (11)

In our study, the reservoir is modeled with no-flow boundary conditions. Both BC and
IC can be easily computed via penalty terms due to their straightforward structure.
Details of the loss functions for boundary conditions and initial conditions are provided
in theAppendix. The L2-loss used to train the deep learningmodels is defined as Pecha
and Horák (2018)

L2(u, û) = ‖u − û‖2
‖u‖2 + β

‖du/dr − dû/dr‖2
‖du/dr‖2 , (12)

where û denotes the predicted output values, which can be amatrix, and du/dr denotes
the first derivative of the input data; dû/dr is the first derivative of the predicted output
values, ‖‖2 is L2 norm, and β is a hyperparameter of the network.

Now, we introduce several error metrics which will be used to evaluate the perfor-
mance of the model proposed in this work. The relative error for predicted results is
defined as

Ai = 1

T

1

N

T∑
t=1

N∑
n=1

∣∣ui − ûi
∣∣ , (13)

ai = 1

T

1

N

T∑
t=1

N∑
n=1

|ui | , (14)

REi = Ai

ai
, (15)

where T represents the number of simulated time steps, N represents the number of
grids, ui represents the true value of pressure, phase saturation, component concen-
tration in one phase, and so on, and ûi represents the corresponding predicted value
in the output. The variable Ai is the average absolute error, ai is the average value of
the actual value, and REi represents the relative error.

3 Application Cases

In this section, we demonstrate the performance of our new framework across three
cases. The first and second cases involve complex CO2 injection for enhanced oil
recovery. The first case studies a three-dimensional heterogeneous reservoirmeasuring
250 feet × 250 feet × 50 feet with an eight-component fluid. The second case is a
three-dimensional heterogeneous fractured reservoir, measuring 1,280 feet × 1,280
feet × 50 feet, with the same fluid components. The number of fractures in this case
is 42. The FNO-net structure for each layer of training is illustrated in Table 7 for our
two test cases. The third case focuses on dynamic production prediction under varying
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Fig. 4 Dataset organization

well control conditions in a three-dimensional heterogeneous gas reservoir measuring
1,120 feet × 1,350 feet × 670 feet. Details regarding data processing (preprocessing
and post-processing), model training, and testing are discussed later in the section.
Predictions and error measurements are provided for gas saturation, pressure, and
CO2 concentration in the gas phase.

The construction of the four-dimensional FNOneural network structure in this paper
is based on PyTorch, a popular open-source machine learning software library. The
three different numerical cases in this work were implemented on a DELL Precision
T7920 workstation with two Inter(R) Xeon(R) Gold 6230R CPUs@ 2.10GHz, and
two NVIDIA GeForce RTX 3090 Ti GPUs. All code and data required to reproduce
the results presented in the paper will be available at https://github.com/HPMPS upon
publication.

3.1 Case 1: Prediction of Time Series State Distribution in a Three-Dimensional
Reservoir

In this case study, we utilized themethod proposed in Sect. 2 to predict subsurface flow
state distribution, including the gas saturation, pressure, and CO2 concentration in the
gas phase, in the subsequent time steps under a three-dimensional heterogeneous reser-
voir. The Stanford University new-generation reservoir simulator ADGPRS (Younis
2011; Zhou 2012) was used to generate synthetic data for model training and testing.

In case 1, the reservoir domain is discretized using a Cartesian grid with dimen-
sions of 25×25×5 grid cells in the x , y, and z directions, respectively. Each grid cell
measures 10 feet × 10 feet × 10 feet. The total number of grid cells is 3,125, and
the reservoir contains two wells. The injection well is located at coordinates (25,25),
and the production well is at (1,1), with each well perforating all five layers vertically.
The CO2 injection rate is set at 3,500 Mscf/day at the injection well, and the total
liquid production rate is 2,000 STB/day at the production well. Permeability distri-
butions (kx , ky) were generated using the SGeMS (Stanford Geostatistical Modeling
Software) sequential Gaussian simulation for a grid size of 25×25. The values for kx
and ky in each layer are displayed in Fig. 3. The fluid behavior is modeled using the
Peng-Robinson equation of state (EOS) (Robinson and Peng 1978), suitable for an
eight-component fluid, with fluid properties summarized in Table 8.

We take the pressure and saturation distribution of the first 10 time steps as input
and the state distribution of last 40 time steps as output. The simulator runs for 10,500
days with 1,050 time steps, 10 days for each time step. After the numerical simulator
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Table 2 The time and spatial complexity analysis of the original FNO method and our proposed method
on four-dimensional problems, N ∝ mx X · myY · mt T

Algorithm Time complexity T (n) Space complexity S(n)

Original FNO FFT4(x, y, z, t) O(Z · mzN log(Z · mzN )) O(mz Z · N )

Our proposed method Z × FFT3(x, y, t) O(Z · N log N ) O(Z · N )

Fig. 5 Training and testing accuracy versus the number of the epochs for case 1. Each epoch takes about
15 s in the NVIDIA GeForce RTX 3090 Ti GPU

runs, the four-dimensional subsurface flow state distribution results obtained by the
simulation are decomposed into the three-dimensional state distribution of five layers
in the z-direction according to Eq. 7. In each layer, the FNO model training, testing,
and validation are described as follows. Dataset organization is such that each batch
has 50 consecutive time steps: batch 1 is 1 to 50 time steps, batch 2 is 2 to 51 time
steps, and so on. The last batch is 1,000 to 1,050 time steps. The total batch number
is 1,000.

Figure 4 illustrates the preparation of batches. For each batch, the values of the first
10 time steps are used as input data to train the FNO-net and predict the state values
as û in Eq. 12. Then, the true values in the remaining 40 time steps are introduced into
Eq. 12 as u to obtain L2 loss. By combining BC loss and IC loss, we optimize the
total loss in Eq. 11 by the Adam optimization method. Among the 1,000 batches, 800
batches were randomly selected as the training data set and the remaining 200 batches
as the testing data set. This method of assigning training sets and verification sets is
widely used in machine learning research (Hu and Zhang 2022). To demonstrate the
prediction capability in time series, the values in the three 50, 250, and 450 time steps
are used as the validation data and are excluded in training and testing. The input shape
for the network is (1, 000, 25, 25, 1, 10), where 1,000 denotes the number of samples,
25 denotes the number of grids in the x-dimension, the other 25 is the number of the
grids in the y-dimension, 1 is the required placeholder for variables, and 10 is the first
10 time steps in the time series. The output shape is (1, 000, 25, 25, 40), where 40 is
the remaining 40 time steps. The results show that our model accurately predicted the
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Table 3 Comparison between original FNO method and our proposed method on four-dimensional
problems. Batch size is set as 1 for all the experiments

No. of parameters GPU memory consumption Single-epoch training speed

Original FNO 19,798,679 45.6 GB 170.4 s

Our proposed method 1,247,323 9.1 GB 15s

Fig. 6 Relative errors of pressure field in different layers (layer 1 to layer 5) with 500 epochs training for
case 1. The orange line in each box indicates the relative error of the median, and the two sides of the bottom
and top indicate the 25th and 75th percentile error, respectively. The “whiskers” protruding from the box
indicate minimum and maximum errors

subsurface flow state distributions in the future 40 time steps based on the current state
distributions of 10 time steps. Because the three-dimensional FNOmodel training in a
layer is independent of all other layers, we can train all three-dimensional FNOmodels
in parallel to speed up the training process.

Training for 500 epochs takes about 7,500s with the data from 1,050 time steps on
an NVIDIA GeForce RTX 3090 Ti GPU computer. Each epoch takes 15s in training.
Then, it takes 3.2 s to predict the outputs for subsurface flow state distributions in the
future 40 time steps. For case 1, we studied the effect of different numbers of Fourier
layers on the model accuracy. The results are shown in Table 1. The results of the
ablation study show that our network structure with five Fourier layers can achieve the
best performance in training time and average relative error. Therefore, all test cases
in the work adopt the same network structure, which includes five Fourier layers.

We now consider the relationships between the relative total loss and the number
of training runs. Figure 5 shows the losses for the five layers based on training and
validation data over 500 epochs. Generally, decreasing the learning rate by 0.1 every
100 epochs has a positive effect on the entire training process. Both training and vali-
dation losses were reduced similarly in all scenarios, indicating that the optimization
did not overfit the model to the training data. The relative total loss from training can
be reduced to about 0.03 with 100 epochs, and the losses decrease steadily and rapidly.
As the number of epochs increases, the relative total loss from training can be further
reduced to about 0.01 with 500 epochs.

Our model accurately predicted the gas saturation and pressure fields in the three-
dimensional heterogeneous reservoir for the compositional modeling of the eight-
component fluid. To investigate the relative error on every layer of our method, we
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Fig. 7 Prediction of gas saturation distribution in layer 1, layer 3, and layer 5 at the 250th time step (case
1): network results (first column), numerical simulation results (second column), errors (third column)

employed Eqs. 13–15 to evaluate the relative errors. Figure 6 displays the relative
errors in pressure across five layers at three different testing time steps: 50, 250, and
450. The results, as shown in Fig. 6, indicate that the values of average relative error
range from 0.2% to 1.2% for all test time steps.

Figure 7 depicts the gas saturation fields obtained by both the simulator and our
network model using 1,000 samples at the 250th time step. The figure demonstrates
that the model achieves higher approximation accuracy for the strongly nonlinear and
discontinuous gas saturation field, as expected. It also highlights areas where the posi-
tion of front discontinuity has higher approximation errors in all instances. Increasing
the training sample size may allow the model to capture better characterization of the
local nonlinear features and improve accuracy in the gas saturation at the front where
CO2 is injected. Even with a small portion of training data used in this study, the
maximum error of the gas saturation remains within the acceptable range.

In addition, for the gas saturation distribution, we compare the prediction results
of different layers at the same time step. For example, in Fig. 7, layer 1 (the first row),
layer 3 (the second row), and layer 5 (the third row) demonstrate that as CO2 injection
progresses, the rate of change in the gas saturation field in the deeper layers is slower
than in the shallower layers. This phenomenonmay be attributed to the influence of the
gravity field in the z-direction. After numerical simulation of the three-dimensional
reservoir, the field distribution at each time step, considering vertical flow, is obtained.
We decouple the simulation results of the entire four-dimensional reservoir along the
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Fig. 8 Visualization of four-dimensional gas saturation distribution: network results (first column), numeri-
cal simulation results (second column), errors (third column) for case 1 at the 50th (first row), 250th (second
row), and 450th (third row) time steps, respectively

z-dimension to obtain nz layer fields at each time step. These data are then used to
train the three-dimensional FNO network models in every z-layer. Thus, the network
accounts for the influence of vertical flow during the training process. The predicted
results further validate that our model effectively captures the impact of the gravity
field on the four-dimensional CO2 EOR simulation in the spatial z-axis.

As computations are independent in each layer, training and prediction in the
four-dimensional spatiotemporal domain can be performed in parallel to expedite
the process. We also developed four-dimensional visualization Python code to display
the four-dimensional prediction results. Figure 8 shows the visualization of the four-
dimensional gas saturation distribution for case 1 at the 50th (first row), 250th (second
row), and 450th (third row) time steps, respectively. With this four-dimensional visu-
alization software, we can quickly and clearly view the prediction results and overall
errors of four-dimensional subsurface flow.

Here, we compared the performance of our proposedmethod with the original FNO
method for time-dependent three-dimensional problems (four-dimensional problems)
in terms of GPUmemory consumption, number of parameters, and single-epoch train-
ing speed. Performing the fast Fourier transform (FFT) on a tensor with input data
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Fig. 9 Reservoir and wells in case 2. The blue square at the lower left corner of the configuration is the
production well. The red square at the upper right corner of the configuration is the CO2 injection well.
The blue lines at the domain are the 42 natural fractures

Table 4 The cost of training and prediction

Case Time to train each epoch time (s) Prediction 40 time steps (s) Epoch number

Case 1 15 3.2 500

Case2 16.3 3.5 500

size N remains time-consuming, despite the optimized O(N log N ) complexity intro-
duced by Cooley and Tukey (Cooley and Tukey 1965). The FFT layers are the most
time-consuming steps in theFNOarchitecture, dominating the overall time complexity.

Table 2 presents the time and spatial complexity analysis for both methods. For
input data with mesh size X ×Y × Z ×T , where T represents the total time snapshots
and mx ,my,mz,mt are the FFT modes in each dimension:

(1) The time complexity for training an epoch using the original FNO method is
O((mx X · myY · mz Z · mtT ) log(mx X · myY · mz Z · mtT )).

(2) The time complexity for our proposed method is Z × O((mx X · myY ·
mtT ) log(mx X · myY · mtT )).

(3) The spatial complexity for the original FNOmethod is O(mx X ·myY ·mz Z ·mtT ).
(4) The spatial complexity for our proposed method is Z × O(mx X · myY · mtT ).

The improvement in time complexity is quantified as

RT (n) ≈ mz

(
1 + log(mz Z)

log(N )

)
, (16)

where N is proportional tomx X ·myY ·mtT . This indicates a reduction factor greater
than mz as the number of layers Z increases.

123



Mathematical Geosciences

Table 5 Effect of the different
numbers of frequency terms.
ARE is the average relative error
of pressure

Frequency term ARE % (case 1) ARE % (case 2)

600 8.60% 12.30%

800 4.50% 8.50%

1,000 1.20% 1.60%

1,200 1.10% 1.20%

Fig. 10 Relative errors of pressure field in different layers (layer 1 to layer 5) with 500 epochs training
for case 2. The orange line in each box indicates the relative error of the median, and the two sides of the
bottom and top indicate the 25th and 75th percentile error, respectively. The “whiskers” protruding from
the box indicate minimum and maximum errors

The improvement in space complexity is given by

RS(n) ≈ mz, (17)

indicating that the space complexity reduction is directly related to the number of FFT
modes in the z-direction.

In this experiment, we chose the dataset for case 1 with mesh sizes of 25, 25, 5, and
10. Considering the high GPU memory consumption of the original FNO method, we
chose an NVIDIA A800 with 80-GB GPU memory for this comparison. The detailed
results are shown in Table 3. Compared with the original FNO, our proposed method
only has 6.3%of the number of parameters andneedsmuch lessGPUmemory (<20%).

3.2 Case 2: Prediction of Time Series State Distribution in a Three-Dimensional
Fractured Reservoir

In the second test case, the reservoir was divided uniformly into a 128 × 128 × 50
Cartesian grid, with each grid measuring 10 feet × 10 feet × 10 feet. Additionally, 42
fractureswere integrated into the reservoir. The total number of grids is 81,920with two
wells. The injection well is located in (128,128) and the production well in (1,1). Both
wells penetrate the whole reservoir vertically. The injection well operates under gas
rate control at 3,500Mscf/day, and the productionwell under a total liquid rate control
of 2,000 STB/day. The well configurations are depicted in Fig. 9. We employed the
SGeMS sequential Gaussian simulation to generate permeability distributions (kx, ky)
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Table 6 Summary of each FNO network input. The shape of the field inputs is (112, 135). The N [a, b]
indicates that the scalar input value ranges from a to b. The scalar variables are also broadcast into a matrix
with dimensions (112, 135)

Parameter Notation Distribution Unit

Field inputs Pressure field distribution at tn Ptn – Bar

Saturation field distribution at tn Stn – –

Scalar inputs Specified well controls at tn+1 Wtn+1 N [50362.2, 252411.0] m3/d

Fig. 11 Cross-plots of predicted pressure and ground truth values for five layers (layer 1 to layer 5, in order
from left to right, top to bottom) for case 2. Red dots represent results at the 50th time step, blue dots at the
250th time step, and green dots at the 450th time step

with a grid size of 128× 128. The fracture parameters including position, permeability
in horizontal directions, permeability in vertical directions, porosity in fracture, and
aperture of fracture are listed in Table 9. The distribution of these fractures is shown
in Fig. 9. In this case, we adopted the eight-component fluid model shown in Table 8,
which is the same as those used in case 1.

We ran ADGPRS to obtain synthetic data for training and testing, including pres-
sure, gas saturation, and CO2 concentration in the gas phase. The simulation runs a
total of 10,00 days with 1,050 time steps, 10 days for each time step. The selection of
training data and the training process are the same as in case 1.

Weevaluated the relative error in the pressurefield byEqs. 13–15. Figure 10displays
the relative error of pressure in five layers at the 50th, 250th, and 450th testing time
steps. Note that the average values for relative error across all test time steps range from
0.5% to 1.4%. These results are from training over 500 epochs. For this case, training
500 epochs takes about 8,150s with the data from 1,050 time steps on an NVIDIA
GeForce RTX 3090 Ti GPU computer. Each epoch takes 16.3 s. Then, it takes 3.5 s to
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Table 7 FNO-net structure for each layer of training. The padding operator represents the network’s comple-
ment to a non-periodic boundary; linear transformationmainly to lift the input shape to the high-dimensional
potential space, and the last linear operation is the projection output value back to the original space,F1-F5
is five Fourier layer

Network layer Output shape (case 1)

Input (1000, 25, 25, 40, 10)

Padding (1000, 25, 25, 32, 10)

Linear (1000, 25, 25, 32, 10)

F1:Fourier3d/conv3d/BatchNorm3d (1000, 25, 25, 32, 36)

F2:Fourier3d/conv3d/BatchNorm3d (1000, 25, 25, 32, 36)

F3:Fourier3d/conv3d/BatchNorm3d (1000, 25, 25, 32, 36)

F4:Fourier3d/conv3d/BatchNorm3d (1000, 25, 25, 32, 36)

F5:Fourier3d/conv3d/BatchNorm3d (1000, 25, 25, 32, 36)

Projection1 (1000, 25, 25, 32, 128)

Projection2 (1000, 25, 25, 32, 1)

Output (1000, 25, 25, 40, 1)

Network layer Output shape (case2)

Input (1000, 128, 128, 40, 10)

Padding (1000, 128, 128, 32, 10)

Linear (1000, 128, 128, 32, 10)

F1:Fourier3d/conv3d/BatchNorm3d (1000, 128, 128, 32, 36)

F2:Fourier3d/conv3d/BatchNorm3d (1000, 128, 128, 32, 36)

F3:Fourier3d/conv3d/BatchNorm3d (1000, 128, 128, 32, 36)

F4:Fourier3d/conv3d/BatchNorm3d (1000, 128, 128, 32, 36)

F5:Fourier3d/conv3d/BatchNorm3d (1000, 128, 128, 32, 36)

Projection1 (1000, 128, 128, 32, 128)

Projection2 (1000, 128, 128, 32, 1)

Output (1000, 128, 128, 40, 1)

predict the outputs for subsurface flow state distributions in the subsequent 40 time
steps. In comparison, the traditional solver ADGPRS, which uses the GMRES linear
solver with the two-stageCPR preconditioners, takes 18.01 s for every single time step,
and about 720s for all 40 time steps. Table 4 shows the cost of training and prediction
for case 1 and case 2. In this study, we chose 600, 800, 1,000, and 1,200 samples to
optimize the number of batches. Table 5 shows that the frequency term 1,000 can keep
the average relative error within a reasonable range.

For the pressure distribution, to evaluate the predictive capability of our network,
we present cross-plots of predicted and ground truth values for five layers (layer 1
through layer 5) in Fig. 11. Figure 11 shows that all testing points fall near the 45◦
line, demonstrating that our predicted solutions are in close agreement with the ground
truth values.
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Table 8 Fluid properties in the case 1–2 study

Component Pc(psi) Tc(R) Acentric factor Molecular weight

CO2 1069.87 547.56 0.22 44.01

C1 − N2 665.21 341.76 0.01 16.12

C2 − H2S 708.63 549.78 0.09 30.07

C3 − C5 543.67 762.06 0.19 57.27

C6 − C7 444.96 993.11 0.33 91.649

C8 − C10 355 1108.11 0.46 119.16

C11 − C19 269.70 1155.99 0.62 192.23

C20+ 221.02 1428.18 1.04 414

Fig. 12 Prediction of gas saturation distribution in layer 1, layer 3, and layer 5 at the 250th time step (case
2): network results (first column), numerical simulation results (second column), errors (third column)

Figure 12 illustrates the comparison of the gas saturation distribution at the 250th
time step between the simulator and our network model. Figure 12 shows that the
distribution of gas saturation is very complex due to the presence of fractures, while
the overall gas saturation error is within 0.06. The error on the boundary is within
0.01. Ourmodel, as expected, achieves higher approximation accuracy for the strongly
nonlinear and discontinuous gas saturation field in the fractured reservoir. In addition,
the error of the model mainly exists in the injected gas front.
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Fig. 13 Prediction of CO2 concentration in the gas phase in layer 1, layer 3, and layer 5 at the 450th time
step (case 2): network results (first column), numerical simulation results (second column), errors (third
column)

Figure 13 depicts a comparison of the CO2 concentration in the gas phase at the
450th time step between the simulator and our networkmodel. Similar to the prediction
of gas saturation, the maximum predicted error is around the gas front (about 0.1 mole
fraction). The results also show that the error of CO2 concentration in the gas field is
larger than that in the pressure field and gas saturation field. This discrepancy may be
attributed to the compositional simulation, which presents a significant challenge to
our model’s predictive capability for CO2 concentration in the gas phase. To address
this issue, our subsequentworkwill involve incorporating physical laws related to ther-
modynamic phase equilibrium as constraints in our network loss function to enhance
the prediction accuracy of CO2 concentration in the gas phase.

Figure 14 shows the visualization of the four-dimensional gas saturation distribution
for case 2 at the 50th, 250th, and 450th time steps, respectively. The figure reveals
good agreement between the predicted values and reference results.

3.3 Case 3:Well Production Prediction in the Three-Dimensional Reservoir with
VaryingWell Controls

In reservoir engineering applications, it is usually necessary to allocate daily or weekly
production or injection rates among hundreds of wells for a fixed geological model.
Reservoir engineers employ optimization algorithms in conjunction with surrogate
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Fig. 14 Visualization of four-dimensional gas saturation distribution: network results (first column), numer-
ical simulation results (second column), errors (third column) for case 2 at the 50th (first row), 250th (second
row), and 450th (third row) time step, respectively

Fig. 15 The overall architecture of the surrogate modeling process for the test case 3
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Fig. 16 The permeability field and the well configurations for test case 3

models to adjust well controls based on predicted outputs. Surrogate modeling must
accurately predict production under varying well control conditions. To demonstrate
the performance of our proposed algorithm in well rate production prediction under
time-varyingwell conditions,we test a newapplication case. This surrogatemodel built
by our proposed algorithm can make a dynamic prediction of the well rate production
under time-varying well conditions.

The overall architecture of the surrogate modeling process for case 3 is shown in
Fig. 15. The input is the pressure, saturation field at tn , and the specified well control
at tn+1. The output is the pressure and saturation fields at tn+1. Considering that case
3 is a gas reservoir that produced very little water in the early stages of development,
gas saturation was only used for this work. Subsequently, the pressure and saturation
values in the well grids at tn+1 were extracted, and the production was predicted by
the multilayer perceptron (MLP) network.

Case 3 involves a three-dimensional gas reservoir with an oil-gas-water system.
The permeability distributions and the well configurations are shown in Fig. 16. Nine
productionwells are located in the reservoir, and all producers are controlled by the gas
rate target (GRAT). The reservoir is discretized using a Cartesian grid with dimensions
of 112× 135× 67 gird cells in the x , y, and z directions, totaling 1,013,040 grid cells.

For dataset preparation, we employed a Computer Modelling Group Ltd. (CMG)
IMEX simulator to develop and simulate multiple cases as the training and testing
datasets. We simulate production from January 1, 2011, to September 1, 2022, 1
month for each time step. All well controls are adjusted once every month. The con-
trol conditions (GRAT) are from 50,362.200 to 252,411.000 m3/day with normal
distribution. A total of 550 well controls were generated and simulated, among which
500 cases were used for training and 50 for testing.

The network inputs for each FNO are shown in Table 6. The inputs can be divided
into two types: space-dependent inputs (field inputs) and scalar inputs. Field inputs
include state distribution of pressure and saturation at tn . Considering that case 3 is an
irregularly shaped reservoir, we use zero-padding to denote cells that are outside the
real reservoir. Therefore, the data structures for field input variables are matrices with
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Fig. 17 Prediction of pressure distribution in layer 5, layer 15, and layer 35 at the 80th time step (case 3):
network results (first column), numerical simulation results (second column), and errors (third column)

dimensions (112, 135). The scalar inputs include the well controls at tn+1. The well
controls are randomly sampled, ranging from 50,362.200 to 252,411.000 m3/d. The
scalar variables are also broadcast into a matrix with dimensions (112, 135), and the
values of other cells are filled with zeros. The final input data sample is constructed by
connecting field variables, scalar variables, spatial grids, and temporal grids together.
The final input data sample structure is (112, 135, 3).

Once the surrogate model is trained, it can predict the distribution of the pressure
and saturation field and well production under various well control conditions. In the
training process, we use the Adam optimizer to train for 500 epochs with an initial
learning rate of 0.001which is halved every 100 epochs. The neurons in the connection
networks P and Q in Fig. 1 are activated using the sigmoid function.

After the surrogate model was trained, we predicted pressure and saturation dis-
tribution at the 80th month. Figures 17 and 18 show that the predicted pressure and
saturation distribution present a good match with the reference results. The medium
relative errors for well pressure and saturation are 0.85% and 0.35%, respectively.
Additionally, we presented the gas production results for the nine wells in Fig. 19, in
which the blue dotted lines represent the results from the simulator, and the red lines
represent the results from our model. Figure 19 shows that our model achieves very
high accuracy in predicting well production. Figure 20 compares the results of the
three-dimensional (x, y, z) gas saturation distribution for case 3 at time step 80.
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Table 9 Parameters of 42 fractures in the case 2 study

Natural fracture PERM(mD) PERMV(mD) PORO APERTURE

Fracture1 150 1.5 0.9 0.02

Fracture2 500 12.5 0.5 0.04

Fracture3 170 10.5 0.4 0.1

Fracture4 250 4.5 0.19 0.02

Fracture5 175 6.5 0.16 0.08

Fracture6 225 7.3 0.55 0.2

Fracture7 850 1.5 0.19 0.25

Fracture8 380 4.5 0.29 0.25

Fracture9 720 3.5 0.29 0.52

Fracture10 480 4.7 0.39 0.48

Fracture11 500 2.6 0.69 0.83

Fracture12 100 1.2 0.74 0.55

Fracture13 550 1.3 0.98 0.35

Fracture14 250 1.55 0.78 0.53

Fracture15 250 1.57 0.75 0.08

Fracture16 250 1.35 0.5 0.07

Fracture17 350 1.55 0.94 0.07

Fracture18 450 1.45 0.93 0.06

Fracture19 550 1.75 0.98 0.05

Fracture20 700 1.65 0.89 0.04

Fracture21 600 10.5 0.85 0.03

Fracture22 450 12.5 0.5 0.03

Fracture23 650 11.6 0.3 0.03

Fracture24 450 8.56 0.4 0.02

Fracture25 350 7.56 0.5 0.01

Fracture26 650 6.53 0.54 0.1

Fracture27 350 8.53 0.44 0.11

Fracture28 250 5.55 0.4 0.25

Fracture29 350 2.65 0.3 0.11

For computational efficiency, the 550 cases were simulated on an Intel Xeon(R)
W-3275M dual CPU with 28 cores, and each run took approximately 1,500 s. On
an NVIDIA GeForce RTX 3090 Ti GPU node with 24 GB video memory, it took
25,510s to train our surrogate model. After training, the surrogate model took 125s to
forecast the outputs for all 50 test cases, with an average time cost of 2.5 s for each one.
A speedup factor of over 600x is observed for this application scenario after model
training.

In this case, the constructed surrogate model can provide flow predictions under
time-varying well controls. By inputting the pressure and saturation field of the current
time step and future well controls, the well production rates, pressure, and saturation
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Table 9 continued

Natural fracture PERM(mD) PERMV(mD) PORO APERTURE

Fracture30 454 7.52 0.2 0.32

Fracture31 455 1.45 0.93 0.06

Fracture32 652 1.75 0.98 0.05

Fracture33 720 1.65 0.89 0.04

Fracture34 650 10.5 0.85 0.03

Fracture35 400 12.5 0.5 0.03

Fracture36 620 11.6 0.3 0.03

Fracture37 455 8.56 0.4 0.02

Fracture38 355 7.56 0.5 0.01

Fracture39 650 6.53 0.54 0.1

Fracture40 250 8.53 0.44 0.11

Fracture41 650 5.55 0.4 0.25

Fracture42 450 2.65 0.3 0.11

Fig. 18 Prediction of saturation distribution in layer 5, layer 15, and layer 35 at the 80th time step (case 3):
network results (first column), numerical simulation results (second column), and errors (third column)
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Fig. 19 Gas rate prediction in case 3

Fig. 20 Visualization of three-dimensional gas saturation distribution for case 3 at the 80th time step
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distributions at the next time step can be predicted. The trained model has been tested
under different well control scenarios, and the results showed that our proposed model
can accurately predict the pressure and saturation fields. In addition, the production
forecast for each well also matched the corresponding simulation results.

4 Discussion

We have extended the FNO from three-dimensional (x, y, t) to four-dimensional
(x, y, z, t) based on the domain decomposition method. Although the general four-
dimensional (x, y, z, t) FNOnetwork, which is based on the three-dimensional FFT, is
computationally very expensive and hard to employ in an application, we trained and
used the four-dimensional (x, y, z, t) FNO network from the two-dimensional FFT.
Therefore, our developed framework retains the speed advantage of FNO in three
dimensions (x, y, t) and can be applied to large-scale four-dimensional (x, y, z, t)
subsurface flow simulation. To demonstrate the developed four-dimensional FNO
applicability in reservoir engineering, we use our method to build surrogate mod-
els in the dynamic prediction of a large three-dimensional reservoir (over 1 million
grids) under changing well conditions in case 3. Excellent prediction is observed in
well production and pressure and saturation fields.

Although we have been able to simulate the four-dimensional (x, y, z, t) subsur-
face flow problems using the FNO network and the domain decomposition method,
this was only done on orthogonal grids at this time. For the unstructured grid, more
reservoir characteristics are not considered, such as production splitting, reservoir
inclination, and so on. Recent studies have shown that complex geometric shapes can
be fed into a normal FNO network through a spatial transformation (Li et al. 2022),
and this work can be extended to deal with large-scale irregularly shaped geometry.
We can combine our current work with irregularly shaped geometry techniques to
build surrogate models for large-scale three-dimensional complex reservoirs and use
these models in history matching, dynamic prediction of the reservoir, optimization of
well conditions, uncertainty quantification, and other scenarios. For example, we can
combine the proxy model established by our proposed method with particle swarm
optimization (PSO) or simultaneous perturbation stochastic approximation (SPSA)
algorithms to optimize the total oil production of the oilfield in the future production
process by adjusting the water injection rate of all injectors. This could be extremely
helpful when large amounts of simulation are required for production optimization on
realistic reservoirs.

5 Conclusions

The FNO is a fast and promising neural network method to speed up the simulation
of engineering applications. Because of the complexity of this method, up to now,
it has only worked for three-dimensional (x, y, t) simulation problems and has had
little use in practice, because practical simulations are always in the four-dimensional
(x, y, z, t) domain. In this work, we employ three-dimensional FNO along the x-axis
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and y-axis and incorporate the time component, thus circumventing the substantial
computational expense associated with directly predicting four-dimensional flow state
variables using existing four-dimensional FNO. This new methodology successfully
extends the current FNO network from three-dimensional spatiotemporal domains
to four-dimensional spatiotemporal domains for the subsurface flow simulations. The
performance comparison results in case 1 indicate that, compared to the original FNO,
our proposed method has only 6.3% of the parameters and requires less GPUmemory
(<20%). In addition, the single-epoch training speed is improved eightfold. The time
complexity improvement of our proposed method is not dominated by the number of
layers in the z-direction, and the space complexity is directly related to the number of
FFT modes in the z-direction.

The new framework was successfully tested for some complex cases of CO2
injection for enhanced oil recovery by compositional simulations. The first case is
a three-dimensional (250 feet × 250 feet × 50 feet) heterogeneous reservoir with an
eight-component fluid. The second case is a three-dimensional (1,280 feet × 1,280
feet × 50 feet) heterogeneous reservoir with 42 fractures and an eight-component
fluid. The framework is also applied to the surrogate model to accurately predict the
pressure and saturation distribution of the reservoir and the well productions in an
over-1-million-grid reservoir with nine wells (case 3). Key achievements in this work
include the following:

(1) Our new framework successfully extends the current FNO-network from three
dimensions (x, y, t) to four dimensions (x, y, z, t) to predict the state distributions
in subsurface flow problems.

(2) The computational speed in four dimensions (x, y, z, t) by our method can be as
fast as in three dimensions (x, y, t), which overcomes the very low speed of the
original four-dimensional (x, y, z, t) FNO method.

(3) The tested results show that our new framework can efficiently simulate the
complex EOR processes by injecting CO2 into complex fracture reservoirs in
compositional simulation, and predict the well productions and the field pressure
and saturation distribution in a large three-dimensional reservoir (over 1 million
grids) with time-varying well conditions.

Future research will mainly involve the following aspects. In terms of network frame-
work innovation,wewill combine the currentworkwith it and introduce the irregularly
shaped geometry techniques to further process the large-scale three-dimensional com-
plex reservoirs. In terms of application, we will establish the surrogate model that can
describe the layered injection production relationship based on current work, and
combine optimization algorithms to achieve intelligent parameter optimization, solv-
ing the challenges brought by time-consuming numerical simulators in traditional
optimization processes.
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Appendix:DetailedLoss Functions forBoundaryand Initial Conditions

In our study, the boundary condition for all cases is the Newman boundary.

K (x)∇ p(x) · n(x) = 0, x ∈ 	N (A.1)

EquationA.1 denotes the Newman boundary condition. K(x) is the permeability; P(x)
is the pressure; n(x) is the normal vector, which is normal to the boundary. The model
parameters K(x) are known, and the boundary conditions and initial conditions are
specified by

LBC (θP ) = 1

NNt

N∑
i=1

Nt∑
t=1

‖Rl (θP )‖22 . (A.2)

Equation A.2 represents the loss function of the boundary condition. N is the number
of girds. Rl(θP ) represents the residual of Eq. A.1.

RP,IC (θP ) = P̂ (θP ) − P (θP ) (A.3)

RS,IC (θS) = Ŝ (θS) − S (θS) (A.4)

Equations A.3 and A.4 are the difference between the predicted value and the ini-
tial value, respectively. RP,IC is the residual of pressure. RS,IC is the residual of
saturation.

L IC = 1

N

N∑
i=1

‖R (θP )‖22 + 1

N

N∑
i=1

‖R (θS)‖22 (A.5)

Equation A.5 represents the loss function of the initial condition, and R(θP ) and R(θS)

represent the residual of pressure and saturation, respectively.
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